
Constraint Logi Programming

Fran�ois Fages

2

Copyright 1997-2001 Fran�ois Fages.

These notes are extrated from a ourse given at Eole Polytehnique, published in

Frenh by Ellipses, Paris, 1996 [14℄.

Fran�ois Fages

INRIA Roquenourt

BP 105

78153 Le Chesnay Cedex

Frane.

http://ontraintes.inria.fr/~fages

Franois.Fages�inria.fr

Contents

1 Introdution 5

2 Logial Theories 7

2.1 First-Order Languages . 7

2.2 Mathematial Strutures . 8

2.3 Proofs . 11

2.4 Completeness of theories and deidability of strutures 12

3 Constraint logi programs 17

3.1 Constraints . 17

3.2 CLP(S) Programs . 18

3.3 Proedural interpretation . 20

4 Examples 23

4.1 CLP(H) and Prolog . 23

4.2 CLP(RT) . 28

4.3 CLP(H=E) . 28

4.4 CLP(�) . 29

4.5 CLP(R) . 30

4.6 CLP(FD) and CLP(N) . 33

5 Formal semantis 39

5.1 Operational Semantis . 39

5.2 Observation of Suesses . 40

5.3 Observation of Computed Constraints 41

5.4 Observation of Finite Failures . 45

3

4 CONTENTS

Chapter 1

Introdution

There exist several fundamental onnetions between logi and omputation, that

allow to design programming languages for whih the problems of program spei�-

ation and program validation have a preise meaning inside the logial formalism.

Logi programming in a broad sense relies on the following identi�ations :

Programs = Theories

Computation = Proof searh

The basi idea is to identify a program to a theory, and the program's exeution

to proof searh in that theory. In this paradigm, programming is �rst of all a

modeling task.

In the pioneering work of A. Colmerauer and R. Kowalski in the 70's, one on-

sidered only logial lauses interpreted proedurally by a priniple of automated

dedution [31℄ [42℄. The programming language Prolog was an inarnation of these

ideas. D. Warren showed that Prolog ould be ompiled very eÆiently on standard

mahines, but Prolog su�ered from two main drawbaks: on the one hand the lak

of data strutures other than the logial terms, hene the unmanageable neessity

of axiomatizing \the domain of disourse" in the logi, on the other hand the lak of

ontrol strutures, hene the loss of delarativity for obtaining exeutable programs.

The emergene of onstraint logi programming (CLP) as de�ned by J. Ja�ar

and J.L. Lassez in the mid 80's, ontributed to orret these defets in a fundamental

way [26℄. The disovery was that both the theory and the tehnology of logi

programming ould be generalized to arbitrary mathematial strutures given with

a deidable onstraint language, representing \the domain of disourse". Beside

the Prolog omputation struture of �rst-order terms with equality onstraints (the

Herbrand's domain), one an thus onsider for instane, disequality onstraints

over �nite or in�nite terms [9℄, real arithmeti with linear onstraints [26℄, integer

arithmeti, �nite domains [48℄, theories of funtionality, et. One then distinguihes

in the theory, the axiomatization of the strutures of interest, from the modeling of

the problem to be solved. Proof searh then ombines hybrid tehniques for logial

resolution, and for onstraint solving in spei� strutures. Constraints are solved

onurrently to the logial dedution proess, by numerial or symboli algorithmi

means, exeuted with oroutines.

CLP is a onept of programming in whih the problem at hand is modeled by

a set of mathematial variables and by a set of relations de�ned by:

i) primitive onstraints, e.g. U = R � I ,

ii) prediate symbols de�ned by expressions of the language, e.g.

8x8y path(x; y) () edge(x; y) _ 9z(edge(x; z) ^ path(z; y)):

5

6 CHAPTER 1. INTRODUCTION

The resulting programming style is the one of relational model-based omputing.

In that paradigm a model is identi�ed to a relation de�ned on the interfae variables

R(x; y). The omposition of relational models is the logial onjuntion of the

relations,

R

1

jR2(x; y; z) = R

1

(x; y) ^ R

2

(x; z):

The set of solutions of a omposite model is the intersetion of the solutions of the

omposing models. This way of struturing data and programs into omposable en-

tities is somewhat similar to the one of objet-oriented languages. A fundamental

di�erene is that ontrarily to the paradigm of message passing, whih is diretional,

relational CLP programs are reversible: the relation on the interfae variables are

de�ned whatever are the unknowns, the omputation involves partial information

strutures, the distintion between input and output ours at exeution-time, a-

ording to the nature of the arguments, that is aording to the use of the model.

The hoie of the language for de�ning new relations is ruial for the mathe-

matial analysis of the software, as well as for its eÆient ompilation into mahine

ode. The onept of onstraint logi programming doesn't exlude that this lan-

guage omprises programming onepts oming from onurrent, objet-oriented or

imperative programming. A natural hoie however from the mathematial point

of view is to take the prediate alulus as the kernel language for de�ning new

relations.

By limiting ourselves to Horn lausal theories, one de�nes in this way a lass,

denoted by CLP(S), of onstraint logi programming languages parametrized by

the interpretation struture S [26℄. The lass of onurrent onstraint languages

CC(S) [43℄ introdues in addition some primitives for onurreny (ommuniation,

synhronisation) based on onstraint entailment. CC programs introdue a form

of dynami ontrol with data-driven omputation, whih an be used to program

onstraint solvers by a set of onurrent agents, or to program omplex resolution

strategies, this opens the way to a new �eld of appliations neessiting reative

systems instead of transformational systems. CC programs gan be given a sound

and omplete logial semantis in the logi programming paradigm, yet with a shift

to linear logi in order to model aurately onurreny in CC [15℄.

The suess of ommerial produts for onstraint programming, as for instane

CHIP (Cosyte), Prolog III, IV (PrologIA), ILOG-Solver (ILOG), has shown the

ability of this approah of omputer programming to solve delaratively industrial

problems of ombinatorial optimization and omplex system modeling. However

these suesses show also that the urrent state of the art annot be improved

without some fundamental extensions of :

i) the languages (e.g. negation, quanti�ers, optimization prediates, higher-order,

stati typing, objet-orientation...),

ii) the onstraint solvers (e.g. global onstraints, expliit ontrol, quanti�ed on-

straints, ombination of solvers, funtional domains,...),

iii) the exeution models (e.g. onurreny, reativity, parallelism, distribution,...).

In these notes we present the lass of languages CLP, by studying its mathemat-

ial properties, its priniples of implementation, and some examples of appliations.

Chapter 2

Logial Theories

In this hapter we reall the basi results of �rst-order logi whih are relevant

to onstraint programming. In order to be self-ontained we present the �rst-order

languages, the mathematial strutures whih give their semantis, and their related

proof systems. For a more omplete treatment of these subjets, see e.g. [44℄.

2.1 First-Order Languages

De�nition 2.1 Let S

F

be a ountable set of funtion symbols, denoted by f; g; :::,

given with their arity � (i.e. their number of arguments). Constants are funtion

symbols with arity 0. Let V be an in�nite ountable set of variables (with arity 0),

denoted by x; y:::. The set T of �rst-order terms, denoted by M;N; :::, is de�ned

indutively as the least set satisfying :

i) V � T

ii) if f 2 S

F

; �(f) = n; M

1

; :::;M

n

2 T then f(M

1

; :::;M

n

) 2 T

The set of variables ourring in a term M is denoted by V (M). A term M

ontaining a variable x will be sometimes written M [x℄.

The size of a term, denoted by jM j, is the number of ourrenes of funtions,

onstants and variables symbols in M :

i) jxj = 1 if x 2 V ,

ii) if jf(M

1

; :::;M

n

)j = jM

1

j+ :::+ jM

n

j.

Remark 2.2 Zero-order languages ontain no variables. Seond-order languages

ontain seond-order terms representing funtions, and allow the presene of vari-

ables in plae of funtions inside �rst-order terms (seond-order terms an be substi-

tuted for seond-order variables). Third-order languages ontain third-order terms

representing funtionals and allow the presene of variables in plae of funtion-

als inside seond-order terms. Omega-order languages ontain terms of all �nite

orders.

De�nition 2.3 Let S

P

be a set of prediate symbols, denoted by p; q; :::, given with

their arity �. The set P

a

of (�rst-order) atomi propositions is the set

P

a

= fp(M

1

; :::;M

n

)jp 2 S

P

; �(p) = n; M

1

; :::;M

n

2 Tg:

De�nition 2.4 Let S

L

= f:;_; 9g be the set of logial symbols not, or, there exists

(existenial quanti�er). The set P of (�rst-order) logial formula denoted by �; ; :::

is de�ned indutively as the least set satisfying :

7

8 CHAPTER 2. LOGICAL THEORIES

i) P

a

� P

ii) � 2 P) :� 2 P

iii) �; 2 P) � _ 2 P

iv) x 2 V; � 2 P) 9x� 2 P

The other logial symbols ftrue;�;^;�g are de�ned as abbreviations :

� � = :� _

true = � � �

� ^ = :(� � :)

� � = (� �) ^ (� �)

the universal quanti�er, 8, is de�ned as an abbreviation for :

8x� = :9x:�

Quanti�ers are logial symbols that de�ne the (universal or existential) nature

of a variable in a proposition. The variables of a proposition � whih are not bound

by a quanti�er are said to be free in �. In a term all variable are free. The set of

free variables of a formula �, denoted by V (�), is de�ned indutively by:

i) V (x) = fxg

ii) V (f(M

1

; :::;M

n

)) =

S

n

i=1

V (M

i

)

iii) V (p(M

1

; :::;M

n

)) =

S

n

i=1

V (M

i

)

iv) V (:�) = V (�)

v) V (� _) = V (�) [V ()

vi) V (8x�) = V (9x�) = V (�)� fxg

A formula � is losed if V (�) = ;.

We write 8(�) (resp. 9(�)) for the losed formula 8x

1

:::8x

n

� (resp. 9x

1

:::9x

n

�)

where fx

1

; :::; x

n

g = V (�).

De�nition 2.5 A lause is a disjuntion of universally quanti�ed literals,

8(L

1

_ ::: _ L

n

);

where eah literal L

i

is either an atomi proposition, A, (alled a positive literal),

or the negation of an atomi proposition, :A (alled a negative literal).

A Horn lause is a lause having at most one positive literal.

2.2 Mathematial Strutures

A pre-interpretation of a �rst-order language is a mathematial struture omposed

of an interpretation domain D, given with a semanti funtion [℄, that assoiates to

eah onstant 2 S

F

some element [℄ 2 D, and to eah funtion symbol f 2 S

F

with arity n � 1, some operator [f ℄ : D

n

! D.

A valuation of the variables is a funtion � : V ! D. The valuation of the

terms, denoted by [℄ : T ! D, indued by a valuation � of the variables and a

pre-interpretation < D; [℄ > is de�ned (by strutural indution) by :

2.2. MATHEMATICAL STRUCTURES 9

i) [x℄

�

= �(x) if x 2 V ,

ii) [℄

�

= [℄ if 2 S

F

with arity 0, and [℄ 2 D is the element assigned to by

the pre-interpretation,

iii) [f(M

1

; :::;M

n

)℄

�

= [f ℄([M

1

℄

�

; :::; [M

n

℄

�

) if f 2 S

F

with n � 1, [f ℄ is the

operator over D assigned to f by the pre-interpretation, and [M

i

℄

�

2 D is the

element of D assigned reursively to the subterm M

i

.

An interpretation I =< D; [℄ > assoiates in addition to eah prediate symbol

p 2 S

P

with arity n, a relation [p℄ : D

n

! f0; 1g.

The truth value of an atomi proposition p(M

1

; :::;M

n

) in an interpretation I =<

D; [℄ > and a valuation � is the boolean value [p℄([M

1

℄

�

; :::; [M

n

℄

�

).

The truth value of a logial formula � in an interpretation I and a valuation � is

determined aording to the truth value of the propositions by applying the truth

tables of the logial onnetors, and the following rules for the quanti�ers :

8x� is true in I and �, if for every substitution of x by an arbitrary element of

the domain d 2 D, �[d=x℄ is true in I and �.

9x� is true in I if there exists an element d 2 D suh that �[d=x℄ is true in I

and �.

Note that the truth value of a losed formula is determined solely by the inter-

pretation and doesn't depend on the valuation.

De�nition 2.6 An interpretation I is a model of a losed formula � if � is true

in I, whih is denoted by I j= �.

A losed formula �

0

is a logial onsequene of � losed, whih is denoted by

� j= �

0

, if every model of � is a model of �

0

.

De�nition 2.7 A (non-losed) formula � is satis�able in an interpretation I if

I j= 9(�), valid in I if I j= 8(I).

A formula � is satis�able if 9(�) has a model, valid if every interpretation is a

model of 8(�), whih is denoted by j= �.

Proposition 2.8 Let � and �

0

be two losed �rst-order formulas. � j= �

0

if and

only if j= � � �

0

.

Proof: Let us suppose � j= �

0

. For every interpretation I , if I j= � then I j= �

0

thus I j= � � �

0

, otherwise I 6j= � and we have again I j= � � �

0

, therefore

j= � � �

0

.

Conversely if I j= � then as j= � � �

0

, we have I j= �

0

, thus � j= �

0

. �

De�nition 2.9 An interpretation I is a model of a set of losed formulas S os I

is a model of eah formula in S.

We say that a set of losed formulas S is satis�able if S has a model, valid if

every interpretation is a model of S.

The logial formulas of the prediate alulus are interpreted in arbitrary stru-

tures formed with a domain, operators and relations. A formula is valid if it is true

in all the interpretations on all oneivable mathematial strutures. The interest

in lausal forms is that it is possible for these formulas to restrit the searh of a

model to only one \syntati" struture: the Herbrand's universe.

De�nition 2.10 The Herbrand's universe, denoted by H, of a �rst-order language

is the set of losed terms formed on the funtion and onstant symbols T (S

F

).

TheHerbrand's pre-interpretation is the algebra of losed terms, whose domain is

the Herbrand's universe, the symbols of onstant are interpreted by these onstants

themselves and the symbols of funtion are interpreted as term onstrutors:

10 CHAPTER 2. LOGICAL THEORIES

i) [℄ =

ii) [f(M

1

; :::;M

n

)℄ = f([M

1

℄; :::; [M

n

℄)

The Herbrand's base B

H

is the set of losed atomi propositions formed on S

F

and S

P

. A Herbrand's interpretation assoiates a truth value to every element of

the Herbrand's base. We thus identify a Herbrand's interpretation to a subset of

B

H

, the subset of true atomi propositions.

Proposition 2.11 Let S be a set of lauses. S is insatis�able if and only if S has

no Herbrand's model.

Proof: If S admits a Herbrand's model then S is satis�able, onversely let I be

an interpretation, and let I

0

be the Herbrand's interpretation de�ned by

I

0

= fP (M

1

; :::;M

n

) 2 B

H

j I j= P (M

1

; :::;M

n

)g:

If I is a model of S, then for every valuation of the variables and for every

lause C 2 S, there exists a positive literal A (resp. negative literal :A) in C suh

that I j= A (resp. I 6j= A). In partiular for every valuation of the variables by

elements of the domain assoiated to terms of the Herbrand's universe, thus for

every Herbrand's valuation, there exists a literal A (resp. :A) suh that I

0

j= A

(resp. I

0

6j= A). Therefore I

0

is a Herbrand's model of S. �

The study of the satis�ability of a set of lauses an thus be restrited to the

only \syntati" interpretations that are Herbrand's interpretations. It is worth

noting that this property is ase for more general logial formulas, in partiular

for the existentially quanti�ed formulas. For instane p(a) ^ 9x:p(x) is satis�able

but has no Herbrand's model if a is the only onstant symbol. It doesn't suÆe

either to onsider an in�nite set of onstants for extending the property to formulas

ontaining arbitrary alternate sequenes of quanti�ers.

It is however possible to assoiate to every formula � a lausal formula �

s

, alled

the Skolem normal form of �, whih is satis�able if and only if � is satis�able. The

�rst transformation onsists in putting the formula in prenex onjuntive normal

form, that is under the form

�x

1

:::�x

k

((L

1

1

_ ::: _ L

1

k

1

) ^ ::: ^ (L

n

1

_ ::: _ L

n

k

n

))

where the L

i

's are literals and eah � is a universal or existential quanti�er. This

transformation needs to rename the variables whih are quanti�ed several times.

The formula in prenex form is equivalent to the initial formula.

The seond transformation, alled Skolemisation, allows to eliminate the exis-

tential quanti�ers. It onsists in replaing an existentially quanti�ed variable x by

terms of the form f(x

1

; :::; x

n

) where f is a new funtion symbol and the x

i

's are the

universally quanti�ed variables whih preede the quanti�ation of x. The formula

obtained in this way is alled the Skolem's normal form.

Example 2.12 For instane the Skolem's normal form of 8x9y8z p(x; y; z) is the

formula 8x8z p(x; f(x); z) where f is a new funtion symbol.

The Skolemisation preserves the satis�ability but not neessarily the validity (be-

ause the Skolemisation doesn't ommute with the negation). For instane , the for-

mula 8x9y p(x) � p(y) is valid, but its Skolem's normal form, 8x p(x) � p(f(x))

is of ourse satis�able but not valid.

Proposition 2.13 (Skolem's proposition) Any formula � is satis�able if and

only if its Skolem's normal form �

s

is satis�able.

2.3. PROOFS 11

Proof: If M j= � then one an hoose an interpretation of the Skolem's funtion

symbols in �

s

aording to the M -valuation of the existential variables of � suh

that M j= �

s

. Conversely, if M j= �

s

, the interpretation of the Skolem's funtions

in �

s

gives a valuation of the existential variables in � whih shows that M j= �. �

2.3 Proofs

In this setion we study the relation of dedution, denoted by `, whih allows to

build proofs of logial formulas. The fondamental problem of mathematial logi is

the study of the two relations ` and j=. These relations play omplementary roles.

In general the de�nition of the semantis j= doesn't provide a deision proedure. It

is the ase in propositional logi with the method of truth tables, but this method

doesn't generalize. The study of the relation of dedution then respond to this

aim. Conversely, the study of the semantis of a theory de�ned by the relation of

dedution, allows to prove that the theory is not ontraditory, simply by exhibiting

a model.

A logial theory T is a formal system onstituted by:

i) a �rst-order language formed on a alphabet V; S

F

; S

P

; S

L

,

ii) logial axioms:

:A _A (exluded middle),

A[x B℄ � 9x A (axiom of substitution),

iii) a set of losed formulas alled the non-logial axioms, and denoted by T (as

the logial omponents are invariant),

iv) logial inferene rules:

A

B _ A

(Weakening),

A _ A

A

(Contration),

A _ (B _ C)

(A _B) _ C

(Assoiativity),

A _ B :A _ C

B _ C

(Cut),

A � B x 62 V (B)

9xA � B

(Existential introdution).

We note T ` � the derivation of the formula � in this formal system, i.e. by the

appliation of the inferene rules and of the logial and non logial axioms in T .

A theory T is ontraditory (or inonsistent) if T ` f , onsistent otherwise.

Theorem 2.14 (Dedution theorem) Let T be a �rst-order logial theory. For

all formulas �; 2 P we have T ` � � i� T [f�g j= .

Proof: In the diretion of the impliation ()) the result is immediat by the ut

rule. Conversely the proof is by indution on the derivation of the formula . �

Theorem 2.15 (Validity) Let T be a �rst-order logial theory, and � a formula.

If T ` � then T j= �.

12 CHAPTER 2. LOGICAL THEORIES

Proof: By indution on the length of the dedution of �. �

Corollary 2.16 If T has a model then T is onsistent

Proof: We show the ontrapositive: if T is ontraditory, then T ` f , thus

T j= f , i.e. T has no model. �

Theorem 2.17 (G�odel Completeness Theorem (�rst form)) A theory is on-

sistent i� it has a model.

Proof: The idea is to onstrut a Herbrand's model of the theory supposed to

be onsistent, by interpreting by true the losed atoms whih are theorems of T ,

and by false the losed atoms whose negation is a theorem of T . If the theory is

not omplete, this doesn't provide a model, we thus omplete the theory by adding

axioms in suh a way as to obtain a omplete onsistent theory. For this it is

neessary also to extend the alphabet in order to obtain a saturated theory, that

is a theory suh that if T ` 9xA then there exists a term M of the Herbrand's

universe suh that T ` A[M=x℄. See for instane [44℄. �

Theorem 2.18 (G�odel's Completeness Theorem (seond form)) Let T be a

logial theory �rst-order, and � be a formula,

T j= � , T ` �:

Proof: If T j= � then T [f:�g has no model, thus by the ompleteness theorem

in �rst form, T [f:�g ` f , hene by the dedution theorem T ` ::�, and thus by

the ut rule with the axiom of exluded middle (plus weakening and ontration)

we get T ` �. The onverse is the theorem of validity. �

G�odel's ompleteness theorem expresses the adequation between the semanti

notion of validity of a formula in all the models of the theory, and the syntati

notion of dedution. The following setion shows the use of this theorem to deide

the validity of a formula in a theory.

2.4 Completeness of theories and deidability of

strutures

De�nition 2.19 A theory T is axiomati if the set of non logial axioms is reur-

sive (i.e. membership to this set an be deided by an algorithm).

For instane the theories ontaining a �nite number of non logial axioms are

trivially axiomati. G�odel's ompleteness theorem shows that in an axiomati the-

ory, the truth in all the models of the theory is reursively enumerable. The validity

of a formula an indeed be veri�ed in �nite time by searhing for all possible proofs

(still the satis�able not valid formulas are not reursively enumerables). This is

what shall be done in logi programming with a very simple proof system whih is

well suited to a mahine implementation, and whih is omplete for the Horn lause

formulas.

De�nition 2.20 A theory is omplete if for every losed formula �, either T ` �

or T ` :�.

A struture S is axiomatizable if there exists a omplete axiomati theory T

suh that S is a model of T .

2.4. COMPLETENESSOF THEORIES AND DECIDABILITYOF STRUCTURES13

In a omplete axiomati theory, we an deide whether an arbitrary formula is

satis�able or not. This will be the expeted situation for the language of onstraints.

The question is then to know whether there exist omplete axiomati theories for the

strutures of interest, and how these omplete theories an be turned into eÆient

algorithms.

The ompatness theorem of the �rst-order logi provides a powerful tool to

study strutures and theories.

Theorem 2.21 (Compatness theorem) Let T be a logial �rst-order theory,

and � be a formula. T j= � i� T

0

j= � for some �nite part T

0

of T .

Proof: By the ompleteness theorem, T j= � i� T ` �. As the proofs are �nite,

they use only a �nite part of the non logial axioms of T . Therefore T j= � i�

T

0

j= � for some �nite part T

0

of T . �

Corollary 2.22 A theory T has a model i� every �nite part of T has a model.

Proof: T has no model i� T j= f , i� for some �nite part T

0

of T T

0

j= f , i�

some �nite part of T has no model. �

For instane we an use this theorem to show that there doesn't exist a logial

(�rst-order) theory of �nite �elds. Indeed let us suppose the opposite, let T be suh

a theory whose only models are �nite �elds. Let us onsider the axioms A

n

whih

state that there exist at least n distint elements, for instane A

3

is the formula

9x9y9z x 6= y ^ y 6= z ^ z 6= x. Let T

0

be the theory formed of T and of all the

A

n

's. Then by hypothesis, T

0

has no model, thus there exists a �nite part T

00

of T

0

whih has no model. However let n

0

be an index greater than all the n's suh that

A

n

2 T

00

, and let C be a �nite �eld of more than n

0

elements, then C is a model of

T

00

, a ontradition.

The ompatness theorem an also be used to onstrut models. This will be

done in the last hapter to obtain some ompleteness results w.r.t. the prinipe of

resolution for onstraint logi programmming (f. 5.19, 5.28).

Another lassi use of the ompatness theorem is to generalize to in�nite graphs

the results obtained for the �nite graphs.

Solved Exerise 2.23 In 1976 Appel and Haken proved the famous four-olors

onjeture: any map an be olored with four olors (i.e. the verties of any �nite

planar graph an be olored with four olors in suh a way as two adjaent ver-

ties have di�erent olors). Extend the result to in�nite planar graphs by using the

ompatness theorem of �rst-order logi.

Solution: Let G be an in�nite planar graph. We assoiate to eah vertex of G a

symbol of onstant, and we onsider the �rst-order language formed on this in�nite

set of onstants plus four unary prediates,

1

;

2

;

3

;

4

. Let T be the (possibly

in�nite) set of logial �rst-order formulas:

i) 8x

W

4

i=1

i

(x),

ii) 8x

V

1�i<j�4

:(

i

(x) ^

j

(x)),

iii)

V

4

i=1

:(

i

(a) ^

i

(b)) for every pair of onstants fa; bg whih denote adjaent

verties in G.

Clearly any oloring of G with 4 olors gives a model of T , and onversely if T has

a model then G an be olored with four olors as it is suÆient to hoose for eah

vertex a the olor

i

(a) whih is true in that model.

14 CHAPTER 2. LOGICAL THEORIES

Let T

0

be any �nite part of T , and let G

0

be the (�nite) subgraph of G ontaining

the verties whih appear in T

0

. As G

0

is �nite and planar it an be olored with 4

olors, thus T

0

has a model.

Now as every �nite part of T is satis�able, we dedue from the ompatness

theorem that T is satis�able. Therefore every in�nite planar graph an be olored

with four olors.

The struture of natural numbers, N with 0, s (suessor), + and =, that is the

linear fragment of integer arithmeti, an be shown to be deidable. Presburger's

arithmeti (N; 0; s;+;=) an be presented with a omplete axiomati theory, formed

with the standard equality axioms:

E

1

: 8x x = x,

E

2

: 8x8y x = y ! s(x) = s(y),

E

3

: 8x8y8z x = y ^ z = v ! (x = z ! y = v),

plus the stronger equality axioms:

E

4

;�

1

: 8x8y s(x) = s(y)! x = y,

E

5

;�

2

: 8x 0 6= s(x),

the de�nition of +:

�

3

: 8x x+ 0 = x,

�

4

: 8x x+ s(y) = s(x+ y).

and the indution priniple:

�

5

: �[x 0℄ ^ (8x �! �[x s(x)℄)! 8x� for every formula �.

Note that the following strong equality axioms

E

6

: 8x x 6= s(x),

E

7

: 8x x = 0 _ 9y x = s(y),

are provable by indution. The indution priniple annot be replaed by E

6

and E

7

but there does exist presentation of Presburger's arithmeti without the indution

shema.

Peano's arithmeti ontains moreover two axioms for �:

�

6

: 8x x� 0 = 0,

�

7

: 8x8y x� s(y) = x� y + x,

This is not suÆient however for obtaining a omplete theory, and suh a omplete

annot exist for the integers with multipliation:

Theorem 2.24 (G�odel's inompleteness theorem) Any onsistent axiomati

extension of Peano's arithmeti is inomplete.

Proof: See for instane [44℄. The keystone of this very beautiful proof is the

liar paradox of Epimenides (600 b) whih says: \I lie", ombined with Cantor's

diagonal argument (f . setion 4.17). The idea of the proof is to onstrut in

the language of Peano's arithmeti � a formula � whih is true in the struture

of natural numbers N if and only if � is not provable in �. As N is a model of

�, � is neessarily true in N and not provable in �, hene � is inomplete. The

2.4. COMPLETENESSOF THEORIES AND DECIDABILITYOF STRUCTURES15

onstrution of suh a formula � uses an arithmetization of the syntax in whih

every formula is assoiated with an integer, alled its G�odel number. One then

onstruts a unary relation on N indiating whether its argument is the G�odel

number of a provable formula in �, and one exhibits a formula expressing its own

negation (a similar onstrution of a Prolog program is given in setion 5.4, for

showing the indeidability of the least Herbrand's model of a logi program). This

shows that Peano's arithmeti is inomplete. The onstrution doesn't depend so

muh however on the axioms of Peano than on the expressive power of the language

of arithmeti, and the proof holds in fat for any onsistent extension of Peano's

arithmeti. �

Corollary 2.25 The struture (N ; 0; 1;+; �) is not axiomatizable.

G�odel's inompleteness theorem refutes the existene of (even in�nite) omplete

axiomati theories for strutures of interest suh as the natural numbers. Fixing the

domain of disourse in onstraint programming is thus not harmless, as this time,

G�odel's inompleteness theorem an apply. It will be possible for some strutures

only, or for non axiomatizable strutures by restriting the language of onstraints

to a deidable fragment. Of ourse the theoretial deidability doesn't suÆe ei-

ther, we will be espeially interested by deidable fragments with a low algorithmi

omplexity, for whih moreover inremental algorithms an be designed.

16 CHAPTER 2. LOGICAL THEORIES

Chapter 3

Constraint logi programs

The basi idea of onstraint logi programmming, introdued by J. Ja�ar and J.L.

Lassez, is to �x a struture of interpretation S representing the \domain of dis-

ourse", and to distinguish in a logi program the language of onstraints on S

supposed to be deidable, from the language of prediates de�ned by logial formu-

las. The logial formulas allowed for the de�nition of prediates are restrited to be

Horn lauses of the form:

A

1

; :::;

m

jA

1

; :::A

n

where the

i

are onstraints and the A

j

are atoms. These lauses have both a

delarative logial meaning: A is true if

1

; :::;

m

; A

1

; :::A

n

are true, and a very

simple proedural interpretation: to show A it is suÆient to satisfy

1

; :::;

m

and

to show A

1

; :::; A

n

. In this way one de�nes a lass of programming languages,

denoted by CLP (S), parametrized by the struture S.

3.1 Constraints

We onsider a �rst-order language de�ned by

i) a set S

F

of symbols of onstants and of funtions,

ii) a set S

C

of prediate symbols supposed to ontain true and =,

iii) a ountable set V of variables.

An atomi onstraint is an atomi proposition of this language. We assume a set

of basi onstraints, supposed to be losed by variable renaming, and to ontain all

atomi onstraints. The language of onstraints is the losure by onjontion and

existential quanti�ation of the set of basi onstraints. Constraints will be denoted

by ; d; :::

Intuitively the basi onstraints are the formulas that the onstraint solver an

deal with, they de�ne the deidable fragment we are interested in, this fragment

an authorize restrited forms of negation or of universal quanti�ation, without

ontaining neessarily all �rst-order formulas.

The losure by onjontion of the onstraint language is essential to the priniple

of resolution. The losure by existential quanti�ation has not the same status, it

serves only to hek the satis�ability of the projetion of a omputed onstraint on

the variables of interest (f. 3.5).

The interpretation of onstraints is supposed to be �xed by the hoie of some

mathematial struture S = (D; E;O;R) formed with:

17

18 CHAPTER 3. CONSTRAINT LOGIC PROGRAMS

i) a domain D,

ii) a set E � D of distinguished elements assoiated to eah onstant, denoted

by [℄ for every 2 S

F

with arity 0,

iii) a set O of operators on D assoiated to eah funtion symbol, denoted by

[f ℄ : D

n

! D for every f 2 S

F

with arity n,

iv) a set R of relations on D assoiated to eah onstraint prediate symbol,

denoted by [p℄ : D

n

! f0; 1g for every p 2 S

C

with arity n.

An S-valuation is a funtion � : V ! D that extends to terms by morphism. If

S j= � we say that is satis�able and that � is a solution of , otherwise we have

S j= :�.

We shall assume that in the struture S, the onstraint satis�ability problem is

deidable. We shall thus suppose without loss of generality that S is presented by

an axiomati theory T de�ned on the alphabet S

C

, S

F

, satisfying:

1. (soundness) S j= T

2. (ompleteness for onstraint satisfation) for every onstraint , either T `

9(), or T ` :9().

Under these assumptions we have that S j= 9() i� T ` 9(). We do not

demand however that T is a omplete theory beause we are merely interested by

the existential onjuntive fragment of the language of onstraints. If the onstraints

an be arbitrary �rst-order formulas, then ondition 2) does express that T is a

omplete theory.

3.2 CLP(S) Programs

We onsider also a set of prediate symbols S

P

disjoint from S

C

, representing re-

lations de�ned by program. In the following we all atom an atomi proposition

formed on S

P

, S

F

and V exlusively.

De�nition 3.1 A onstraint logi program lause is a lause with exatly one pos-

itive literal 8(A _ :

1

_ ::::

n

_ :A

1

_ ::: _ :A

n

) where m � 0, n � 0, the

i

's are

atomi onstraints and the A

j

's are atoms. A lause of program is denoted by

A

1

; :::;

m

jA

1

; :::A

n

or

A j�

where =

1

^ ::: ^

m

, and where � denotes the sequene of atoms A

1

; :::; A

n

. A

is alled the head of the lause, and j� the body. The loal variables of the lause

are the variables whih appear uniquely in the body of the lause.

A onstraint logi program is a �nite set of program lauses.

De�nition 3.2 A goal lause is a lause without positive literal

8(:

1

_ ::::

n

_ :A

1

_ ::: _ :A

n

)

A goal, denoted by

1

; :::;

k

jA

1

; :::; A

n

or aording to the previous notations by

j�

stands for the formula

1

^ ::: ^

k

^ A

1

^ ::: ^ A

n

.

3.2. CLP(S) PROGRAMS 19

The reason for di�erentiating the logial formula assoiated to a goal from the

one assoiated to a goal lause is that from the point of view of theorem proving,

a refutation expresses that the set of program lauses P with the goal lause G,

P [G, is unsatis�able, whereas from the point of view of programming, a suessful

derivation expresses that the goal G is satis�able, P j= 9(G), both viewpoints are

obviously equivalent as P j= 9(G) if and only if P [:9(G) is unsatis�able, and the

negation of the logial formula 9G assoiated to a goal G is indeed a goal lause

:9G. In the following we shall be mainly onerned with the programming language

point of view, hene we shall manipulate goals, rather than goal lauses.

In order to simplify the proofs, we shall onsider programs and goals in normal

form, in whih the atoms ontain no funtion symbol. There is obviously no loss of

generality as every program or goal an be transformed under this form by intro-

duing new variables and equality onstraints between these variables and the terms

inside the atoms. For instane the normal form of the lause p(x+1) p(x� 1) is

p(y) y = x+ 1 ^ z = x� 1 j p(z).

The CLP programs are parametrized by the struture S whih �xes the interpre-

tation of the onstraint language. An S-interpretation of the language augmented

with prediate symbols in S

P

assoiates in addition to every p 2 S

P

with arity n, a

relation [p℄ : D

n

! f0; 1g. An S-model of a program P is an S-interpretation model

of P . The S-base, denoted by B

S

, is the set of atoms valued in S:

B

S

= fp(x

1

; :::; x

n

)� j p 2 S

P

of arity n and � is an S-valuation g:

An S-interpretation an thus be identi�ed to a subset of B

S

formed with the

atoms whih are true in the interpretation. Clearly B

S

is a model of every onstraint

logi program on S. In the following (f. 5.4) we shall show the existene of a least

S-model, denoted by M

S

P

.

The logial meaning of a CLP program allows to de�ne several delarative se-

mantis aording to the observation we are interested in, for instane:

� only the satis�ability of a goal, 9(G), (i.e. theorem proving point of view),

� or the onstraints whih imply a goal, � G, (i.e. programming language

point of view),

Furthermore we an onsider:

i) the logial onsequenes of the program and of the theory of the struture

(proper logial semantis),

(1) P; T j= 9(G) (4) P; T j= � G;

ii) the logial onsequenes of the program in all the S-models of the program

(logial semantis with a �xed pre-interpretation),

(2) P j=

S

9(G) (5) P j=

S

 � G;

iii) the truth in the least S-model of the program (algebrai semantis),

(3) M

S

P

j= 9(G) (6) M

S

P

j= � G:

In the following we shall show the equivalenes (1) , (2) , (3) and (4))

(5) , (6). Only (4) leads to a notion of orret answer weaker than (5) and (6).

In a �rst approximation we shall retain the notion of orret answer to a goal given

by the logial semantis in a �xed struture S (5).

20 CHAPTER 3. CONSTRAINT LOGIC PROGRAMS

De�nition 3.3 Let P be a CLP(S) program. Let G be a goal. A onstraint is a

semi-orret answer if:

P j=

S

8(� G)

 is a orret answer if furthermore is S-satis�able:

P j=

S

9()

The notion of semi-orret answer is introdued to modelize the ase where the

onstraint solver e�etively used in a CLP(S) system is not omplete (e.g. 4.18,

4.6). The satis�ability of omputed onstraints is partially heked in suh sys-

tems, the omputed answers are thus semi-orret answers in general. For sake of

simpliity however, the priniple of resolution is de�ned in the next setion with a

omplete hek of satis�ability.

3.3 Proedural interpretation

The pratial justi�ation for restriting the de�nition of prediates to Horn lause

formulas, is that it is possible to assoiate to suh formulas an extremely simple

proof system, redued to a single inferene rule, alled CSLD resolution. We present

this inferene rule by a rewriting relation on goals.

De�nition 3.4 Let P be a onstraint logi program on S. The rewriting relation

�! on goals is de�ned as the least relation satisfying the following priniple of

CSLD resolution

1

:

(p(N

1

; :::; N

k

)

0

jA

1

; :::; A

n

)� 2 P S j= 9(^M

1

= N

1

^ ::: ^M

k

= N

k

^

0

)

(j�; p(M

1

; :::;M

k

); �

0

) �! (;M

1

= N

1

; :::;M

n

= N

n

;

0

j �;A

1

; :::; A

n

; �

0

)

where � is a renaming substitution of the program lause with new variables.

The atom p(M

1

; :::;M

n

) in the goal to redue is alled the seleted atom. Note

that there is no rewriting if the resulting onstraint is not S-satis�able. We write

G �!

C

G

0

for a step of resolution with the lause C 2 P , and we note �!

�

the

reexive transitive losure of �!.

A CSLD derivation for a goal G is a �nite or in�nite sequene of goals (G

j

)

j�0

,

and of variants of program lauses C

j

, suh that G

0

= G and G

j

�!

C

j

G

j+1

for

every j � 0.

A suessful derivation (or CSLD refutation) is a �nite CSLD derivation whih

terminates with a goal ontaining onstraints only.

De�nition 3.5 Let P be a program CLP(S). A omputed answer for a goal G is

a onstraint obtained by a CSLD refutation from G:

G �!

�

j�

The projeted omputed answer is the onstraint 9x

1

:::9x

k

 where fx

1

; :::; x

k

g =

V () n V (G).

Example 3.6 Consider the following CLP(N) program:

p(0)

p(x+ 1) p(x)

The goal p(y) has the following suessful derivations:

p(y) �! y = 0j�

p(y) �! y = y

1

+ 1jp(y

1

) �! y = y

1

+ 1 ^ y

1

= 0j�

et.

The projeted omputed onstraints are y = 0, y = 1, et.

1

CSLD stands for Linear resolution for De�nite programs with Constraints and Seleted atom.

3.3. PROCEDURAL INTERPRETATION 21

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

... ...

p(y)

y=0j�

y=y1+1jp(y1)

y1=0,y=y1+1j�

y1=y2+1,y=y1+1jp(y2)

y2=0,y1=y2+1,y=y1+1j�

y2=y3+1,y1=y2+1,y=y1+1jp(y3)

Figure 3.1: In�nite CSLD tree of the example 3.6.

Lemma 3.7 (^-ompositionality) is a omputed answer for the goal (djA

1

; :::; A

n

),

if and only if there exist omputed answers

1

; :::;

n

for the goals truejA

1

; :::; truejA

n

,

suh that = d ^

V

n

i=1

i

is satis�able.

Proof: By indution on the length of the derivation. �

Corollary 3.8 Independane of the seletion strategy Let R be a seletion strategy

for the atom to selet at eah resolution step. If is a omputed answer with the

strategy R for the goal G, then for every strategy R

0

, there exists a omputed answer

0

with the strategy R

0

for the goal G suh that S j= $

0

.

The independane of the seletion strategy shows that for the observation of

suesses, it is possible to restrit the searh for derivations from a goal G by �xing

an arbitrary seletion strategy.

De�nition 3.9 A CSLD derivation tree for a goal G is the tree of all CSLD deriva-

tions obtained from G by �xing a seleted atom in eah node.

To enumerate all the sueses to a goal G, the independane of the seletion

strategy thus shows that it is suÆient to searh in an arbitrary CSLD derivation

tree for G.

22 CHAPTER 3. CONSTRAINT LOGIC PROGRAMS

Chapter 4

Examples

4.1 CLP(H) and Prolog

In the lass of programming languages CLP(H), the interpretation struture is the

algebra of �rst-order terms, the Herbrand's domain H.

The programming language Prolog is an implementation of CLP(H) in whih:

i) the onstraints are only equalities between terms, they are solved by a uni�-

ation algorithm (some implementations of Prolog treat also disequality on-

straints by a mehanism of oroutines, f. prediate dif(X,Y)),

ii) the seletion strategy onsists in solving the atoms from left to right aording

to their order in the goal, the atoms to solve are thus implemented with a

stak (some implementations have a mehanism of oroutines whih modi�es

the seletion strategy by delaying the seletion of some atoms as long as a

variable is not instaniated, e.g. prediate freeze(X,G)),

iii) the searh strategy onsists in searhing the derivation tree depth-�rst by

baktraking.

In Prolog the syntax of the program lauses is

A :- B1,...,Bn.,

A.

the syntax of the goals is

?- A1,...,Year..

The interpreter enumerates the omputed answers to a goal by typing ; after

the prompt.

Program 4.1 The dedutive data bases give a �rst example of Prolog programs on

an alphabet of onstants without funtion symbols:

gdfather(X,Y):-father(X,Z),parent(Z,Y).

gdmother(X,Y):-mother(X,Z),parent(Z,Y).

parent(X,Y):-father(X,Y).

parent(X,Y):-mother(X,Y).

father(alphonse,hantal).

mother(emilie,hantal).

mother(hantal,julien).

23

24 CHAPTER 4. EXAMPLES

father(julien,simon).

| ?- gdfather(X,Y).

X = alphonse, Y = julien ? ;

no

| ?- gdmother(X,Y).

X = emilie, Y = julien ? ;

X = hantal, Y = simon ? ;

no

Program 4.2 The introdution of a binary funtion symbol allows to represent the

list struture, the usual relations on lists an be de�ned by simple programs:

member(X,ons(X,L)).

member(X,ons(Y,L)):-member(X,L).

append(nil,L,L).

append(ons(X,L),M,ons(X,N)):-append(L,M,N).

| ?- member(X,ons(a,ons(b,ons(,nil)))).

X = a ? ;

X = b ? ;

X = ? ;

no

| ?- member(X,Y).

Y = ons(X,_A) ? ;

Y = ons(_B,ons(X,_A)) ? ;

Y = ons(_C,ons(_B,ons(X,_A))) ? ;

Y = ons(_D,ons(_C,ons(_B,ons(X,_A)))) ? ;

Y = ons(_E,ons(_D,ons(_C,ons(_B,ons(X,_A))))) ?

yes

| ?- append(ons(a,ons(b,nil)),ons(,ons(d,nil)),L).

L = ons(a,ons(b,ons(,ons(d,nil)))) ? ;

no

4.1. CLP(H) AND PROLOG 25

Program 4.3 Lists have a speial syntax in Prolog: [X|L℄ stands for ons(X,L)

and [℄ for nil. The naive program for reversing a list has a quadrati time omplex-

ity, a standard tehnique for obtaining a reverse program of linear time omplexity

is to use a third argument as an aumulator.

append([℄,L,L).

append([X|L℄,L2,[X|L3℄):-append(L,L2,L3).

reverse([℄,[℄).

reverse([X|L℄,R):-reverse(L,K),append(K,[X℄,R).

| ?- reverse([a,b,,d℄,M).

M = [d,,b,a℄ ? ;

no

| ?- reverse(M,[a,b,,d℄).

M = [d,,b,a℄ ?

rev(L,R):-rev_lin(L,[℄,R).

rev_lin([℄,R,R).

rev_lin([X|L℄,K,R):-rev_lin(L,[X|K℄,R).

| ?- reverse(X,Y).

X = [℄, Y = [℄ ? ;

X = [_A℄, Y = [_A℄ ? ;

...

Program 4.4 The implementation of the various algorithms for sorting is straight-

forward, prede�ned prediates an be used for omparing integers.

quiksort([℄,[℄).

quiksort([X|L℄,R):-

partition(L,Linf,X,Lsup),

quiksort(Linf,L1),

quiksort(Lsup,L2),

append(L1,[X|L2℄,R).

partition([℄,[℄,_,[℄).

partition([Y|L℄,[Y|Linf℄,X,Lsup):-

Y=<X,

partition(L,Linf,X,Lsup).

partition([Y|L℄,Linf,X,[Y|Lsup℄):-

Y>X,

partition(L,Linf,X,Lsup).

Program 4.5 A (non-deterministi) ontext-free grammar an be diretly trans-

lated in a Prolog program. The �rst Prolog interpreter was designed in 1972 by A.

Colmerauer for this purpose. For example the grammar:

sentene :: nounphrase, verbphrase;

nounphrase :: determiner, noun j noun;

verbphrase :: verb | verb, nounphrase;

verb :: [eats℄;

determiner :: [the℄;

26 CHAPTER 4. EXAMPLES

noun :: [monkey℄ j [banana℄;

an be systematially translated in the following Prolog program for parsing and

synthesis:

sentene(L):-nounphrase(L1), verbphrase(L2), append(L1,L2,L).

nounphrase(L):- determiner(L1), noun(L2), append(L1,L2,L).

nounphrase(L):- noun(L).

verbphrase(L):- verb(L).

verbphrase(L):- verb(L1), nounphrase(L2), append(L1,L2,L).

verb([eats℄).

determiner([the℄).

noun([monkey℄).

noun([banana℄).

| ?- sentene([the,monkey,eats℄).

yes

| ?- sentene([the,eats℄).

no

| ?- sentene(L).

L = [the,monkey,eats℄ ? ;

L = [the,monkey,eats,the,monkey℄ ? ;

L = [the,monkey,eats,the,banana℄ ? ;

L = [the,monkey,eats,monkey℄ ?

yes

The basi operation of a Prolog interpreter is thus the solving of equality on-

straints over �rst-order terms, with an unbounded signature, i.e. a signature on-

taining an in�nite set of funtion symbols for eah arity. The equality in H an

be ompletely axiomatized by adding few axioms to the standard equality axioms.

From suh a omplete axiomatization one an derive a simple uni�ation algorithm

for solving equality onstraints between terms.

De�nition 4.6 The Clark's equational theory CET [8℄ is the theory formed with

the standard axioms for equality:

E

1

: 8x x = x,

E

2

8x

1

; :::; x

n

; y

1

; :::; y

n

x

1

= y

1

^ ::: ^ x

n

= y

n

! f(x

1

; :::; x

n

) = f(y

1

; :::; y

n

) for

every n and every funtion symbol f 2 S

F

with arity n,

E

3

8x

1

; :::; x

n

; y

1

; :::; y

n

x

1

= y

1

^ ::: ^ x

n

= y

n

! p(x

1

; :::; x

n

)! p(y

1

; :::; y

n

) for

every n and every prediate symbol p 2 S

P

with arity n.

4.1. CLP(H) AND PROLOG 27

plus the axioms:

E

4

: 8x

1

; :::; x

n

; y

1

; :::; y

n

f(x

1

; :::; x

n

) = f(y

1

; :::; y

n

)! x

1

= y

1

^ ::: ^ x

n

= y

n

for

every funtion symbol f 2 S

F

with arity n,

E

5

: 8x

1

; :::; x

m

; y

1

; :::; y

n

f(x

1

; :::; x

m

) 6= g(y

1

; :::; y

n

) for di�erent funtion symbols

f; g 2 S

F

with arity m and n respetively,

E

6

: 8x M [x℄ 6= x for every term M stritly ontaining x.

One an notie that Presburger's arithmeti ontains the axioms E

1

� E

6

for

0 and s, while E

7

simply disappears here as we have an in�nite set of funtion

symbols.

Proposition 4.7 H is a model of CET.

Exerise 4.8 Give a model of E

1

; E

2

; E

3

; E

4

; E

5

not satisfying E

6

(hint: imagine

a struture of in�nite terms).

Give a non standard model of CET, i.e. a model of CET not isomorphi to H

(hint: restrit the struture of in�nite terms to those terms whih satisfy E

6

).

The theory CET is an axiomati theory whih is omplete for the satisfation of

equality onstraints between terms in H. This an be shown simply by orientating

the axioms of CET so as to derive an algorithm for solving equality onstraints. The

algorithm we obtain in this way was proposed by Herbrand in his thesis in 1930

[22℄, and was later redisovered by Robinson in his seminal work on automated

dedution [42℄.

De�nition 4.9 A system of equations � is either the symbol false ?, or a onjon-

tion of equations between terms M

1

= N

1

^ ::: ^M

n

= N

n

(true if n = 0).

A system of equations is in solved form if it is of the form

x

1

=M

1

^ ::: ^ x

n

=M

n

with n � 0 and fx

1

; :::; x

n

g \ (V (M

1

) [::: [V (M

n

)) = ;.

Clearly if � is a solved form then CET j= 9(�). The Herbrand's uni�ation

algorithm deides the satis�ability of a system � by omputing a solved form.

De�nition 4.10 The uni�ation algorithm of Herbrand simpli�es a system of equa-

tions by applying the following rules:

De : f(M

1

; :::;M

n

) = f(N

1

; :::; N

n

) ^ � �!M

1

= N

1

^ ::: ^M

n

= N

n

^ �,

De? : f(M

1

; :::;M

n

) = g(N

1

; :::; N

m

) ^ � �! ? if f 6= g,

Triv : x = x ^ � �! �,

Var : x =M ^ � �! x =M ^ �� if x 62 V (M), x 2 V (�), � = fx Mg,

Var? : x =M ^ � �! ? if x 2 V (M) and x 6=M .

Lemma 4.11 (Validity) If � �!

�

�

0

then CET j= �$ �

0

.

Lemma 4.12 (Termination) There are no in�nite sequene of simpli�ations.

Proposition 4.13 (Deidability of uni�ation) CET j= 9(�) i� the irreduible

form of � is a solved form.

Corollary 4.14 (Completeness of CET) For any equation system �, either CET `

9(�), or CET ` :9(�).

Corollary 4.15 H ` 9(�) i� CET ` 9(�).

28 CHAPTER 4. EXAMPLES

Robinson's uni�ation algorithm represents the unsolved part of the system as

a stak and traverses the terms depth-�rst in left-right order. It omputes further-

more, if the terms are uni�able, a substitution � whih represents the solution set.

Although there exist other uni�ation algorithms with better (linear) theoretial

omplexity, the Herbrand-Robinson's uni�ation algorithm has a good pratial ef-

�ieny. It is used in the implementation of Prolog, in partiular in the Warren's

abstrat mahine, with the optional ommission of the our hek (rule V ar?) for

eÆieny reasons.

Remark 4.16 The deidability of uni�ation and the validity lemma show that

the theory CET is omplete for the existential onjuntive fragment of equality

onstraints. If we enrih the language of onstraints by authorizing for instane

disequality onstraints (8Y X 6= f(Y)), or arbitrary �rst-order formulas, then the

situation depends on the alphabet.

If the alphabet ontains an in�nite set of onstant symbols and funtion symbols,

then CET is a omplete theory [33℄ [38℄, the struture H is thus deidable.

If the alphabet is �nite, formed of funtion symbols f

1

; :::; f

n

with arity n

1

; :::; n

k

,

then it is neessary to onsider the theory CET augmented with the domain-losure

axiom (DCA):

DCA: 8x9y

1

:::9y

n

x = f

1

(y

1

; :::; y

n

1

) _ ::: _ x = f(y

1

; :::; y

n

k

)

In the ase of a �nite alphabet the theory CET+DCA is a omplete theory [38℄.

Therefore in all ases the struture H is deidable. The lass CLP(H) an thus

be de�ned with more or less powerful onstraint languages.

4.2 CLP(RT)

The absene of our hek in Prolog is not justi�ed uniquely by (historial) rea-

sons of pratial eÆieny but also by the need of programming with irular data

struture, for representing ross-referenes for instane.

We an thus onsider as omputation domain the algebra of �nite and in�nite

terms [11℄ or more preisely the algebra RT of rational terms, whih are �nite or

in�nite terms having a �nite number of distint subterms, and whih an thus be

represented by �nite graphs.

If we replae in the theory CET the axiom of our hek (E

6

) by a new axiom

stating the existene of solutions to equation of the form x = f(x), we obtain a

omplete theory of both the algebra RT and the algebra of �nite and in�nite terms

[38℄, these strutures are thus elementarily equivalent.

The uni�ation algorithm of Huet [25℄ is a omplete uni�ation algorithm inRT .

The language Prolog II introdued by A. Colmerauer in 1982 inluded that uni�a-

tion algorithm together with a treatment of disequality onstraints by a mehanism

of oroutines. Today we an see Prolog II as an instane of CLP(RT). Historially,

it is the theoretial study of Prolog II whih lead J. Ja�ar and J.L. Lassez in 1986

to the general onept of the lass CLP.

4.3 CLP(H=E)

By still onsidering term algebras, we an de�ne the lass CLP(H=E) presented by

an equational theory E , that is a theory formed with a reursive set of identities

between terms. Birkho�'s theorem shows the ompleteness of equational reasoning

for semi-deiding equality in E : E j= M = N i� M =

E

N , i.e. i� M and N are

ongruent modulo E . It is also possible to semi-deide the satis�ability of equality

onstraints, E j= 9(M = N), In general however the problem of E-equality in an

equational theory is undeidable.

4.4. CLP(�) 29

The notion of uni�ation in H an be generalized to a notion of uni�ation with

omplete sets of uni�ers in H=E . However these sets an be in�nite, for instane

the equation f(x; a) = f(a; x) where f is an assoiative operator has an in�nite

base of uni�ers, �

0

= fx ag; �

1

= fx f(a; a)g; �

2

= fx f(a; f(a; a))g; :::.

It an also be the ase that there doesn't exist bases of uni�ers in some equational

theories admitting dereasing hains of more and more general uni�ers.

The equational theories of interest are those in whih the satis�ability of equality

onstraints is deidable. It is the ase for instane in theories ontaining an asso-

iative funtion symbol and onstants, in theories on an arbitrary alphabet with

assoiative-ommutative funtion symbols (in these theories there exists further-

more an a uni�ation algorithm whih omputes a �nite base of uni�ers), in some

disjoint unions of equational theories, et. See [29℄ for a survey.

The equational uni�ation algorithms, when they exist, do not always pro-

vide eÆient algorithms for solving equality onstraints. For instane assoiative-

ommutative uni�ability is an NP-omplete problem whereas the omputation of

a base of assoiative-ommutative unifers is omplete for the double exponential

omplexity lass [30℄.

4.4 CLP(�)

In CLP(�) we onsider the terms of the simply typed �-alul, they are de�ned by

the following grammar of types t and typed expressions e : t:

t ::= v j t

1

! t

2

e : t ::= x : t j (�x : t

1

:e : t

2

) : t

1

! t

2

j (e

1

: t

1

! t

2

(e

2

: t

1

)) : t

2

The symbol � represents the operation of formation of a funtion by abstration

of a variable in an expression. The other operation is the appliation of a funtion

to an expression of the right type. The theory of funtionality is de�ned by two

axioms for variable renaming � and appliation �:

�x:e

1

=

�

�y:e

1

[y=x℄ if y 62 V (e

1

),

(�x:e

1

)e

2

!

�

e

1

[e

2

=x℄

The type system insures the termination of �-redutions modulo �-onversion.

The property of termination ombined with the property of onuene of the �-

alulus, allows us to deide equality in this theory by simple rewriting:

e

1

=

�;�

e

2

i� #

�

e

1

=

�

#

�

e

2

:

However rewriting doesn't suÆe to deide the satis�ability of equality on-

straints. For instane to solve the equation FX = GY where F and G are fun-

tional variables, we an impose F = G, X = Y , or F = �x:GY , or again F = �x:H ,

G = �y:I with HX = IY whih leads bak to the previous problem. Uni�ation in

higher-order languages is an undeidable problem [24℄, already at order 2 [19℄. It is

worth noting however that as the equality of typed �-expressions is deidable, the

set of uni�ers of two typed �-expressions is reursively enumerable.

Suh a generalization of Prolog to higher-order logi has an extraordinary (ex-

essive!) expressive power. As an illustration of this phenomenon, Cantor's theorem

an be shown in two steps of SLD resolution where the omputed substitution rep-

resents Cantor's diagonal argument!

Theorem 4.17 (Cantor's Theorem) N

N

is not ountable.

Proof: (adapted from [24℄).

Let us suppose the opposite 9h : N! (N! N) 8f : N! N 9n : N h(n) =

f After Skolemisation, the formula to refute beomes 8F h(n(F)) = F whih is

equivalent to the goal lause 8F :h(n(F)) 6= F .

30 CHAPTER 4. EXAMPLES

A refutation of the goal h(n(F) 6= F an be obtained by two steps of CSLD reso-

lution with two simple properties of the natural numbers expressed by the following

program:

F 6= G F (N) 6= G(N):

N 6= s(N):

The �rst program lause is used to form the �rst resolvant:

h(n F) 6= F �!

�

1

(h(n F))(I) 6= F (I)

The seond lause gives the refutation

(h(n F))(I) 6= F (I) �!

�

2

[℄

with the sequential substitution

�

2

= fJ h I Ig:fI = n(F)g:fF = �i:s(h i i)g

One veri�es that (h(n F))(I)�

2

= J�

2

and F (I)�

2

= s(J)�

2

. The uni�er �

2

of

the last step of resolution, whih generates the ontradition, ontains \the diagonal

argument" of Cantor: we onsider the diagonal (Hii) of H whih indiates the value

taken by the funtion number i at value i, and we onstrut the funtion f whih

assoiates to i the suessor of (Hii); then we onsider the value of f at n = Nf ,

that is at the number of f ; the ontradition omes from the fat that on the one

hand, by de�nition of H , fn = (Hnn), and on the other hand, by onstrution of

f , fn = S(Hnn). Hene suh a funtion h annot exist. �

It is worth noting that the uni�ation algorithm on �rst-order terms ould aept

variables in position of funtion. However the uni�ation of these expressions would

be done in the �rst-order model of terms, and not in a theory of funtionality.

This generalization of �rst-order uni�ation is thus not suÆient for �nding the

substitution of f in the previous example, but it allows to �nd the simple ases of

higher-order uni�ation, as in the �rst step of resolution.

In fat the implemented CLP(�) systems suh as �-Prolog [39℄ onsider weak

theories of funtionality whih orrespond to simple ases of higher-order uni�ation.

The interesting features of these programming languages lies in partiular in their

type system inherited from the �-alulus, and in the natural generalisation in this

ontext of Horn lauses to imbriated impliations, whih is the basis of an original

system of modules and of powerful methods for meta-programming.

4.5 CLP(R)

The deidability of real arithmeti (R; 0; 1;+; �;=; <) was shown by Tarski by show-

ing the ompleteness of the axiomati theory of real losed �elds:

C

1

: (x+ y) + z = x+ (y + z),

C

2

: x+ 0 = x,

C

3

: x+ (�1 � x) = 0,

C

4

: x+ y = y + x,

C

5

: (x � y) � z = x � (y � z),

C

6

: x � 1 = x,

C

7

: x 6= 0! 9y x � y = 1,

4.5. CLP(R) 31

C

8

: x � y = y � x,

C

9

: x � (y + z) = (x � y) + (x � z),

C

10

: 0 6= 1,

O

1

: :(x < x),

O

2

: x < y ! (y < z ! x < z),

O

3

: x < y _ x = y _ y < x,

O

4

: x < y ! x+ z < y + z,

O

5

: 0 < x! (0 < y ! 0 < x � y),

R

1

: 0 < x! 9y y � y = x,

R

2

: y

n

6= 0! 9x y

n

� x

n

+ y

n�1

� x

n�1

+ :::+ y

0

= 0 for every odd integer n.

The result of ompleteness of this theory shows the deidability of elementary

geometry, the proof is based on a method for quanti�er elimination [44℄. In prini-

ple this method allows us to deide the satis�ability of arbitrary �rst-order logial

formulas on the reals, with however a tower of exponentials as algorithmi om-

plexity... CLP(R) systems with that degree of generality have been realized, see

for instane [23℄. These prototype systems ompute answers with of ourse widely

unstable and unpreditible performanes.

If we limit the onstraint language to the linear existential fragment, the sat-

isfation problem beomes polynomial and the algorithms of linear programming

provide powerful deision methods [7℄. The Simplex algorithm, for example, has

a quasi-linear pratial omplexity in the number of variables. This algorithm an

moreover handle the inremental addition and deletion of onstraints. For these

reasons the Simplex algorithm is still the algorithm of hoie for solving linear on-

straints in CLP(R) systems, while non-linear onstraints are simply delayed until

they beome linear (e.g. with the freeze prediate). Several CLP(R) systems have

been implemented sine the mid 80's [26℄ [41℄, and have been suesfully used in

a wide variety of appliations ranging from deision support in �nanial domains,

veri�ation and synthesis of analogial iruits, ombinatorial optimization, et.

[28℄.

The following CLP(R) program expresses the formula for omputing mortgage.

In the prediate mortgage(P; T; I; B;M), P is the total amount, T the duration in

months, I the monthly rate, B the balane, andM the monthly reimbursement. The

program omputes instaniated answers for di�erent ombinations of the inputs. It

omputes also linear onstraints as answers. The last query of the example shows a

ase where the answer is a non-linear onstraint, the satis�ability of this onstraint

is not heked by the system (semi-orret answer in general, f. 3.3).

Program 4.18 [27℄ Example of a CLP(R) program for omputing mortgage.

mortgage(P,T,I,B,M):- T > 0, T <= 1, B + M = P * (1 + I).

mortgage(P,T,I,B,M):- T > 1, mortgage(P * (1 + I) - M, T - 1, I, B, M).

| ?- mortgage(120000,120,0.01,0,M).

M = 1721.651381 ?

yes

32 CHAPTER 4. EXAMPLES

| ?- mortgage(P,120,0.01,0,1721.651381).

P = 120000 ?

yes

| ?- mortgage(P,120,0.01,B,M).

P = 0.302995*B + 69.700522*M ?

yes

| ?- mortgage(999, 3, Int, 0, 400).

400 = (-400 + (599 + 999*Int) * (1 + Int)) * (1 + Int) ?

yes

The need for omputing with omplex data struture obviously remains in

CLP(R). The struture of interest is thus not exatly R but more preisely the

algebra H(R) of �rst-order terms formed on an alphabet of onstant and funtion

symbols, possibly ontaining arithmeti expressions in their leaves. It has been

shown that under some general onditions the ompleteness of a theory for a stru-

ture S remains for the struture H(S) [46℄. The following example illustrates the

use of lists in CLP(R).

Program 4.19 [26℄ Example of a CLP(R) program for omputing the tempera-

ture on a disrete surfae, or more generally for solving the Dirihlet problem for

Laplae's equation by the �nite di�erene method. The program spei�es that the

temperature in eah interior point is the mean of its four neighbors. If the data are

suÆiently instaniated, for instane the temperature on the edges is known, the

answers are numerial values, otherwise they are linear onstraints.

laplae([H1,H2,H3|T℄):-

laplae_ve(H1,H2,H3), laplae([H2,H3|T℄). laplae([_,_℄).

laplae_ve([TL,T,TR|T1℄,[ML,M,MR|T2℄,[BL,B,BR|T3℄):-

B + T + ML + MR - 4 * M = 0,

laplae_ve([T,TR|T1℄,[M,MR|T2℄,[B,BR|T3℄).

laplae_ve([_,_℄,[_,_℄,[_,_℄).

| ?- X = [

[0,0,0,0,0,0,0,0,0,0,0℄,

[100,_,_,_,_,_,_,_,_,_,100℄,

[100,_,_,_,_,_,_,_,_,_,100℄,

[100,_,_,_,_,_,_,_,_,_,100℄,

[100,_,_,_,_,_,_,_,_,_,100℄,

[100,_,_,_,_,_,_,_,_,_,100℄,

[100,_,_,_,_,_,_,_,_,_,100℄,

[100,_,_,_,_,_,_,_,_,_,100℄,

[100,_,_,_,_,_,_,_,_,_,100℄,

[100,_,_,_,_,_,_,_,_,_,100℄,

[100,100,100,100,100,100,100,100,100,100,100℄

℄, laplae(X).

4.6. CLP(FD) AND CLP(N) 33

X=[[0,0,0,0,0,0,0,0,0,0,0℄,

[100,51.11,32.52,24.56,21.11,20.12,21.11,24.56,32.52,51.11,100℄,

[100,71.91,54.41,44.63,39.74,38.26,39.74,44.63,54.41,71.91,100℄,

[100,82.12,68.59,59.80,54.97,53.44,54.97,59.80,68.59,82.12,100℄,

[100,87.97,78.03,71.00,66.90,65.56,66.90,71.00,78.03,87.97,100℄,

[100,91.71,84.58,79.28,76.07,75.00,76.07,79.28,84.58,91.71,100℄,

[100,94.30,89.29,85.47,83.10,82.30,83.10,85.47,89.29,94.30,100℄,

[100,96.20,92.82,90.20,88.56,88.00,88.56,90.20,92.82,96.20,100℄,

[100,97.67,95.59,93.96,92.93,92.58,92.93,93.96,95.59,97.67,100℄,

[100,98.89,97.90,97.12,96.63,96.46,96.63,97.12,97.90,98.89,100℄,

[100,100,100,100,100,100,100,100,100,100,100℄℄ ?

yes | ?- laplae([

[B11, B12, B13, B14℄,

[B21, M22, M23, B24℄,

[B31, M32, M33, B34℄,

[B44, B42, B43, B44℄

℄).

B12 = -B21 - 4*B31 + 16*M32 - 8*M33 + B34 - 4*B42 + B43,

B13 = -B24 + B31 - 8*M32 + 16*M33 - 4*B34 + B42 - 4*B43,

M22 = -B31 + 4*M32 - M33 - B42,

M23 = -M32 + 4*M33 - B34 - B43 ?

yes

4.6 CLP(FD) and CLP(N)

G�odel's inompleteness theorem gives fundamental limits on integer arithmeti on-

straints. In order to obtain a deidable onstraint language we an either onsider

the linear fragment, (N; 0; 1;+;=), whih is ompletely axiomatized by Presburger's

arithmeti, or restrit the onstraint language on N given with all its operators.

The later approah is generally undertaken in the implementations of CLP(FD)

on \�nite domains" where the variables are assumed to take their value in �nite

intervals of the integers. The system CHIP [48℄ was the �rst CLP(FD) system devel-

oped in the mid 80's, following the pioneering work of J.L. Lauriere [34℄. CLP(FD)

systems inlude in addition to usual arithmeti prediates,

symboli onstraints, e.g.

element(I,[x1,...,xk℄,V) true if x

I

= V where I and V are unknowns,

set ardinality onstraints, e.g.

ard(N,[X1,...,Xk℄,V) true if there are exatly N values equal to V in the

list of unknowns X

1

; :::; X

k

,

higher-order ardinality onstraints, e.g.

ard(N,[C1,...,Ck℄) true if there are exatly N onstraints true in the list

C

1

; :::; C

k

.

These onstraints greatly enhane the expressive power of the onstraint lan-

guage for modeling ombinatorial optimization problems[48℄.

Program 4.20 One of the simplest example of CLP(FD) program is the N-queens

program. The problem, introdued by Gauss in the early days of ombinatoris, is

to plae N queens on an N�N hess board suh that no two queens are plaed on

a same row, olumn or diagonal. The CLP(FD) program modelizes the problem

with a list of N unknowns whih give the line number of eah queen in eah olumn

(domain(L,[1,N℄)). The program plaes �rst the inequality onstraints between the

variables (X.=/=Y+d), and then enumerates the possible values (labeling), with

34 CHAPTER 4. EXAMPLES

some heuristis for hoosing �rst the queen with the least domain of possible values

((�rst-fail heuristis ff) and trying �rst the (lines) values in the middle. Solving

the 200-queens problem is untratable by pure baktraking, but takes a few seonds

with this CLP(FD) program.

queens(N, L) :- list(N, L), domain(L,[1,N℄),

safe(L), labeling(L,ff,middle).

safe([℄).

safe([X| Y℄) :- noattak(X, Y), safe(Y).

noattak(X, Xs) :- noattak(X, Xs, 1).

noattak(X, [℄, Nb) :- !.

noattak(X, [Y | Ys℄, Nb) :- X.=/=Y, X.=/=Y+Nb, X.=/=Y-Nb,

Nb1 is Nb+1, noattak(X, Ys, Nb1).

list(0, [℄):- !.

list(N, [_| L℄) :- M is N-1, list(M, L).

| ?- queens(4,L).

L = [2,4,1,3℄ ? ;

L = [3,1,4,2℄ ? ;

no

Program 4.21 [20℄ The organizers of a ongress have 3 rooms and 2 days for

eleven half-day sessions (A,B,C,...,K).

The sessions sets

AJ, JI, IE, CF, FG, DH, BD, KE, BIHG, AGE, BHK, ABCH, DFJ

an't be simultaneous (there exists at least one partiipant in all the sessions of

these sets). Moreover session E has to be given before session J , and the sessions

D and F before K.

The organizers have to determine a time-tabling. The problem an be expressed

with a simple CLP(FD) query.

| ?- domain([A,B,C,D,E,F,G,H,I,J,K℄,[1,4℄),

alldifferent([A,J℄),alldifferent([J,I℄),alldifferent([I,E℄),

alldifferent([E,C℄),alldifferent([C,F℄),alldifferent([F,G℄),

alldifferent([D,H℄),alldifferent([B,D℄),alldifferent([K,E℄),

alldifferent([B,I,H,G℄),alldifferent([A,G,E℄),

alldifferent([B,H,K℄),alldifferent([A,B,C,H℄),

alldifferent([D,F,J℄),

J.>E, K.>D, K.>F,

atmost(3,[A,B,C,D,E,F,G,H,I,J,K℄,1),

atmost(3,[A,B,C,D,E,F,G,H,I,J,K℄,2),

atmost(3,[A,B,C,D,E,F,G,H,I,J,K℄,3),

atmost(3,[A,B,C,D,E,F,G,H,I,J,K℄,4),

labeling([A,B,C,D,E,F,G,H,I,J,K℄).

A = 1, B = 2, C = 4, D = 1, E = 2, F = 2, G = 4, H = 3, I = 1, J = 3, K = 4 ?

yes

4.6. CLP(FD) AND CLP(N) 35

For pratial eÆieny reasons, the algorithms for heking the satis�ability of

CLP(FD) onstraints are generally not omplete (the satis�ability of the store of

onstraints is partially heked only), a omplete hek of satis�ability requires

enumeration. The omputed answers in CLP(FD) systems are thus semi-orret in

general 3.3.

The onstrained propagation algorithms that are used have for e�et to restrit

the domain of variables by propagating the onstraints at eah resolution step,

often by a simple reasoning on the bounds of the domain of the variables. The

unsatis�ability of the onstraints is deteted when the domain of a variable beomes

empty. The onstraints are used to prune the searh spae onurrently to the

logial resolution proess. The onstraint propagation algorithms used in CLP (FD)

originate from Arti�ial Intelligene, they hek the onsisteny of eah onstraint

separately aording to the domain of the variables (ar-onsisteny).

The onstraint propagation algorithms used in CLP(FD) an be deribed as

partiular implementations of a generi algorithm based on few priniples. For this

purpose let us denote basi onstraints by ; d::: and onstraint systems by �;�

0

; ::::

A variable x will be written with its domain x

d

. By abuse of notation, a variable

with a singleton domain x

fvg

denotes the value v 2 FD of the domain. As terms,

v and x

fvg

are not distinguished.

The set of solutions of a onstraint system � over FD is the set of substitutions

Sol(�;FD) = f� j � = fx

d

 v j x

d

2 V (�); v 2 dg; FD j= ��g

The redued domain of a variable x

d

w.r.t. a basi onstraint is the domain

DR(x

d

;) = fv 2 d j FD j= 9([v=x

d

℄)g

of values v for whih the onstraint [v=x℄ is satis�able. A onstraint system � is

ar-onsistent if

8 2 � 8x

d

2 V () DR(x

d

;) = d

De�nition 4.22 The generi onstraint propgation algorithm simpli�es a system

� of onstraints over FD with the following rules assoiated to basi onstraints:

\forward heking" (FC), \looking-ahead" (LA), \partial looking-ahead" (PLA)

and elimination (EL)

Fail: ^ � �! ?

if x

d

2 V () and DR(x

d

;) = ;.

FC: ^ � �! ��

if V () = fx

d

g, d

0

= DR(x

d

;), d

0

6= ;, and � = fx

d

 y

d

0

g where y 62 V (�).

LA: ^ � �! � ^ ��

if jV ()j > 1, x

d

2 V (), d

0

= DR(x

d

;), d

0

6= ;, d

0

6= d, � = fx

d

 y

d

0

g.

PLA: ^ � �! � ^ ��

if jV ()j > 1, x

d

2 V (), DR(x

d

;) � d

0

� d, d

0

6= ;, � = fx

d

 y

d

0

g.

EL: ^ � �! � if FD j= � for every valuation � of the variables in by values

of their domain.

Lemma 4.23 (Validity) If � �!

�

�

�

0

then Sol(�;FD) = f�� j � 2 Sol(�

0

;FD)g.

36 CHAPTER 4. EXAMPLES

For instane, disequality ontraints X.=n=Y) are propagated with the FC rule,

symboli onstraints as element(I,L,V) are propagated with the LA rule, linear

equalities are propagated with the LA rule using a simple reasoning on the bounds

of the domain: for a onstraint of the form

aX

[k;l℄

� bY

[m;n℄

+ d; a; b > 0; d � 0

we have

DR(X

[k;l℄

;) = [max(k; k

0

); l℄

DR(Y

[m;n℄

;) = [m;min(n; n

0

)℄

where k

0

= d

bm+d

a

e and n

0

= b

an�d

b

. The redued domain an thus be omputed

in onstant time in this ase.

Program 4.24 Resolution of the puzzle SEND+MORE=MONEY by a CLP(FD)

program whih requires the exploration of at most two hoie points (or less aording

to the hoie of the variable to enumerate �rst).

send(L):-send(L), labeling(L).

send([S,E,N,D,M,O,R,Y℄) :-

domain([S,E,N,D,M,O,R,Y℄,[0,9℄),

alldifferent([S,E,N,D,M,O,R,Y℄),

S.=\=0,

M.=\=0,

1000*S+100*E+10*N+D

+ 1000*M+100*O+10*R+E

.= 10000*M+1000*O+100*N+10*E+Y.

| ?- send(L).

L = [9,5,6,7,1,0,8,2℄ ? ;

no

| ?- send([S,E,N,D,M,O,R,Y℄).

M = 1, O = 0, S = 9,

Y+90*N.=10*R+D+91*E,

alldifferent([E,N,D,R,Y℄),

domain(E,[4,7℄),

domain(N,[5,8℄),

domain(D,[2,8℄),

domain(R,[2,8℄),

domain(Y,[2,8℄) ?

yes

| ?- send([S,E,N,D,M,O,R,Y℄),indomain(E).

D = 7, E = 5, M = 1, N = 6,

O = 0, R = 8, S = 9, Y = 2 ? ;

no

| ?- send([S,E,N,D,M,O,R,Y℄),indomain(R).

M = 1, O = 0, R = 8, S = 9,

4.6. CLP(FD) AND CLP(N) 37

Y+90*N.=D+91*E+80,

alldifferent([E,N,D,Y℄),

domain(E,[5,6℄),

domain(N,[6,7℄),

domain(D,[2,7℄),

domain(Y,[2,7℄) ? ;

no

Constraint propagation is a omplete method for some onstraints, i.e. it pro-

vides a deision proedure. It is the ase for instane for systems of inequalities

of the form aX � bY + where a; b; � 0 [48℄. In this ase the priniple LA is

omplete and gives a simple deision proedure.

Proposition 4.25 (Completeness of LA) Let � be a onstraint system of the

form

aX � bY + d; a; b > 0; d � 0:

Let � �!

�

�

�

0

6�!. Then � is satis�able if and only if �

0

6= ?, in whih ase

fx

[k;l℄

 k j x 2 V (�

0

)g is a solution.

Proof: If �

0

= ? then by the validity lemma � is insatis�able. If �

0

6= ? is

irredutible, then for every onstraint 2 �

0

, and every variable x

d

2 V () we have

d = DR(x

d

;). Let � = fx

[k;l℄

 k j x 2 V (�

0

)g, we an easily hek that eah

onstraint in �

0

is satis�ed by �. Indeed let aX

k;l℄

� bY

[m;n℄

+ d be a onstraint in

�

0

, by de�nition of the redued domain, the onstraint a:k � Y

[m;n℄

+d is satis�able,

thus a:k � b:m+ d that is � is a solution. Therefore FD j= �

0

�, and by the validity

lemma we get that � is satis�able. �

This lass of onstraints is important for sheduling problems, as they express

preedene onstraints, as well as mutual exlusion onstraints with a disjontion.

Program 4.26 Solving by simple CLP(FD) queries of a PERT sheduling problem

with �ve tasks A,B,C,D,E, and of a disjuntive sheduling problem where the mutual

exlusion onstraints between the tasks C and D are treated as Prolog hoie point

;.

The higher-order prediate minimize(Goal,Cost) omputes the optimal solu-

tions to the goal Goal w.r.t. the objetive funtion Cost by branh and bound.

?- X.>=Y+2.

domain(Y,[0,4294967290℄),

domain(X,[2,4294967292℄),

X.>=Y+2, t ?

yes | ?- minimize((B.>=A+5,C.>=B+2,D.>=B+3,E.>=C+5,E.>=D+5) , E).

Solution with ost 13

A = 0, B = 5, D = 8,

E = 13,

domain(C,[7,8℄),

C.>=5+2 ? ;

no | ?- minimize((B.>=A+5,C.>=B+2,D.>=B+3,E.>=C+5,E.>=D+5,

(C.>=D+5 ; D.>=C+5)) , E).

38 CHAPTER 4. EXAMPLES

Solution with ost 18

Solution with ost 17

A = 0, B = 5, C = 7, D = 12, E = 17 ? ;

no

Although simple in their priniple, onstraint propagation algorithms have in-

teresting performanes for solving large systems of onstraints. Furthermore they

an be applied to omplex global onstraints for whih the redued domains an be

omputed or approximated by powerful algorithms from Operations Researh and

graph theory. The CLP(FD) programs whih have been developed for disjuntive

sheduling problems ompete today with the best solutions from Operations Re-

searh [6℄. The reason for this suess is the apability of the language to express

(and experiment quikly) both omplex propagation shemes for global onstraints

and omplex searh strategies.

Chapter 5

Formal semantis

The �rst role of the formal semantis of a programming language is to de�ne math-

ematially what a program omputes. But of ourse the notion of omputation is

relative to the hoie of the properties of the exeution that we wish to observe.

We an be interested for instane in the trae of the exeution, or in the omputed

answers (the ordered list of answers or the multi-set or the set), or just in the

termination, et.

A set of observable properties (or observations) of the exeution de�nes an equiv-

alene relation on the programs: P � P

0

i� for every input, P and P

0

are obser-

vationally undistinguishable. A formal semantis S(P) is orret w.r.t. an equiv-

alene relation on programs �, if S(P) = S(P

0

)) P � P

0

, fully abstrat if

S(P) = S(P

0

), P � P

0

.

The formal semantis an be used for analyzing programs or verifying the sound-

ness of program transformations (for optimizing exeution for example). The dif-

ferent ways of de�ning the formal semantis provide us with di�erent tools for

analyzing programs.

In the following setion we study the operational semantis of CLP languages,

whih are based on the de�nition of the program behavior by an abstrat mahine

(the CSLD resolution rule), then we study for eah notion of observable, their related

logial, algebrai and �xed point semantis.

5.1 Operational Semantis

For CLP programs, a natural hoie of observation from the point of view of

theorem proving, is the observation of suesses, that is the existene of a CSLD

refutation for a goal. We thus de�ne a �rst equivalene relation P �

1

P

0

i� for

every goal G, G has a CSLD refutation in P i� G has one in P

0

.

From the point of view of a programming language, we are of ourse more

interested by the set of omputed answers to a goal. We an thus de�ne a �ner

equivalene relation, P �

2

P

0

i� for every goal G, a onstraint is a omputed

answer a G in P if and only if is a omputed answer to G in P

0

.

We ould de�ne the operational semantis of a program CLP, as respetively

the set of goals whih admit a CSLD refutation, and the set of pairs of goals and

onstraints, < ;G >, suh that is a omputed answer for G. The lemma of ^-

ompositionality 3.7 shows however that the omputed answers to a ompound goal

(jA

1

; :::; A

n

), are a simple ombination of answers to the atomi goals (truejA

i

),

1 � i � n. The operational behavior of a CLP program w.r.t. the set of omputed

answers an thus be entirely araterized by the set of omputed answers to atomi

goals only. We an thus de�ne formally the operational semantis of CLP programs

39

40 CHAPTER 5. FORMAL SEMANTICS

for the observation of omputed answers by the set of onstrained atoms:

O

2

(P) = fjA j truejA �!

�

j�g

Clearly we have P �

2

P

0

i� O

2

(P) = O

2

(P

0

).

For the observation of sueses we an de�ne the operational semantis of the

program simply as a subset of the S-base:

O

1

(P) = fA� 2 B

S

j truejA �!

�

j�; S j= �g

We have P �

1

P

0

i� O

1

(P) = O

1

(P

0

).

5.2 Observation of Suesses

In this setion we de�ne the �xed point semantis and the logial semantis of

CLP programs for the observation of suesses, and we show the equivalene with

the operational semantis O

1

.

De�nition 5.1 Let P be a CLP(S) program. The immediate onsequene operator

T

S

P

: 2

B

S

! 2

B

S

is de�ned as:

T

S

P

(I) = fA� 2 B

S

j there exists a renamed lause in normal form

(A jA

1

; :::; A

n

) 2 P; and a valuation � s.t.

S j= � and fA

1

�; :::; A

n

�g � Igg

Proposition 5.2 Let P be a CLP(S) program, and I be an S-interpretation. I is

a S-model of P if and only if I is a post-�xed point of T

S

P

, T

S

P

(I) � I. Furthermore

I is a supported S-model of P if and only if I is a �xed point of T

S

P

, T

S

P

(I) = I.

Proof: I is a S-model of P ,

i� for eah lause A jA

1

; :::; A

n

2 P and for eah S-valuation �, if S j= �

and fA

1

�; :::; A

n

�g � I then A� 2 I ,

i� T

S

P

(I) � I .

I is a �xed point of T

S

P

,

i� T

S

P

(I) = I ,

i� I = fA� 2 I j(A jA

1

; :::; A

n

) 2 P; S j= �; fA

1

�; :::; A

n

�g � Ig

i� I is a supported S-model of P . �

Proposition 5.3 T

S

P

is a ontinuous operator on the lattie of S-interpretations.

Proof: Let X be a hain of S-interpretations.

A� 2 T

S

P

(sup(X)),

i� (A jA

1

; :::; A

n

) 2 P , S j= � and fA

1

�; :::; A

n

�g � sup(X),

i� (A jA

1

; :::; A

n

) 2 P , S j= � and fA

1

�; :::; A

n

�g � I , for some I 2 X ,

i� A 2 T

S

P

(I) for some I 2 X ,

i� A 2 sup(T

S

P

(X)). . �

By the theorem of Knaster-Tarski, the operator T

S

P

has a least �xed point, equal

to T

S

P

" !, also equal to its least post-�xed point. We an thus de�ne the �xed

point semantis of a program CLP(S) as the least �xed point of this operator:

F

1

(P) = lfp(T

S

P

) = T

S

P

" !

Theorem 5.4 (Least S-model) [26℄ Let P a onstraint logi program on S. P

has a least S-model, denoted by M

S

P

satisfying:

M

S

P

= F

1

(P)

5.3. OBSERVATION OF COMPUTED CONSTRAINTS 41

Proof: F

1

(P) = lfp(T

S

P

) is also the least post-�xed point of T

S

P

, thus by 5.2,

lfp(T

S

P

) is the least S-model of P . �

Theorem 5.5 [26℄ F

1

(P) = O

1

(P).

Proof: This result is a orollary of the more general theorem 5.13, given in the

following setion on the observation of omputed onstraints. �

5.3 Observation of Computed Constraints

The omputed answers of a program CLP(S) an also be haraterized by a �xed

point semantis. The idea is to de�ne an immediate onsequene operator on the

lattie of onstrained atoms. There is a omplete adequay between the omputed

onstraints by CSLD resolution and the onstraints assoiated to atoms in the

least �xed point of this operator. This will be used to show a ompleteness result

w.r.t. orret answers of the logial semantis.

Let P a onstraint logi program on a struture S presented by a theory T . A

onstrained atom is a pair jA omposed of a S-satis�able onstraint and of an

atom A ontaining no funtion symbol. The set of losed instanes of a onstrained

atom is de�ned as:

[jA℄

S

= fA� j S j= �g

The set of onstrained atoms forms a omplete lattie alled the T -base and denoted

by B

T

. A onstrained interpretation I is a subset of the T -base. We note [I ℄

S

=

fA� j jA 2 I; S j= �g the S-interpretation assoiated to I .

De�nition 5.6 The immediate onsequene operator S

S

P

: 2

B

T

! 2

B

T

is de�ned

as:

S

S

P

(I) = fjA 2 B

T

j there exists a renamed lause in normal form

(A djA

1

; :::; A

n

) 2 P; and onstrained atoms f

1

jA

1

; :::;

n

jA

n

g � I,

s.t. = d ^

V

n

i=1

i

is S-satis�ableg.

Exerise 5.7 Show that S

S

P

is a ontinuous operator on the lattie of onstrained

interpretations.

De�nition 5.8 The �xed point semantis of a program CLP(S) is de�ned as the

least �xed point of S

S

P

,

F

2

(P) = lfp(S

S

P

) = S

S

P

" !:

Example 5.9 Consider the CLP(H) append program

append(A,B,C):- A=[℄, B=C.

append(A,B,C):- A=[X|L℄, C=[X|R℄, append(L,B,R).

The iteration of the non-ground immediate onsequene operator from the empty

onstrained interpretation enumerates the CSLD answer onstraints to the goal

append(A,B,C):

S

H

P

" 0 = ;

S

H

P

" 1 = fA = [℄; B = Cjappend(A;B;C)g

S

H

P

" 2 = S

H

P

" 1[

fA = [X jL℄; C = [X jR℄; L = [℄; B = Rjappend(A;B;C)g

= S

H

P

" 1 [fA = [X ℄; C = [X jB℄jappend(A;B;C)g

S

H

P

" 3 = S

H

P

" 2 [fA = [X;Y ℄; C = [X;Y jB℄jappend(A;B;C)g

S

H

P

" 4 = S

H

P

" 3 [fA = [X;Y; Z℄; C = [X;Y; ZjB℄jappend(A;B;C)g

::: = :::

42 CHAPTER 5. FORMAL SEMANTICS

Lemma 5.10 For every onstrained interpretation I, [S

S

P

(I)℄

S

= T

S

P

([I ℄

S

).

Proof: We prove the two inlusions separately.

Let jA 2 S

S

P

(I) and � be a valuation solution of . By de�nition of S

S

P

there

exists a renamed lause in normal form (A djA

1

; :::; A

n

) 2 P and onstrained

atoms f

1

jA

1

; :::;

n

jA

n

g � I , suh that = d ^

V

n

i=1

i

. Thus � is also a solution

of

1

; :::;

n

. Therefore fA

1

�; :::; A

n

�g � [I ℄

S

and by de�nition of T

S

P

, we have

A� 2 T

S

P

.

In the other diretion, let A� 2 T

S

P

([I ℄

S

). By de�nition of T

S

P

, there exists a

lause (A djA

1

; :::; A

n

) 2 P suh that A

1

�; :::; A

n

�g � [I ℄

S

and � is solution of d.

By de�nition of [I ℄

S

, there exist onstrained atoms f

1

jA

1

; :::;

n

jA

n

g � I renamed

in suh a way as � is a solution of

1

; :::;

n

. Let = d ^

V

n

i=1

i

, � is a solution of

, thus is S-satis�able and by de�nition of S

S

P

, we have jA 2 S

S

P

(I). Therefore

A� 2 [S

S

P

(I)℄

S

. �

Theorem 5.11 [26℄ For every ordinal �, T

S

P

" � = [S

S

P

" �℄

S

.

Proof: The proof is by trans�nite indution on �.

The base ase � = 0 is trivial.

For a suessor ordinal, we have

[S

S

P

" �℄ = [S

S

P

(S

S

P

" �� 1)℄

S

,

= T

S

P

([S

S

P

" �� 1℄

S

) by lemma 5.10,

= T

S

P

(T

S

P

" �� 1) by indution,

= T

S

P

" �.

For a limit ordinal, we have

[S

S

P

" �℄

S

= [

S

�<�

S

S

P

" �℄

S

=

S

�<�

[S

S

P

" �℄

S

,

=

S

�<�

T

S

P

" � by indution,

= T

S

P

" �. �

Corollary 5.12 For every integer n � 0, T

S

P

" n has a �nite presentation.

Proof: For every integer n, S

S

P

" n is �nite and [S

S

P

" n℄

S

= T

S

P

" n. �

Theorem 5.13 (Full abstration) [18℄ O

2

(P) = F

2

(P).

Proof: If is a omputed answer for the goal truejA, we show that jA 2 S

S

P

" !

by indution on the length of the derivation m.

The base ase m = 1 orresponds to the resolution of the goal by a fat of the

form A : We have jA 2 S

S

P

" 1.

For the indution step, the derivation is of the form:

(truejA) �! (djA

1

; :::; A

n

) �!

�

(j�):

By the ^-ompositionality lemma there exist omputed answers

1

; :::;

n

for the

goals A

1

; :::; A

n

, suh that = d ^

V

n

i=1

i

. By the indution hypothesis there exist

1

jA

1

; :::;

n

jA

n

2 S

S

P

" !. Thus by de�nition of S

S

P

we obtain jA 2 S

S

P

" ! + 1 =

S

S

P

" !.

In the other diretion, if jA 2 S

S

P

" n, we show by indution on n that is

a omputed answer for the goal truejA. The base ase n = 1 is equivalent to the

previous base ase.

For the indution step, by de�nition of S

S

P

, there exists a renamed lause in

normal form (A djA

1

; :::; A

n

) 2 P and f

1

jA

1

; :::;

n

jA

n

g � S

S

P

" n� 1 suh that

 = d ^

V

n

i=1

is S-satis�able.

5.3. OBSERVATION OF COMPUTED CONSTRAINTS 43

We thus have the �rst step of resolution:

(truejA) �! (djA

1

; :::; A

n

)

and by indution, for every i, 1 � i � n:

(truejA

i

) �!

�

(

i

j�):

As is satis�able then by lemma 3.7, we dedue that

(truejA) �!

�

(j�):

�

Corollary 5.14 is a omputed answer for the goal djA

1

; :::; A

n

if and only if there

exists f

1

jA

1

; :::;

n

jA

n

g � S

S

P

" ! suh that = d ^

V

n

i=1

i

.

Proof: By the ^-ompositionality lemma 3.7. �

S

S

P

" ! aptures the set of omputed answer onstraints with program P , never-

theless this set may be in�nite and it may ontain too muh information for proving

some properties of the program. Abstrat interpretation [5℄ is a method for prov-

ing properties of programs without handling irrelevant information. The idea is

to replae the real omputation domain by an abstrat omputation domain whih

retains suÆient information w.r.t. the property to prove.

Example 5.15 (Groundness analysis by abstrat interpretation) Let us on-

sider the CLP(H) append program in 5.9, and let us infer information about the

groundness of the arguments of append after a suess. More preisely let us ask

the following question: what is the groundness relation between arguments after a

suess in append?

The term struture an be abstrated by a boolean struture whih expresses the

groundness of the arguments. We thus assoiate a CLP(Bool) abstrat program

by abstrating equality onstraints over Herbrand variables by boolean onstraints

representing the groundness of the variables:

append(A,B,C):- A=true, B=C.

append(A,B,C):- A=X/\L, C=X/\R, append(L,B,R).

The least �xed point of the immediate onsequene operator, omputed in at

most 2

3

steps, expresses the groundness relation between arguments of the onrete

program.

S

Bool

P

" 0 = ;

S

Bool

P

" 1 = fA = true;B = Cjappend(A;B;C)g

S

Bool

P

" 2 = S

Bool

P

" 1[

fA = X ^ L;C = X ^ R;L = true;B = Rjappend(A;B;C)g

= S

Bool

P

" 1 [fC = A ^ Bjappend(A;B;C)g

S

Bool

P

" 3 = S

Bool

P

" 2[

fA = X ^ L;C = X ^ R;R = X ^ Bjappend(A;B;C)g

= S

Bool

P

" 2 [fC = A ^ Bjappend(A;B;C)g

= S

Bool

P

" 2 = S

Bool

P

" !

In a suess of append(A;B;C) C is ground if and only if A and B are ground.

Example 5.16 (Groundness analysis of reverse) Conrete CLP(H) program:

rev(A,B) :- A=[℄, B=[℄.

rev(A,B) :- A=[X|L℄, rev(L,K), append(K,[X℄,B).

44 CHAPTER 5. FORMAL SEMANTICS

Abstrat CLP(Bool) program:

rev(A,B) :- A=true, B=true.

rev(A,B) :- A=X/\L, rev(L,K), append(K,X,B).

S

Bool

P

" 0 = ;

S

Bool

P

" 1 = fA = true;B = truejrev(A;B)g

S

Bool

P

" 2 = S

Bool

P

" 1[fA = X;B = X jrev(A;B)g

= S

Bool

P

" 1 [fA = Bjrev(A;B)g

S

Bool

P

" 3 = S

Bool

P

" 2[fA = X ^ L;L = K;B = K ^X jrev(A;B)g

= S

Bool

P

" 2 [fA = Bjrev(A;B)g= S

Bool

P

" 2 = S

Bool

P

" !

The �xpoint semantis is also useful to link the operational semantis of CLP

programs to their logial semantis.

Theorem 5.17 (Soundness of CSLD resolution) [26℄ Let P be a CLP (S) pro-

gram. If is a omputed answer for the goal G then is a orret answer.

Proof: If G = (djA

1

; :::; A

n

), we dedue from the ^-ompositionality lemma

3.7,that there exist omputed answers

1

; :::;

n

for the goals A

1

; :::; A

n

suh that

 = d ^

V

n

i=1

i

is satis�able. For every i, 1 � i � n we have

i

jA

i

2 S

S

P

" !, by 5.13,

[

i

jA

i

℄

S

�M

S

P

, by 5.11, and 5.2,

P j=

S

8(

i

� A

i

) as M

S

P

is the least S-model of P ,

P j=

S

8(� A

i

) as S j= 8(�

i

).

Therefore we have P j=

S

8(� (d ^ A

1

^ ::: ^A

n

)). �

Theorem 5.18 (Completeness of CSLD resolution) [36℄ Let P be a CLP (S)

program. If is a orret answer for the goal G then there exists a (possibly in�nite)

set f

i

g

i�0

of omputed answers for G, suh that:

S j= 8(�

_

i�0

9Y

i

i

):

Proof: Aording to the ^-ompositionality lemma 3.7, it is suÆient to prove

the theorem for an atomi goal A. Let be a orret answer for the goal A. For

every solution � of ,

A� is true in all the S-models of P ,

i� A� is true in the least S-model of P ,

i� A� 2 T

S

P

" !, by 5.5,

i� A� 2 [S

S

P

" !℄

S

, by 5.10,

i�

�

jA 2 S

S

P

" !, for some onstraint

�

s.t. � is solution of 9Y

�

�

, where

Y

�

= V (

�

) n V (A),

i�

�

is a omputed answer for A (by 5.13).

By taking the olletion of all these onstraints

�

we obtain:

S j= 8(�

_

�

9Y

�

�

)

�

The fat that a possibly in�nite set of omputed answers has to be onsidered

to insure the ompleteness w.r.t. orret answers in the struture S, is the same as

for logi programs without onstraints, when the Herbrand's domain, H, is formed

on a �nite alphabet. For instane if S

F

= f0; sg, then with the program

P = fp(0); p(s(X)) p(X)g

5.4. OBSERVATION OF FINITE FAILURES 45

the goal p(X) has an in�nite set of suessful derivations with set of omputed

substitutions

fX s

i

(0) j i � 0g:

We have P;H j= 8Xp(X), but the identity substitution is not a omputed answer.

If we take for the notion of orret answers, not the truth in the struture S,

but the truth w.r.t. the logial onsequenes of the theory T of presentation of S,

the number of omputed answers to onsider is �nite.

Theorem 5.19 (Completeness w.r.t. the theory of the struture) [36℄ Let

P be a onstraint logi program on a struture S presented by a theory T . If

P; T j= 8(� G) ^ 9()

then there exists a �nite set f

1

; :::;

n

g of omputed answers to G, suh that:

T j= 8(� 9Y

1

1

_ ::: _ 9Y

n

n

):

Proof: If P; T j= � G then for every model S of T , for every S-solution � of ,

there exists a omputed onstraint

S;�

for G s.t. S j=

S;�

�. Let f

i

g

i�0

be the set

of these omputed answers.

Then for every model S and for every S-valuation �, S j= � _

i�1

9Y

i

i

,

therefore T j= � _

i�1

9Y

i

i

, hene by applying the ompatness theorem of �rst-

order logi, there exists a �nite part, let f

i

g

1�i�n

, suh that T j= � _

n

i=1

9Y

i

i

.

�

5.4 Observation of Finite Failures

De�nition 5.20 Let P a program CLP(S). A derivation CSLD is fair if every

atom whih appears in a goal of the derivation is seleted after a �nite number of

resolution steps.

A fair CSLD tree for a goal G is a CSLD derivation tree for G in whih all

derivations are fair.

A goal G i �nitely failed if G has a fair CSLD derivation tree to G, whih is

�nite and whih ontains no suess.

Finite failure is another observable property of logi programs that it is worth

onsidering in addition to omputed answers. Finite failure orresponds to a notion

of negative answer to a goal. However the logial semantis based on the logial

onsequenes of the program where eah rule is viewed as an impliation doesn't

allow us to infere negative logial onsequenes, just beause the Herbrand's base

onstitute a model of the program in whih all the atoms are true.

On the other hand, the delarative semantis based on the least S-model of the

program is undeidable. This is easy to see on the Herbrand's domain with a Prolog

program. Indeed, let us suppose the opposite, as Prolog is a language universal,

there thus exists a Prolog program for de�ning the following prediates:

suess(P,B) whih is true if M

P

j= 9B (i.e. if the goal B has a suessful

SLD derivation with the program P), false otherwise (i.e. M

P

j= :9B),

fail(P,B) the negation of suess(P,B).

We obtain a ontradition by onsidering the following program and goal:

46 CHAPTER 5. FORMAL SEMANTICS

loop:- loop.

ontr(P):- suess(P,P), loop.

ontr(P):- fail(P,P).

?- ontr(ontr).

If ontr(ontr) has an SLD refutation, then it is also the ase for the goal

suess(ontr,ontr) whih is true, hene fail(ontr,ontr) fails, thus by

de�nition of the prediate ontr, the goal ontr(ontr) doesn't admit an SLD

refutation: a ontradition.

If ontr(ontr) admits a suessful derivation, then the goal fail(ontr,ontr)

is true, thus the goal has an SLD refutation: a ontradition.

Hene we onlude that the programs suess and fail an not exist.

In order to give a delarative semantis to �nite failures, it is thus neessary

to review the logial interpretation of the program, and to read the rules of the

program, as de�nitions of the prediates by equivalenes, and instead of by impli-

ations.

De�nition 5.21 Let P be a CLP program on a struture S, presented by a theory

T . The Clark's ompletion of P is the set of formulas formed of T and of P

�

de�ned as the set of formulas of the form

8Xp(X)$ (9Y

1

1

^ A

1

1

^ ::: ^ A

1

n

1

) _ ::: _ (9Y

k

k

^ A

k

1

^ ::: ^ A

k

n

k

)

obtained for eah prediate symbol p 2 P by olleting the rules whih de�ne p in

P , p(X)

i

jA

i

1

; :::; A

i

n

i

with loal variables Y

i

,

or of the form

8X:p(X)

if p is not de�ned in P .

Example 5.22 Let P be the program CLP (H) de�ned by the only rule

p(s(X) p(X)

i.e. p(X) X = s(Y)jp(Y). The Clark's ompletion of P is the equality theory

CET augmented with

P

�

= f8x p(x)$ 9y x = s(y) ^ p(y):

The goal p(0) is �nitely failed, we verify easily that P

�

; CET j= :p(0). On

the other hand the goal p(X) has an in�nite fair derivation, it is thus not �nitely

failed, hene P

�

; CET 6j= :9xp(x). The ause of this situation is the existene of

non-standard models of CET (f. 4.8), on the other hand in the standard model

P

�

;H j= :9xp(x).

We shall show that the logial onsequenes of the program's ompletion does

haraterize �nite failures. Before that we show that the Clark's ompletion doesn't

hange the logial semantis of orret answers.

Proposition 5.23 Let P be a onstraint logi program on a struture S and I be

an S-interpretation on P . The following propositions are equivalent:

i) I is a supported S-model of P ,

5.4. OBSERVATION OF FINITE FAILURES 47

ii) I is a S-model of P

�

.

iii) I is a �xed point of T

S

P

Proof: I is a S-model of P

i� I is a S-model of 8X p(X) �

1

_ ::: _ �

k

for every formula 8X p(X) $

�

1

_ ::: _ �

k

in P

�

,

i� I is a post-�xed point of T

S

P

, i.e. :T

S

P

(I) � I .

I is a supported S-interpretation of P ,

i� I is a S-model of 8X p(X) ! �

1

_ ::: _ �

k

for every formula 8X p(X) $

�

1

_ ::: _ �

k

in P

�

,

i� I is a pre-�xed point of T

S

P

, i.e. I � T

S

P

(I).

We dedue that I is a supported S-model of P ,

i� I is a S-model of P

�

,

i� I is a �xed point of T

S

P

. �

Theorem 5.24 Let P be a onstraint logi program on a struture S.

i) P

�

has the same least S-model than P , M

S

P

=M

S

P

�

,

ii) P j=

S

! A i� P

�

j=

S

! A, for every onstraint and every atom A,

iii) P; T j= ! A i� P

�

; T j= ! A.

Proof: i) follows immediately from 5.5 and 5.23.

For iii) we learly have (P; T j= ! A)) (P

�

; T j= ! A). We show the

ontrapositive of the opposite, (P; T 6j= ! A)) (P

�

; T 6j= ! A).

Let I be a model of P and T , based on a struture S, let � be a valuation suh

that I j= :A� and S j= �.

We have M

S

P

j= :A�, thus M

S

P

�

j= :A�, and as T j= �, we onlude that

P

�

; T 6j= ! A.

The proof of ii) is idential, the struture S being �xed. �

Remark 5.25 As shown by the ompleteness theorems 5.18, and 5.19, P j=

S

!

A doesn't imply P; T j= ! A. The previous theorem shows that the replaement of

P by P

�

exatly preserves these di�erenes for the logial onsequenes of the form

! A.

Theorem 5.26 (Soundness of the negation by �nite failure) Let P be a logi

program with onstraint on a struture S presented by a theory T . If G is �nitely

failed then P

�

; T j= :G.

Proof: By indution on the height h of the tree in �nite failure for G = jA;�

where A is the seleted atom at the root of the tree.

In the base ase h = 1, the onstrained atom jA has no CSLD transition, we

an dedue that P

�

; T j= :(^ A) hene that P

�

; T j= :G.

For the indution step, let us suppose h > 1. Let G

1

; :::; G

n

be the sons of

the root and Y

1

; :::; Y

n

be the respetive sets of introdued variables. We have

P

�

; T j= G $ 9Y

1

G

1

_ ::: _ 9

n

G

n

. By indution hypothesis, P

�

; T j= :G

i

for

every 1 � i � n, therefore P

�

; T j= :G. �

Lemma 5.27 If (jA) �! (djA

1

; :::; A

n

) then [djA℄

S

� T

S

P

([fdjA

1

; :::; djA

n

g℄

S

).

Theorem 5.28 (Completeness of �nite failure) [26℄ Let P be a onstraint logi

program on a struture S presented by a theory T . If P

�

; T j= :G then G is �nitely

failed.

48 CHAPTER 5. FORMAL SEMANTICS

Proof: We show that if G has a fair CSLD tree whih is not �nitely failed then

P

�

; T ; 9(G) is satis�able.

If G has a suesful derivation then by the soundness theorem (5.17), P

�

; T j=

9G. Otherwise G has a fair in�nite CSLD-derivation

G =

0

jG

0

�!

1

jG1 �!

2

jG2 �! :::

For every i � 0,

i

is T -satis�able, thus by the ompatness theorem of �rst-order

logi,

!

=

S

i�0

i

is T -satis�able.

Let S be a model of T s.t. S j= 9(

!

). Let I

0

= fA� j A 2 G

i

for some i � 0

and let S j=

!

�g. As the derivation is fair, every atom A in I

0

is seleted in a step

of resolution, thus

!

jA �!

!

jA

1

; :::; A

n

with [

!

jA℄

S

[::: [[

!

jA

n

℄

S

� I

0

. Of the

lemma 5.27 we dedue that I

0

� T

S

P

(I

0

) hene I

0

� T

S

P

(I

0

).

By the theorem of Knaster-Tarski, the iterated appliation up to ordinal ! of

the operator T

S

P

from I

0

leads to a �xed point I s.t. I

0

� I , thus [

!

jG

0

℄

S

2 I . We

dedue that P

�

; 9(G) is S-satis�able, thus that P

�

; T ; 9(G) is satis�able. �

Introduing the onnetive of negation in logi programs, suppresses the restri-

tion to Horn lause formulas, and generalizes the approah to the whole �rst-order

logi. The Clark's ompletion of logi programs with negation an be inonsistent

however, e.g. p :p:. One solution to restore the onsisteny of suh programs

is to skip to Kleene's three-valued logi [17℄, [33℄. The priniple of negation by

�nite failure is orret but inomplete w.r.t. the three-valued logi semantis of

logi programs with negation. Another priniple alled of onstrutive negation is

proved omplete for CLP programs with negation in [46℄. In [13℄ we de�ne a prini-

ple of onstrutive negation by pruning, where negation is handled by a onurrent

mehanism of pruning between standard CSLD derivation trees, and whose om-

puted answers are haraterized by a simple �xed point semantis. These results

make it possible to investigate the implementation of CLP systems not limited to

Horn lausal formulas, in whih for instane the implementation of the optimization

prediates (f. 4.26) an be derived [13℄.

Bibliography

[1℄ K.R. Apt, Logi Programming, Handbook of Theoretial Computer Siene,

J. van Leeuwen ed., Elsevier, pp.493-574 (1990).

[2℄ K.R. Apt, H.A. Blair, A. Walker, Towards a theory of delarative knowledge,

in Foundations of dedutive databases and logi programming, Minker, J.

(ed.), Morgan Kaufmann, Los Altos (1987).

[3℄ K.R. Apt, M.H. van Emden, Contributions to the theory of logi program-

ming, JACM, 29(3), pp.841-862 (1982).

[4℄ M. Carlsson et al., Sistus-Prolog referene manual V3, Tehnial report,

Swedish Institute in Computer Siene, (1996).

[5℄ P. Cousot, R. Cousot, Abstrat interpretation and appliation to logi pro-

grams, Journal of Logi Programming, 13(2 et 3), pp.103-179 (1992).

[6℄ Y. Caseau, F. Laburthe, Improved CLP sheduling with tasks intervals, Pro.

International Conferene on Logi Programming, ICLP'94, Santa Margharita

Ligure, MIT Press (1994).

[7℄ V. Chvatal, Linear programming, W. H. Freeman and Co, 478pp. (1983)

[8℄ K.L. Clark, Negation as Failure, in Logi and Databases, Ed. H. Gallaire and

J. Minker, Plenum Pub. (1978).

[9℄ A. Colmerauer, Prolog II: Referene manual and theoretial model, Rapport

GIA, Univ. Marseille. (1982).

[10℄ A. Colmerauer : "Opening the Prolog-III universe", Byte, August 1987.

[11℄ B. Courelle, Fundamentals properties of in�nite trees, Theoretial Computer

Siene, 25(2), pp.95-169, (1983).

[12℄ M. Dinbas, H. Simonis and P. Van Hentenryk : "Solving large ombinatorial

problems in Logi Programming", ECRC tehnial report TR-LP-21, 1987,

and Journal of Logi Programming, 8(1-2), pp.74-94, (1990).

[13℄ F. Fages, Construtive negation by pruning, Journal of Logi Programming,

32(2), pp.85-118, August 1997.

[14℄ F. Fages, Programmation logique par ontraintes, Ellipses, Paris, 192p., 1996.

[15℄ F. Fages, P. Ruet, S. Soliman, Linear onurrent onstraint programming: op-

erational and phase semantis, Information and Computation, 165(1), Febru-

ary 2001.

[16℄ M. Falashi, G. Levi, M. Martelli, C. Palamidessi, A model-theoreti reon-

strution of the operational semantis of logi programs, Information and

Control 103, pp.86-113 (1993).

49

50 BIBLIOGRAPHY

[17℄ M. Fitting, A Kripke/Kleene semantis for logi programs, Journal of Logi

Programming, 2(4), pp.295-312 (1985)

[18℄ M. Gabbrielli, G. Levi, Modeling answer onstraints in onstraint logi pro-

grams, Pro. International Symposium on Logi Programming ICLP'91, Paris,

MIT Press pp.238-252, (1991).

[19℄ W.D. Goldfarb, The undeidability of the seond-order uni�ation problem,

Theoretial Computer Siene, Vol. 13, pp. 225-230 (1981).

[20℄ M. Gondran, M. Minoux, Graphes et algorithmes, Colletion de la Diretion

des

�

Etudes et Reherhes D'

�

Eletriit�e de Frane, 37, (1995).

[21℄ Gotha, Les probl�emes d'ordonnanement, Reherhe

Op�erationnelle/Operations Researh, 27(1), pp.77-150 (1993).

[22℄ J. Herbrand, Reherhes sur la th�eorie de la d�emonstration, Th�ese de dotorat

(1930), in Erits logiques, PUF (1968).

[23℄ H. Hong, RISC-CLP(Real): logi programming with non-linear onstraints

over the Reals, in \Constraint logi programming : seleted researh", Ed. F.

Benhamou and A. Colmerauer ed., MIT Press, 1993.

[24℄ G.P. Huet, Constrained resolution: a omplete method for higher order logi,

Ph. D. thesis, Case Western Reserve Univ (1972).

[25℄ G. Huet, R�esolution d'�equation dans les langages d'ordre 1, 2, ... omega, Th�ese

d'�etat, Univ. d'Orsay (1976).

[26℄ J. Ja�ar and J-L. Lassez, Constraint Logi Programming, Researh Report,

University of Melbourne, 1986. Also in the proeedings of POPL'87 (1987).

[27℄ J. Ja�ar and S. Mihaylov, Methodology and implementation of a CLP sys-

tem, in Pro. 4th Internation Conferene on Logi Programming, pp.196-218,

Cambridge, MIT Press, (1987).

[28℄ J. Ja�ar and M. Maher, Constraint Logi Programming: a survey, Journal of

Logi Programming, 19-20, (1994).

[29℄ J.P. Jouannaud, C. Kirhner, Solving equations in abstrat algebras: a rule-

based survey of uni�ation, in Computational logi, J.L. Lassez and G. Plotkin

ed., MIT Press (1991).

[30℄ D. Kapur, P. Narendran, Complexity of uni�ation problems with assoiative-

ommutative operators, Journal of Automated Reasoning, 9, pp. 261-288

(1992).

[31℄ R. Kowalski, Prediate Logi as Programming Language, Information Pro-

essing 74, pp.569-574, (1974).

[32℄ R. Kowalski, Logi for Problem Solving, North Holland (1979).

[33℄ K. Kunen, Negation in logi programming, Journal of Logi Programming,

4(3), pp.289-308, (1987).

[34℄ J.L. Lauriere, A language and a program for stating and solving ombinatorial

problems, Arti�ial Intelligene 10, pp.29-127, (1978).

[35℄ J.W. Lloyd, Foundations of Logi Programming, Springer Verlag (1987).

BIBLIOGRAPHY 51

[36℄ M. Maher, Logi semantis for a lass of omitted hoie languages, Pro. 4th

ICLP, MIT Press, pp.858-876 (1987).

[37℄ M. Maher, Equivalenes of logi programs, in Foundations of Dedutive

Databases and Logi Programming, Morgan Kaufman, pp.627-658, (1988).

[38℄ M. Maher, Complete axiomatizations of the algebras of �nite, rational and

in�nite trees, Pro 3rd Symp. on Logi in Computer Siene, Edinburgh,

pp.348-357, (1988).

[39℄ D. Miller, A logi programming language with �-abstration, funtion vari-

ables and simple uni�ation, Journal of Logi and Computation, 1(4), pp.497-

536 (1991).

[40℄ R. Mohr and T.C. Henderson, \Ar and path onsisteny revisited", Arti�ial

Intelligene, 28:225-233, 1986.

[41℄ W. Older, A. Vellino, Constraint arithmeti on real intervals, in \Constraint

logi programming : seleted researh", Ed. F. Benhamou and A. Colmerauer

ed., MIT Press, 1993.

[42℄ J.A. Robinson, A mahine-oriented logi based on the resolution priniple,

JACM 12, 1, pp.23-41 (1965).

[43℄ V.J. Saraswat : "Conurrent Constraint Programming Languages", MIT

Press series in Logi Programming, (1993).

[44℄ J.R. Shoen�eld, Mathematial logi, Addison-Wesley Pub., 1967.

[45℄ L. Sterling, E. Shapiro, The Art of Prolog, MIT Press (1986).

[46℄ P. Stukey, Construtive negation for onstraint logi programming, Pro.

LICS'91 ACM, (1991).

[47℄ M.H. van Emden, R.H. Kowalski, The semantis of prediate logique as a

programming language, JACM, 23(4), pp.733-742 (1976).

[48℄ P. Van Hentenryk : "Constraint Satisfation in Logi Programming", MIT

Press 1989.

[49℄ P. Van Hentenryk and Y. Deville : "EÆient Ar Consisteny Algorithm for

a lass of CSP Problems", pro. IJCAI 91, Sidney, 1991.

[50℄ P. Van Hentenryk, V. Saraswat, Y. Deville, Design, implementation and

evaluation of the onstraint language CC(FD), in Constraint Programming:

basis and trends, A. Podelski Ed., Châtillon-sur-Seine, Springer-Verlag LNCS

910, pp.68-90, (1995).

