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Abstract. In systems biology, the number of models of cellular pro-
cesses increases rapidly, but re-using models in different contexts or for
different questions remains a challenging issue. In this paper, we show
how the validation of a coupled model and the optimization of its pa-
rameters with respect to biological properties formalized in temporal
logics, can be done automatically by model-checking. More specifically,
we illustrate this approach with the coupling of existing models of the
mammalian cell cycle, the p53-based DNA-damage repair network, and
irinotecan metabolism, with respect to the biological properties of this
anticancer drug.

1 Introduction

In systems biology, the number of models of cellular processes increases rapidly.
To date, most of the effort has been devoted to building models and making
them freely available, through the design of standard exchange formats, such
as for instance the Systems Markup Language SBML [26], the making of model
repositories, such as for instance http://biomodels.net/, the making of biological
ontologies to establish the links between molecular synonyms, species, units, etc.,
and the development of modeling tools, such as Cell Designer, BIOCHAM [7],
BioNetGen [4], Pathway Logic [15], Bio-ambients [35], etc. Despite these efforts
however, re-using models in different contexts or for different questions remains
a challenging issue. In practice, most of the models are developed, refined, sim-
plified or coupled with respect to other models by hand with no direct support
from the tools to re-use models in a systematic way using a specification of the
expected behavior.

In this paper, we show how the validation of a coupled model and the op-
timization of its parameters with respect to biological properties formalized in
temporal logics, can be done automatically by model-checking. More specifically,
we illustrate this approach with the coupling of existing models of the mam-
malian cell cycle, the p53-based DNA-damage repair network, and irinotecan
metabolism, with respect to the biological properties of the latter one.

Irinotecan is an anti-carcinogenic inhibitor of topoisomerase-1 which started
to be used in clinical treatments approximately twenty years ago. It shows sig-
nificant efficacy against a variety of solid tumors, including lung, colorectal, and



cervical cancers. Scientists are currently trying to optimize the irinotecan ther-
apy in order to understand how to limit its toxicity and to increase its efficacy.
In this context, it is crucial to comprehend how the presence of this medica-
ment influences cellular proliferation. In this work we present a model-checking
approach to the problem. There are in the literature many models of the mam-
malian cell-cycle, a few ones of the cell’s DNA-damage repair pathways, and
recently some preliminary models of irinotecan intracellular pharmacodynam-
ics. However these modules need to be assembled in a coherent way to provide
meaningful answers. After reformulating the existing models in the rule-based
language of the biochemical abstract machine Biocham [19,7], we assemble them
into a coupled model under the constraint of satisfying some relevant biological
properties, formalized in temporal logic and automatically checked by model-
checking.

Model-checking is the process of algorithmically verifying whether a given
structure is a model for a given temporal logic formula [13]. In literature, there
are various applications of model-checking techniques to biology. In [8,15], tem-
poral logic was introduced as a query language for biochemical networks and for
validating boolean models of biological processes by model-checking techniques.
Some experimental results were obtained on Kohn’s map of the mammalian cell
cycle control (800 reaction rules, 500 variables) using the symbolic model-checker
NuSMV, and on a small ordinary differential equation (ODE) model using the
constraint-based model checker DMC. This approach to verifying biological pro-
cesses has pushed the development of model-checking techniques for quantitative
properties, and continuous, stochastic or hybrid models.

For (non-linear) ODE models, numerical integration techniques provide nu-
merical traces on which linear time temporal logic with numerical constraints
can be evaluated by model-checking. Simpathica [2] and the biochemical abstract
machine Biocham [6] are two examples of computational tools integrating such
model-checkers for quantitative models. This approach has been generalized to
temporal logic constraint solving in [18], allowing for efficient kinetic parameter
optimization [37] and robustness analyses [36] w.r.t. quantitative temporal logic
properties.

In [25], Heath et al. apply the probabilistic model-checker PRISM to the
study of a complex biological system, namely, the Fibroblast Growth Factor
(FGF) signalling pathway. In [12], Clarke et al. apply statistical model-checking
on a stochastic model of a T-cell receptor.

In [3] Batt et al. develop a modeling framework based on differential equa-
tions to analyze genetic regulatory networks with parameter uncertainty. The
values of uncertain parameters are given in terms of intervals and dynamical
properties of the networks are expressed in temporal logic. Model-checking tech-
niques are then exploited to prove that, for every possible parameter value, the
modeled systems satisfy the expected properties and to find valid subsets of a
given set of parameter values (such an approach is exploited in RoVerGeNe,
a tool for robust verification of gene networks). In [33], Piazza et al. propose
semi-algebraic hybrid systems as a natural framework for modeling biochemical



networks, taking advantage of the decidability of the model-checking problem
for TCTL (Timed Computation Tree Logic) over this large class of systems.

In this paper, we focus on the use of model-checking for integrating biological
models. To compose the selected models, we assume a finite set of hypotheses
concerning the structure of the “linking reaction rules”, and we search for ki-
netic parameter values that will make the composite model interacts in a proper
way. For this, the biological properties of the coupled model are formalized in
temporal logic with numerical constraints, and model-checking with parameter
optimization techniques are used to find parameter values for the new kinetic
rules so that the expected properties are satisfied by the resulting model.

The paper is organized as follows. Section 2 provides the needed biological
background on the mammalian cell cycle, on the tumor-suppressor protein p53,
and on irinotecan. Section 3 describes Biocham models and explains how such
models can be queried in temporal logic. Section 4 presents our coupled model on
the effects of irinotecan and Section 5 describes the biological properties of the
model that were automatically checked. Finally, in Section 6 we outline some on-
going developments of this work. All the models used are available in BIOCHAM
format at http://contraintes.inria.fr/supplementary material/CMSB09/.

2 Mammalian Cell Cycle, DNA-damage Repair and
Irinotecan

2.1 Mammalian Cell Division Cycle

Cells reproduce by duplicating their contents and then dividing in two. To pro-
duce a pair of genetically identical daughter cells, the DNA must be faithfully
replicated, and the replicated chromosomes must be segregated into two separate
cells. The duration of the cell cycle varies greatly from one cell type to another;
in a mammalian cell it lasts about 24 hours. The cycle is traditionally divided
into the following four distinct phases [1]: the G1-phase, that is the temporal
gap between the completion of mitosis and the beginning of DNA synthesis, the
S-phase (synthesis), that is the period of DNA replication, the G2-phase,
that is the temporal gap between the end of DNA synthesis and the beginning
of mitosis, and the M-phase (mitosis), when replicated DNA molecules are
finally separated in two daughter cells.

The cell cycle is regulated by different checkpoints, that are moments when
the cell progression is stopped to verify the state of the cell and, if needed, to
repair it before damaged DNA is transmitted to progeny cells. DNA damag-
ing agents trigger checkpoints that produce arrest in G1 and G2 stages of the
cell cycle. Cells can also arrest in S, which amounts to a prolonged S phase
with slowed DNA synthesis. Arrest in G1 allows repair before DNA replication,
whereas arrest in G2 allows repair before chromosome separation in mitosis.

The proper alternation between synthesis and mitosis is coordinated by a
complicated network that regulates the activity of a family of key proteins. These



proteins are composed of two subunits: a catalytic subunit, the cyclin-dependent
kinase, cdk for short, and a regulatory subunit, a cyclin. A cdk has to associate
with a cyclin partner to form a dimer and has to be appropriately phosphorylated
in order to be active. The progression through cell cycle is orchestrated by the
rise and fall of the Cdk/cyclin dimers.

In this work we refer to the model of mammalian cell division proposed by
Novák and Tyson in [30] where the authors present both a set of Ordinary Dif-
ferential Equations (ODE) and a process diagram to represent the molecular
network regulating the mammalian cell cycle. The model comprises 18 differen-
tial equations and 4 steady-state relations.

2.2 Protein p53

This subsection is devoted to the description of protein p53, a tumor suppressor
protein which is activated in reply to DNA damage. In normal conditions, the
concentration of p53 in the nucleus of a cell is feeble: its level is controlled by
another protein, Mdm2. These two proteins present a loop of negative regulation.
In fact, p53 activates the transcription of Mdm2 while the latter accelerates the
degradation of the former. DNA damage increases the degradation rate of Mdm2
so that the control of this protein on p53 becomes weaker and p53 can exercise its
functions. This protein is responsible for the activation of many mechanisms: in
an indirect way, it stops the DNA synthesis process, it activates the production
of proteins charged with DNA reparation, and it can lead to apoptosis, that is,
cell death.

When DNA is damaged, Mdm2 loosens its influence on p53 and it is possible
to observe some oscillations of p53 and Mdm2 concentrations. The answer to
a stronger damage is a bigger number of oscillations. Oscillations have a very
regular period. In literature, several models have been proposed to model the
oscillatory behaviour of proteins p53 and Mdm2. The most interesting models
are undoubtedly the ones proposed by Chickermane et al. [9], by Ciliberto et
al. [10], and by Geva-Zatorsky et al. [20]. In this work we build upon the one
described in [10], that consists of 6 differential eqiations.

2.3 Irinotecan

Camptothecins are substances that can be extracted from the Chinese tree
“Camptotheca acuminata Decne” and are mainly used for the treatment of di-
gestive cancers. Their anticancerogenic properties have been discovered at the
end of the Fifties but the first clinical tests have been interrupted owing to
heavy effects due to the toxicity of the substances. In the Eighties researchers
discovered that camptothecins are inhibitors of topoisomerase-1(Top1 for short),
essential enzyme for DNA synthesis. Afterwards, they started to focus on some
semi-synthetic derivative of water-soluble camptothecins, such as irinotecan and
topotecan. Irinotecan is pro-medicine and must be transformed in its active
metabolite, SN38, to be effectively cytotoxic. In fact the anticancerogenic activ-
ity of irinotecan (CPT11) is approximately 100 times less effective than the one



of SN38. The activation is due to carboxylesterase, an enzyme mainly located
in the liver, in the intestine, and in the tumoral tissues. SN38 is then detoxified
through glucorono-conjugation: this realizes uridine diphosphate glucoronosyl
transferase 1A1.

Mechanisms through which irinotecan damages the cell are very complex and
have not completely been explained yet. It is sure that DNA lesions appear after
the inhibition of Top1 by SN38. Top1 is a protein which is present in all living
organisms and which checks DNA replication and transcription. It intervenes
to modify the DNA winding degree, acting on one strand. More precisely, Top1
links itself to extremity 3’ of DNA forming a transitory cleavage complex and
cuts a DNA strand, that in such a way is able to unroll. Then such a complex
dissociates and a new ligature comes up. In normal conditions, the connection
process is favored with respect to the cleavage one. The target of irinotecan,
and above all of its active metabolite SN38, is the complex Top1-DNA. SN38
links to the complex through a covalent bond, preventing in such a way from
the ligature of the DNA strand. As clearly written in the title of [34], SN38
acts like a “foot in the door”: it keeps opened the DNA strand to which Top1
is linked as to prevent a door from closing. These complexes are still reversible
and do not cause DNA lesions. However, they favor them: some lesions can
rise as a consequence of the possible collisions with the transcription complexes
or with the replication fork. This induces the arrest of the cell cycle. In this
case we speak of irreversible complexes. Lesions due to the inhibition of Top1
are therefore consecutive to the stages of the cell metabolism. It means that
irinotecan injections must be repeated and abundant in order to be effective.
Besides irinotecan is more effective during the DNA replication phase [31,38].
Furthermore, the inhibition of the DNA synthesis takes rapidly place (in a few
minutes) and lasts several hours.

Defence answers of cells subjected to irinotecan injections are multiple and
vary according to the drug dose. The administration of a very light dose suffices
to slow down the S phase of the cell cycle and to delay the G2-M transition. If
the dose is more substantial, the lag time in the S phase is much more significant
and the cell cycle arrest in the G2-M transition can last more than sixty hours or
even be permanent. In this latter case, some genes responsible for the cell cycle
arrest (as an example, p21) and involved in the aptototic pathway are over-
expressed. These genes are activated by p53, and this suggests the intervention
of the protein in reply to a DNA damage due to the dissociation of Top1 from
DNA [38].

In this work we refer to a pharmacokinetics/pharmacodinamics (PK/PD)
model of irinotecan developed by Dimitrio [14], that takes aim at representing
the action of the drug on the body (pharmacodinamic) and the action of the
body on the drug (pharmacokinetic), and thus the drug metabolism and its
transformations. Such a model is made up of 8 differential equations.



3 The BIOCHAM Abstract Machine

In the last years, one of the main challenges of computational system biology
became the creation of powerful simulation, analysis, and reasoning tools for
biologists to decipher existing data, devise new experiments, and thus under-
stand functional properties of genomes, proteomes, cells, organs, and organisms.
Many of the goals of this emerging discipline have been investigated in the logi-
cal setting of temporal logics and have been partly achieved in this apprroacch
in the Biochemical Abstract Machine (BIOCHAM ) [19,7], a formal modeling
environment for network biology developed at INRIA-Rocquencourt since 2002.

In this section we briefly recall BIOCHAM syntax, its continuous differential
semantics and show how a temporal logic with numerical constraints is used to
formalize the biological properties of the models and automatically check their
satisfaction.

3.1 Syntax and Differential Semantics of BIOCHAM Reaction
Models

Following SBML and BIOCHAM conventions, a model of a biochemical system
is formally a set of reaction rules of the form e for S => S′, where S is a
solution, that is, a set of molecules given with their stoichiometric coefficient,
S′ is the transformed solution, and e is a kinetic expression involving the con-
centrations of molecules. The reaction rules represent biomolecular interactions
between chemical or biochemical compounds, ranging from small molecules to
proteins and genes.

Reaction rules transform one formal solution into another one. The following
abbreviations are used: A =[C]=> B for the catalyzed reaction A+C => C+B, and
A <=> B for the reversible reaction equivalent to the two symmetrical reactions
A => B and B => A. The constant represents the empty solution. It is used for
instance in protein degradation rules, such us A => , and in synthesis rules, such
us =[G]=> A for the synthesis of A by (activated gene) catalyst G. The other
main rule schemas are (de)complexation rules, such us A + B => A-B for the
complexation of A and B, (de)phosphorylation rules, such us A =[B]=> A~{p}
for the phosphorylation of A catalyzed by kinase B, and transport rules, such us
A::nucleus => A::cytoplasm for the transport of A from the nucleus to the
cytoplasm.

Reactions can be given kinetic expressions. For instance, k*[A]*[B] for
A=[B]=>A ~{p} specifies a mass action law kinetics with parameter k for the reac-
tion. Classical kinetics expressions are the following ones:

– the mass action law kinetics k ∗
∏n

i=1 xli
i , which refers to a reaction with

n reactants xi, where li is the stoichiometric coefficient of xi as a reactant;



– the Michaelis-Menten kinetics Vm ∗ xs/(Km + xs), which states for an
enzymatic reaction of the form xs = [xe] => xp, where1 Vm = k ∗ (xe + xe ∗
xs/Km);

– the Hill’s kinetics Vm ∗ xn
s /(Kn

m + xn
s ), of which the Michaelis-Menten

kinetics is a special case for n = 1.

Kinetic expressions can be written either explicitly, allowing any kinetics, or
using shortcuts such us MA(k) for a Mass Action law with parameter k, or
MM(Vm,Km) for a Michaelian kinetics.

A set of reaction rules {ei for Si => S′
i}i=1,...,n over molecular concentration

variables {x1, . . . , xm} can be interpreted under different semantics. In this paper
we refer to the traditional differential semantics, that interprets the rules by the
following system of Ordinary Differential Equations (ODE):

dxk/dt =
n∑

i=1

ri(xk) ∗ ei −
n∑

j=1

lj(xk) ∗ ej ,

where ri(xk) (resp., li) is the stoichiometric coefficient of xk in the right (resp.,
left) member of rule i. Given a set of reaction rules, BIOCHAM allows to obtain a
simulation of the model by solving the set of corresponding differential equations.

3.2 Querying BIOCHAM Models in Temporal Logic

Temporal logics and model-checking algorithms have been proved to be useful
to respectively express biological properties of complex biochemical systems and
automatically verify their satisfaction [17]. Having a formal language not only
for describing models, (i.e., transition systems based on process calculi [35,32],
rules [15], Petri nets [22], ODEs [39], etc.), but also for formalizing the biolog-
ical properties of the system known from biological experiments under various
conditions, opens a whole avenue of research for designing automated reasoning
tools inspired from circuit and program verification to help the modeler.

In this paper, we use a version of linear time logic LTL with numerical con-
straints, named Constraint-LTL [6]. Constraint-LTL formulae are formed over
first-order atomic formulae with equality, inequality and arithmetic operators
ranging over real values of concentrations and of their derivatives, using the
logical connectives and the usual temporal operators of LTL: in particular the
“always in the future” operator G, and the “sometimes in the future” operator
F), the next time operator X, and the binary operator until U.

For instance, F ([A] > 10) expresses that the concentration of A eventually
gets above the threshold value 10 and G([A]+ [B] < [C]) states that the concen-
tration of C is always greater than the sum of the concentrations of A and B.
Oscillation properties, abbreviated as oscil(M,K), are defined as a change of sign

1 xe∗xs/Km is the concentration of the enzyme-substrate complex, supposed constant
in the Michaelian approximation, and xe + xe ∗ xs/Km is thus the total amount of
enzyme.



of the derivative of M at least K times: F ((d[M ]/dt > 0) & F ((d[M ]/dt < 0) &
F ((d[M ]/dt > 0) . . . ))). The abbreviated formula oscil(M,K, V ) adds the con-
straint that the maximum concentration of M must be above the threshold V
in at least K oscillations.

LTL formulae are interpreted in linear Kripke structures which represent
either an experimental data time series or a simulation trace, both completed
with loops on terminal states. Given the system of ordinary differential equations
(ODE) corresponding to a reaction model, under the hypothesis that the initial
state is completely defined, a discrete simulation trace is easily obtained by
means of numerical integration methods (such as Runge-Kutta or Rosenbrock
method for stiff systems). Since constraints refer not only to concentrations, but
also to their derivatives, traces of the form

(< t0, x0, dx0/dt, d2x0/dt2 >, < t1, x1, dx1/dt, d2x1/dt2 >, . . . )

are considered, where at each time point ti, the trace associates the concentration
values xi to the variables, and the values of their first and second derivatives
dxi/dt and d2xi/dt2. It is worth noting that in adaptive step size integration
methods of ODE systems, the step size ti+1 - ti is not constant and is determined
through an estimation of the error made by the discretization.

Observe that the notion of next state refers to the state of the following
time point in a discretized trace, and thus does not necessarily imply a real time
neighborhood. The rationale is that the numerical trace contains enough relevant
points, and in particular those where the derivatives change abruptly, to correctly
evaluate temporal logic formulae. An innovative feature of BIOCHAM is that it
places at the user’s disposal a procedure learn parameters for finding parame-
ter values such that a given LTL formula is satisfied [37]. This search procedure
actually replicates and automates part of what the modeler currently does by
hand: trying different parameter values, between bounds that are thought rea-
sonable, or computed by other methods such as bifurcation diagrams, in order
to obtain behaviors in accordance with the experimental knowledge.

4 Coupling the Models of the Mammalian Cell Cycle,
p53-based DNA-damage Repair System, and Irinotecan
Pharmacodynamics

4.1 Three Different Modules

The first step of our approach to the investigation of the influence of irinotecan
on the mammalian cell cycle consists in the encoding of the selected models of
irinotecan [14], p53/Mdm2 [10], and mammalian cell cycle [30] in the BIOCHAM
rule-based language.

SBML versions of the irinotecan and p53/Mdm2 modules being available,
they were imported in BIOCHAM. The renaming of the variable representing
DNA-damage was the only modification necessary in this precise case. More



generally it would be necessary to rely on existing databases and ontologies to
match corresponding entities in different models.

For the other model, we looked in parallel at the corresponding set of or-
dinary differential equations and at the available diagrammatic notation to ob-
tain a set of BIOCHAM reaction rules. Since ODEs can be automatically ex-
tracted back from the reactions, and displayed with the BIOCHAM command
show kinetics, it was possible to check that the obtained model was indeed
coherent with the original one.

4.2 A Diagrammatic Coupled Model

In order to assemble the sub-models to get the coupled model, we reviewed the
literature about known links between the different building blocks.

The expected behaviour of the cell is graphically depicted in Figure 1 and can
be described as follows. Injections of irinotecan (CPT11) induce DNA damage.
In reply to this, the cell reacts by activating protein p53, which blocks the
cell cycle at a checkpoint. This arrest aims at repairing critical damage before
DNA replications occurs, thereby avoiding the propagation of genetic lesions to
progeny cells. Thus, while the cell cycle is arrested, the protein p53 will activate
the DNA-damage repair mechanisms. If it is possible for the cell to recover, the
cell cycle will be restarted; otherwise, if the damage is too extensive, the cell will
undergo apoptosis.

CPT11 DNA damage p53
Block cell
cycle at

checkpoints
Apoptosis

recover

Fig. 1. Expected behaviour of the coupled model.

The strategy we chose to draw the three models together is illustrated in
Figure 2. As remarked in Section 2, in literature we found evidence of the fact
that, if irinotecan is injected in a cell during the S phase of the cell cycle, then
more DNA damage will be caused with respect to the other phases of the cell
cycle [31,38]. Keeping this fact in mind, and considering that the dimer charac-
terizing S phase is CycA/Cdk2 (CycA for short), we inserted in cell cycle model
a rule stating that a high concentration of CycA determines a high concentra-
tion of Top1, an enzyme that, as previously explained, contributes to cause DNA
single-strand breaks in presence of irinotecan. In this way we linked the cell cycle
model to the irinotecan one.

The link between the irinotecan model and the p53/Mdm2 one is given by
DNA damage. In fact, irinotecan injections cause DNA damage, which in turn



Cell cycle

p53/Mdm2

Irinotecan
CycA Top1

DNA damage

p53

p21

CycA CycE

Fig. 2. Our coupled model.

triggers the activity of protein p53. In order to link the p53/Mdm2 and cell
cycle models, we inserted in the p53/Mdm2 model a rule which fixes that p53
activates p21, and two further rules imposing that p21 inhibits CycA and CycE,
respectively.

It is worth noting that we also investigated the possibility to abstract the
previous expanded rules by letting p53 directly inhibit CycA and CycE. In the
following, we will refer to this last version of the link as to the contracted one.

Finally, in order to define precisely the kinetics underlying the links and
to validate the coupled model, some biological knowledge was formalized as
temporal logic specifications allowing us to use model-checking and parameter
optimization techniques.

5 Specifying and Validating the Links through
Model-Checking

In this section, we will show how the integration of model-checking and parame-
ter learning techniques allowed us to both specify and validate our linking rules.
In both cases, we took advantage of constraint-LTL formulae to query numer-
ical simulations in a much more flexible way than by doing curve fitting. Our
Kripke structures are constituted of simulation traces over a time window of 100
hours, obtained by numerical integration (using Rosenbrock’s implicit method
for stiff systems), extended with the first and second derivatives of the system’s
variables.

As a matter of fact, both at specification and validation time, first we con-
sidered two models at a time, and finally we dealt with the complete model
made up by the three ones. In the following, we provide examples of biological
properties that helped us in defining the kinetics underlying the links: for each
property, first of all we express it through the natural language, then we formal-
ize it in constraint-LTL, and finally we present the results of the corresponding
model-checking query.



We encoded the link between the cell cycle and irinotecan models (see Figure
2) by means of the following kinetics rule:
MA(top1bis) for =[CycA]=>TOP1.
Then, we used the procedure learn parameters to find out the minimum value
for top1bis such that property F1, that correlates the concentration values of
CycA and Top1, holds.
F1: Whenever CycA gets over 1, there exists a future state where Top1 is greater
than 1.
LTL: G(([CycA] > 1)→ F ([TOP1] > 1)).
Results: The minimum value for top1bis such that F1 is satisfied turned out
to be 0.45.

The following Biocham rules encode the link between the p53/Mdm2 and
cell cycle models (see Figure 2):
MA(k5321) for =[p53]=>p21.
MA(kA21) for CycA=[p21]=> .
MA(kA21) for CycE=[p21]=> .
As for the contracted version, the encoding is the following one:
MA(kA53) for CycA=[p53]=> .
MA(kA53) for CycE=[p53]=> .
Again, we took advantage of the procedure learn parameters to find suitable
parameter values for k5321 and kA21 (kA53 in the second case) so that property
F2, that expresses the CycA oscillating behaviour exhibited in the cell cycle
model, is conserved in the coupled model in case there are no irinotecan injection.
F2: Within a time interval of 100 time units, CycA is greater than 2 in at least
8 oscillations.
LTL: oscil([CycA], 8, 2).
Results: We found out that suitable parameter values are k5321 = 0.18, kA21 =
0.08, and kA53 = 0.25. Property F2 also turned out to be true when there
are injections but the p53/Mdm2 model is not taken into account. In fact, as
expected, even if DNA damage occurs, when protein p53 does not act, the cell
cycle is not affected, and thus CycA exhibits a regular oscillating behaviour.

On the other hand, when the p53/Mdm2 model is added, in case of repeated
injections (and thus of sustained DNA-damage) the oscillations of CycA should
be affected.
F3: When there is sustained DNA damage (after an initial period), the amplitude
of CycA decreases before 70 time units and then stays low.
LTL: F ((Time < 13) ∧G([DNAdam] > 0.5))→ F ((Time < 70) ∧G([CycA] <
1.2)).
Results: With the expanded version of the links the amplitude of oscillations
gradually decreases, satisfying the property. With the contracted one oscillations
are very irregular, as graphically depicted in Figure 3.

The next property regards the DNA repairing power of the cell.
F4: After an irinotecan injection is performed, DNA damage is able to go under
the threshold of 0.1 before the next injection is done.
LTL: G(([CPT11] > 9.45) ∨ (([CPT11] ≤ 9.45)U([DNAdam] < 0.1))).



Results: Before testing the property, we decided to parameterize the lapse of
time between consecutive irinotecan injections. Then we took advantage of the
procedure learn parameters to find the minimum k such that, if one injection
is performed every k hours, then property F4 is true. We found out that the
minimum k multiple of 12 which makes F4 true is 36. Thus, one injection every
36 hours should be performed in order to allow DNA damage to be recovered
before the next injection. Then we tried to see what it happens if, at each
injection, we double the irinotecan dose. In this case, one injection every 48
hours should be done.

The next property requires the oscillating trend of proteins p53 and Mdm2
to stop before a new injection is performed.
F5: When an injection is performed, p53 and Mdm2 are in a steady state, that
is, their derivatives approach 0.
LTL: G(([CPT11] > 9.45)→ ((d[p53] ≤ 0.05) ∧ (d[p53] ≥ −0.05)
∧ (d[Mdm2 :: n] ≤ 0.05) ∧ (d[Mdm2 :: n] ≥ −0.05))).
Results: As for the previous specification, we parameterized the lapse of time be-
tween consecutive irinotecan injections and we used the procedure learn param-
eters. The the minimum k multiple of 12 which makes F5 true is 48.

The next property deals with DNA damage.
F6: If p53 is not functional, DNA damage is an increasing function.
LTL: G([p53] ≤ 0.1)→ G(d([DNAdam])/dt ≥ 0).
Results: As matter of fact, the premise of this property only holds when the
p53/Mdm2 model is not taken into account, thus DNA damage is not recovered
and continuously increases until apoptosis is reached.

Finally, the last two properties concern the oscillating trend of proteins p53
and Mdm2 caused by irinotecan injections.
F7: An irinotecan injection causes at least one oscillation of proteins p53 and
Mdm2.
LTL:G(([CPT11] > 9.45)→ F (oscil([p53], 1) ∧ F (oscil([Mdm2], 1)))).
F8: p53 oscillations are alternated by Mdm2 ones.
LTL: G(oscil([p53], 1)→ X((¬oscil([p53], 1))U(oscil([Mdm2 :: n], 1)))).
Results: Both F7 and F8 are satisfied in the coupled model.

Such a model-checking approach turned out to be very efficient: the execution
times were lower than one second in almost all cases 2. Furthermore, it proved
to be effective, allowing us to express relevant biological properties of the model
(and concentration values that make specifications true) that could not be easily
encoded as curve fitting problems for instance. There is a common recognition of
the potentialities of model-checking in bio-informatics and our contribution goes
in this direction, showing its utility to compose and validate biological models.

In Figure 3 there is a 100 hours-simulation of the complete model, where
the contracted version of the link between the p53/Mdm2 and cell cycle models
is considered and one injection every 36 hours is performed. The plot puts in
evidence how DNA damage increases after every injection. The oscillating trend
2 All the experiments have been run on a Centrino Duo 2.00 GHz Windows machine.
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Fig. 3. Zoomed simulation plot of the resulting model with injections every 36 hours.

of proteins p53 and Mdm2 is well highlighted. Furthermore, it is possible to
notice the irregular behaviour assumed by CycA after irinotecan injections and
the dependence of Top1 from CycA.

6 Conclusion and Perspectives

In this paper we presented a model-checking approach to the investigation of
the influence of irinotecan on the mammalian cell cycle. We coupled in the rule-
based language of BIOCHAM three models of respectively the mammalian cell
cycle, p53-based DNA-damage repair, and irinotecan intracellular PK/PD, us-
ing BIOCHAM’s procedure for optimizing parameters with respect to biological
properties formalized in temporal logic. Model-checking techniques proved to be
particularly suitable for studying the irinotecan metabolic pathways. It let us
get a better understanding of the drug influence on the mammalian cell cycle
and infer some properties to be exploited in the drug therapy, such us optimal
injection times and doses.

In order to study how irinotecan interferes with tumor cell proliferation, a
further component should be taken into account, that is, the circadian clock,
which regulates the synchronous progression of cells through each stage of the
cell cycle, determining the daily time windows during which cells can traverse
certain phases of the cell cycle [28]. The circadian synchronization of cell cycle
progression, which characterizes healthy normal tissues, is often altered in cellu-
lar tissues affected by malignant tumors [29]. Roughly speaking, it means that,



unlike safe cells, different tumor cells at the same time can be in different phases
of the cell cycle.

As a matter of fact, the behaviour of a single cell is not sensibly affected by
malignant tumors, but the presence of a disease is generally detected by observing
groups of at least one hundred cells. At the level of single cells, a slowing down
of biochemical reactions is the only observed phenomenon in presence of tumor.
An interesting extension of the work so far presented would consist in adding
to our coupled model a new “circadian clock module” to synchronize cells and
simulating the resulting model on a group of about one hundred cells. The three
already present modules would remain almost unchanged, apart from a speed
reduction of the reactions inserted in Figure 2 to link them.
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