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Chapter 1

Introdu
tion

There exist several fundamental 
onne
tions between logi
 and 
omputation, that

allow to design programming languages for whi
h the problems of program spe
i�-


ation and program validation have a pre
ise meaning inside the logi
al formalism.

Logi
 programming in a broad sense relies on the following identi�
ations :

Programs = Theories

Computation = Proof sear
h

The basi
 idea is to identify a program to a theory, and the program's exe
ution

to proof sear
h in that theory. In this paradigm, programming is �rst of all a

modeling task.

In the pioneering work of A. Colmerauer and R. Kowalski in the 70's, one 
on-

sidered only logi
al 
lauses interpreted pro
edurally by a prin
iple of automated

dedu
tion [31℄ [42℄. The programming language Prolog was an in
arnation of these

ideas. D. Warren showed that Prolog 
ould be 
ompiled very eÆ
iently on standard

ma
hines, but Prolog su�ered from two main drawba
ks: on the one hand the la
k

of data stru
tures other than the logi
al terms, hen
e the unmanageable ne
essity

of axiomatizing \the domain of dis
ourse" in the logi
, on the other hand the la
k of


ontrol stru
tures, hen
e the loss of de
larativity for obtaining exe
utable programs.

The emergen
e of 
onstraint logi
 programming (CLP) as de�ned by J. Ja�ar

and J.L. Lassez in the mid 80's, 
ontributed to 
orre
t these defe
ts in a fundamental

way [26℄. The dis
overy was that both the theory and the te
hnology of logi


programming 
ould be generalized to arbitrary mathemati
al stru
tures given with

a de
idable 
onstraint language, representing \the domain of dis
ourse". Beside

the Prolog 
omputation stru
ture of �rst-order terms with equality 
onstraints (the

Herbrand's domain), one 
an thus 
onsider for instan
e, disequality 
onstraints

over �nite or in�nite terms [9℄, real arithmeti
 with linear 
onstraints [26℄, integer

arithmeti
, �nite domains [48℄, theories of fun
tionality, et
. One then distinguihes

in the theory, the axiomatization of the stru
tures of interest, from the modeling of

the problem to be solved. Proof sear
h then 
ombines hybrid te
hniques for logi
al

resolution, and for 
onstraint solving in spe
i�
 stru
tures. Constraints are solved


on
urrently to the logi
al dedu
tion pro
ess, by numeri
al or symboli
 algorithmi


means, exe
uted with 
oroutines.

CLP is a 
on
ept of programming in whi
h the problem at hand is modeled by

a set of mathemati
al variables and by a set of relations de�ned by:

i) primitive 
onstraints, e.g. U = R � I ,

ii) predi
ate symbols de�ned by expressions of the language, e.g.

8x8y path(x; y) () edge(x; y) _ 9z(edge(x; z) ^ path(z; y)):

5



6 CHAPTER 1. INTRODUCTION

The resulting programming style is the one of relational model-based 
omputing.

In that paradigm a model is identi�ed to a relation de�ned on the interfa
e variables

R(x; y). The 
omposition of relational models is the logi
al 
onjun
tion of the

relations,

R

1

jR2(x; y; z) = R

1

(x; y) ^ R

2

(x; z):

The set of solutions of a 
omposite model is the interse
tion of the solutions of the


omposing models. This way of stru
turing data and programs into 
omposable en-

tities is somewhat similar to the one of obje
t-oriented languages. A fundamental

di�eren
e is that 
ontrarily to the paradigm of message passing, whi
h is dire
tional,

relational CLP programs are reversible: the relation on the interfa
e variables are

de�ned whatever are the unknowns, the 
omputation involves partial information

stru
tures, the distin
tion between input and output o

urs at exe
ution-time, a
-


ording to the nature of the arguments, that is a

ording to the use of the model.

The 
hoi
e of the language for de�ning new relations is 
ru
ial for the mathe-

mati
al analysis of the software, as well as for its eÆ
ient 
ompilation into ma
hine


ode. The 
on
ept of 
onstraint logi
 programming doesn't ex
lude that this lan-

guage 
omprises programming 
on
epts 
oming from 
on
urrent, obje
t-oriented or

imperative programming. A natural 
hoi
e however from the mathemati
al point

of view is to take the predi
ate 
al
ulus as the kernel language for de�ning new

relations.

By limiting ourselves to Horn 
lausal theories, one de�nes in this way a 
lass,

denoted by CLP(S), of 
onstraint logi
 programming languages parametrized by

the interpretation stru
ture S [26℄. The 
lass of 
on
urrent 
onstraint languages

CC(S) [43℄ introdu
es in addition some primitives for 
on
urren
y (
ommuni
ation,

syn
hronisation) based on 
onstraint entailment. CC programs introdu
e a form

of dynami
 
ontrol with data-driven 
omputation, whi
h 
an be used to program


onstraint solvers by a set of 
on
urrent agents, or to program 
omplex resolution

strategies, this opens the way to a new �eld of appli
ations ne
essiting rea
tive

systems instead of transformational systems. CC programs gan be given a sound

and 
omplete logi
al semanti
s in the logi
 programming paradigm, yet with a shift

to linear logi
 in order to model a

urately 
on
urren
y in CC [15℄.

The su

ess of 
ommer
ial produ
ts for 
onstraint programming, as for instan
e

CHIP (Cosyte
), Prolog III, IV (PrologIA), ILOG-Solver (ILOG), has shown the

ability of this approa
h of 
omputer programming to solve de
laratively industrial

problems of 
ombinatorial optimization and 
omplex system modeling. However

these su

esses show also that the 
urrent state of the art 
annot be improved

without some fundamental extensions of :

i) the languages (e.g. negation, quanti�ers, optimization predi
ates, higher-order,

stati
 typing, obje
t-orientation...),

ii) the 
onstraint solvers (e.g. global 
onstraints, expli
it 
ontrol, quanti�ed 
on-

straints, 
ombination of solvers, fun
tional domains,...),

iii) the exe
ution models (e.g. 
on
urren
y, rea
tivity, parallelism, distribution,...).

In these notes we present the 
lass of languages CLP, by studying its mathemat-

i
al properties, its prin
iples of implementation, and some examples of appli
ations.



Chapter 2

Logi
al Theories

In this 
hapter we re
all the basi
 results of �rst-order logi
 whi
h are relevant

to 
onstraint programming. In order to be self-
ontained we present the �rst-order

languages, the mathemati
al stru
tures whi
h give their semanti
s, and their related

proof systems. For a more 
omplete treatment of these subje
ts, see e.g. [44℄.

2.1 First-Order Languages

De�nition 2.1 Let S

F

be a 
ountable set of fun
tion symbols, denoted by f; g; :::,

given with their arity � (i.e. their number of arguments). Constants are fun
tion

symbols with arity 0. Let V be an in�nite 
ountable set of variables (with arity 0),

denoted by x; y:::. The set T of �rst-order terms, denoted by M;N; :::, is de�ned

indu
tively as the least set satisfying :

i) V � T

ii) if f 2 S

F

; �(f) = n; M

1

; :::;M

n

2 T then f(M

1

; :::;M

n

) 2 T

The set of variables o

urring in a term M is denoted by V (M). A term M


ontaining a variable x will be sometimes written M [x℄.

The size of a term, denoted by jM j, is the number of o

urren
es of fun
tions,


onstants and variables symbols in M :

i) jxj = 1 if x 2 V ,

ii) if jf(M

1

; :::;M

n

)j = jM

1

j+ :::+ jM

n

j.

Remark 2.2 Zero-order languages 
ontain no variables. Se
ond-order languages


ontain se
ond-order terms representing fun
tions, and allow the presen
e of vari-

ables in pla
e of fun
tions inside �rst-order terms (se
ond-order terms 
an be substi-

tuted for se
ond-order variables). Third-order languages 
ontain third-order terms

representing fun
tionals and allow the presen
e of variables in pla
e of fun
tion-

als inside se
ond-order terms. Omega-order languages 
ontain terms of all �nite

orders.

De�nition 2.3 Let S

P

be a set of predi
ate symbols, denoted by p; q; :::, given with

their arity �. The set P

a

of (�rst-order) atomi
 propositions is the set

P

a

= fp(M

1

; :::;M

n

)jp 2 S

P

; �(p) = n; M

1

; :::;M

n

2 Tg:

De�nition 2.4 Let S

L

= f:;_; 9g be the set of logi
al symbols not, or, there exists

(existen
ial quanti�er). The set P of (�rst-order) logi
al formula denoted by �;  ; :::

is de�ned indu
tively as the least set satisfying :

7



8 CHAPTER 2. LOGICAL THEORIES

i) P

a

� P

ii) � 2 P ) :� 2 P

iii) �;  2 P ) � _  2 P

iv) x 2 V; � 2 P ) 9x� 2 P

The other logi
al symbols ftrue;�;^;�g are de�ned as abbreviations :

� �  = :� _  

true = � � �

� ^  = :(� � : )

� �  = (� �  ) ^ ( � �)

the universal quanti�er, 8, is de�ned as an abbreviation for :

8x� = :9x:�

Quanti�ers are logi
al symbols that de�ne the (universal or existential) nature

of a variable in a proposition. The variables of a proposition � whi
h are not bound

by a quanti�er are said to be free in �. In a term all variable are free. The set of

free variables of a formula �, denoted by V (�), is de�ned indu
tively by:

i) V (x) = fxg

ii) V (f(M

1

; :::;M

n

)) =

S

n

i=1

V (M

i

)

iii) V (p(M

1

; :::;M

n

)) =

S

n

i=1

V (M

i

)

iv) V (:�) = V (�)

v) V (� _  ) = V (�) [ V ( )

vi) V (8x�) = V (9x�) = V (�)� fxg

A formula � is 
losed if V (�) = ;.

We write 8(�) (resp. 9(�)) for the 
losed formula 8x

1

:::8x

n

� (resp. 9x

1

:::9x

n

�)

where fx

1

; :::; x

n

g = V (�).

De�nition 2.5 A 
lause is a disjun
tion of universally quanti�ed literals,

8(L

1

_ ::: _ L

n

);

where ea
h literal L

i

is either an atomi
 proposition, A, (
alled a positive literal),

or the negation of an atomi
 proposition, :A (
alled a negative literal).

A Horn 
lause is a 
lause having at most one positive literal.

2.2 Mathemati
al Stru
tures

A pre-interpretation of a �rst-order language is a mathemati
al stru
ture 
omposed

of an interpretation domain D, given with a semanti
 fun
tion [℄, that asso
iates to

ea
h 
onstant 
 2 S

F

some element [
℄ 2 D, and to ea
h fun
tion symbol f 2 S

F

with arity n � 1, some operator [f ℄ : D

n

! D.

A valuation of the variables is a fun
tion � : V ! D. The valuation of the

terms, denoted by [ ℄ : T ! D, indu
ed by a valuation � of the variables and a

pre-interpretation < D; [℄ > is de�ned (by stru
tural indu
tion) by :
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i) [x℄

�

= �(x) if x 2 V ,

ii) [
℄

�

= [
℄ if 
 2 S

F

with arity 0, and [
℄ 2 D is the element assigned to 
 by

the pre-interpretation,

iii) [f(M

1

; :::;M

n

)℄

�

= [f ℄([M

1

℄

�

; :::; [M

n

℄

�

) if f 2 S

F

with n � 1, [f ℄ is the

operator over D assigned to f by the pre-interpretation, and [M

i

℄

�

2 D is the

element of D assigned re
ursively to the subterm M

i

.

An interpretation I =< D; [℄ > asso
iates in addition to ea
h predi
ate symbol

p 2 S

P

with arity n, a relation [p℄ : D

n

! f0; 1g.

The truth value of an atomi
 proposition p(M

1

; :::;M

n

) in an interpretation I =<

D; [℄ > and a valuation � is the boolean value [p℄([M

1

℄

�

; :::; [M

n

℄

�

).

The truth value of a logi
al formula � in an interpretation I and a valuation � is

determined a

ording to the truth value of the propositions by applying the truth

tables of the logi
al 
onne
tors, and the following rules for the quanti�ers :

8x� is true in I and �, if for every substitution of x by an arbitrary element of

the domain d 2 D, �[d=x℄ is true in I and �.

9x� is true in I if there exists an element d 2 D su
h that �[d=x℄ is true in I

and �.

Note that the truth value of a 
losed formula is determined solely by the inter-

pretation and doesn't depend on the valuation.

De�nition 2.6 An interpretation I is a model of a 
losed formula � if � is true

in I, whi
h is denoted by I j= �.

A 
losed formula �

0

is a logi
al 
onsequen
e of � 
losed, whi
h is denoted by

� j= �

0

, if every model of � is a model of �

0

.

De�nition 2.7 A (non-
losed) formula � is satis�able in an interpretation I if

I j= 9(�), valid in I if I j= 8(I).

A formula � is satis�able if 9(�) has a model, valid if every interpretation is a

model of 8(�), whi
h is denoted by j= �.

Proposition 2.8 Let � and �

0

be two 
losed �rst-order formulas. � j= �

0

if and

only if j= � � �

0

.

Proof: Let us suppose � j= �

0

. For every interpretation I , if I j= � then I j= �

0

thus I j= � � �

0

, otherwise I 6j= � and we have again I j= � � �

0

, therefore

j= � � �

0

.

Conversely if I j= � then as j= � � �

0

, we have I j= �

0

, thus � j= �

0

. �

De�nition 2.9 An interpretation I is a model of a set of 
losed formulas S os I

is a model of ea
h formula in S.

We say that a set of 
losed formulas S is satis�able if S has a model, valid if

every interpretation is a model of S.

The logi
al formulas of the predi
ate 
al
ulus are interpreted in arbitrary stru
-

tures formed with a domain, operators and relations. A formula is valid if it is true

in all the interpretations on all 
on
eivable mathemati
al stru
tures. The interest

in 
lausal forms is that it is possible for these formulas to restri
t the sear
h of a

model to only one \synta
ti
" stru
ture: the Herbrand's universe.

De�nition 2.10 The Herbrand's universe, denoted by H, of a �rst-order language

is the set of 
losed terms formed on the fun
tion and 
onstant symbols T (S

F

).

TheHerbrand's pre-interpretation is the algebra of 
losed terms, whose domain is

the Herbrand's universe, the symbols of 
onstant are interpreted by these 
onstants

themselves and the symbols of fun
tion are interpreted as term 
onstru
tors:
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i) [
℄ = 


ii) [f(M

1

; :::;M

n

)℄ = f([M

1

℄; :::; [M

n

℄)

The Herbrand's base B

H

is the set of 
losed atomi
 propositions formed on S

F

and S

P

. A Herbrand's interpretation asso
iates a truth value to every element of

the Herbrand's base. We thus identify a Herbrand's interpretation to a subset of

B

H

, the subset of true atomi
 propositions.

Proposition 2.11 Let S be a set of 
lauses. S is insatis�able if and only if S has

no Herbrand's model.

Proof: If S admits a Herbrand's model then S is satis�able, 
onversely let I be

an interpretation, and let I

0

be the Herbrand's interpretation de�ned by

I

0

= fP (M

1

; :::;M

n

) 2 B

H

j I j= P (M

1

; :::;M

n

)g:

If I is a model of S, then for every valuation of the variables and for every


lause C 2 S, there exists a positive literal A (resp. negative literal :A) in C su
h

that I j= A (resp. I 6j= A). In parti
ular for every valuation of the variables by

elements of the domain asso
iated to terms of the Herbrand's universe, thus for

every Herbrand's valuation, there exists a literal A (resp. :A) su
h that I

0

j= A

(resp. I

0

6j= A). Therefore I

0

is a Herbrand's model of S. �

The study of the satis�ability of a set of 
lauses 
an thus be restri
ted to the

only \synta
ti
" interpretations that are Herbrand's interpretations. It is worth

noting that this property is 
ase for more general logi
al formulas, in parti
ular

for the existentially quanti�ed formulas. For instan
e p(a) ^ 9x:p(x) is satis�able

but has no Herbrand's model if a is the only 
onstant symbol. It doesn't suÆ
e

either to 
onsider an in�nite set of 
onstants for extending the property to formulas


ontaining arbitrary alternate sequen
es of quanti�ers.

It is however possible to asso
iate to every formula � a 
lausal formula �

s

, 
alled

the Skolem normal form of �, whi
h is satis�able if and only if � is satis�able. The

�rst transformation 
onsists in putting the formula in prenex 
onjun
tive normal

form, that is under the form

�x

1

:::�x

k

((L

1

1

_ ::: _ L

1

k

1

) ^ ::: ^ (L

n

1

_ ::: _ L

n

k

n

))

where the L

i

's are literals and ea
h � is a universal or existential quanti�er. This

transformation needs to rename the variables whi
h are quanti�ed several times.

The formula in prenex form is equivalent to the initial formula.

The se
ond transformation, 
alled Skolemisation, allows to eliminate the exis-

tential quanti�ers. It 
onsists in repla
ing an existentially quanti�ed variable x by

terms of the form f(x

1

; :::; x

n

) where f is a new fun
tion symbol and the x

i

's are the

universally quanti�ed variables whi
h pre
ede the quanti�
ation of x. The formula

obtained in this way is 
alled the Skolem's normal form.

Example 2.12 For instan
e the Skolem's normal form of 8x9y8z p(x; y; z) is the

formula 8x8z p(x; f(x); z) where f is a new fun
tion symbol.

The Skolemisation preserves the satis�ability but not ne
essarily the validity (be-


ause the Skolemisation doesn't 
ommute with the negation). For instan
e , the for-

mula 8x9y p(x) � p(y) is valid, but its Skolem's normal form, 8x p(x) � p(f(x))

is of 
ourse satis�able but not valid.

Proposition 2.13 (Skolem's proposition) Any formula � is satis�able if and

only if its Skolem's normal form �

s

is satis�able.
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Proof: If M j= � then one 
an 
hoose an interpretation of the Skolem's fun
tion

symbols in �

s

a

ording to the M -valuation of the existential variables of � su
h

that M j= �

s

. Conversely, if M j= �

s

, the interpretation of the Skolem's fun
tions

in �

s

gives a valuation of the existential variables in � whi
h shows that M j= �. �

2.3 Proofs

In this se
tion we study the relation of dedu
tion, denoted by `, whi
h allows to

build proofs of logi
al formulas. The fondamental problem of mathemati
al logi
 is

the study of the two relations ` and j=. These relations play 
omplementary roles.

In general the de�nition of the semanti
s j= doesn't provide a de
ision pro
edure. It

is the 
ase in propositional logi
 with the method of truth tables, but this method

doesn't generalize. The study of the relation of dedu
tion then respond to this

aim. Conversely, the study of the semanti
s of a theory de�ned by the relation of

dedu
tion, allows to prove that the theory is not 
ontradi
tory, simply by exhibiting

a model.

A logi
al theory T is a formal system 
onstituted by:

i) a �rst-order language formed on a alphabet V; S

F

; S

P

; S

L

,

ii) logi
al axioms:

:A _A (ex
luded middle),

A[x B℄ � 9x A (axiom of substitution),

iii) a set of 
losed formulas 
alled the non-logi
al axioms, and denoted by T (as

the logi
al 
omponents are invariant),

iv) logi
al inferen
e rules:

A

B _ A

(Weakening),

A _ A

A

(Contra
tion),

A _ (B _ C)

(A _B) _ C

(Asso
iativity),

A _ B :A _ C

B _ C

(Cut),

A � B x 62 V (B)

9xA � B

(Existential introdu
tion).

We note T ` � the derivation of the formula � in this formal system, i.e. by the

appli
ation of the inferen
e rules and of the logi
al and non logi
al axioms in T .

A theory T is 
ontradi
tory (or in
onsistent) if T ` f , 
onsistent otherwise.

Theorem 2.14 (Dedu
tion theorem) Let T be a �rst-order logi
al theory. For

all formulas �;  2 P we have T ` � �  i� T [ f�g j=  .

Proof: In the dire
tion of the impli
ation ()) the result is immediat by the 
ut

rule. Conversely the proof is by indu
tion on the derivation of the formula  . �

Theorem 2.15 (Validity) Let T be a �rst-order logi
al theory, and � a formula.

If T ` � then T j= �.
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Proof: By indu
tion on the length of the dedu
tion of �. �

Corollary 2.16 If T has a model then T is 
onsistent

Proof: We show the 
ontrapositive: if T is 
ontradi
tory, then T ` f , thus

T j= f , i.e. T has no model. �

Theorem 2.17 (G�odel Completeness Theorem (�rst form)) A theory is 
on-

sistent i� it has a model.

Proof: The idea is to 
onstru
t a Herbrand's model of the theory supposed to

be 
onsistent, by interpreting by true the 
losed atoms whi
h are theorems of T ,

and by false the 
losed atoms whose negation is a theorem of T . If the theory is

not 
omplete, this doesn't provide a model, we thus 
omplete the theory by adding

axioms in su
h a way as to obtain a 
omplete 
onsistent theory. For this it is

ne
essary also to extend the alphabet in order to obtain a saturated theory, that

is a theory su
h that if T ` 9xA then there exists a term M of the Herbrand's

universe su
h that T ` A[M=x℄. See for instan
e [44℄. �

Theorem 2.18 (G�odel's Completeness Theorem (se
ond form)) Let T be a

logi
al theory �rst-order, and � be a formula,

T j= � , T ` �:

Proof: If T j= � then T [ f:�g has no model, thus by the 
ompleteness theorem

in �rst form, T [ f:�g ` f , hen
e by the dedu
tion theorem T ` ::�, and thus by

the 
ut rule with the axiom of ex
luded middle (plus weakening and 
ontra
tion)

we get T ` �. The 
onverse is the theorem of validity. �

G�odel's 
ompleteness theorem expresses the adequation between the semanti


notion of validity of a formula in all the models of the theory, and the synta
ti


notion of dedu
tion. The following se
tion shows the use of this theorem to de
ide

the validity of a formula in a theory.

2.4 Completeness of theories and de
idability of

stru
tures

De�nition 2.19 A theory T is axiomati
 if the set of non logi
al axioms is re
ur-

sive (i.e. membership to this set 
an be de
ided by an algorithm).

For instan
e the theories 
ontaining a �nite number of non logi
al axioms are

trivially axiomati
. G�odel's 
ompleteness theorem shows that in an axiomati
 the-

ory, the truth in all the models of the theory is re
ursively enumerable. The validity

of a formula 
an indeed be veri�ed in �nite time by sear
hing for all possible proofs

(still the satis�able not valid formulas are not re
ursively enumerables). This is

what shall be done in logi
 programming with a very simple proof system whi
h is

well suited to a ma
hine implementation, and whi
h is 
omplete for the Horn 
lause

formulas.

De�nition 2.20 A theory is 
omplete if for every 
losed formula �, either T ` �

or T ` :�.

A stru
ture S is axiomatizable if there exists a 
omplete axiomati
 theory T

su
h that S is a model of T .
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In a 
omplete axiomati
 theory, we 
an de
ide whether an arbitrary formula is

satis�able or not. This will be the expe
ted situation for the language of 
onstraints.

The question is then to know whether there exist 
omplete axiomati
 theories for the

stru
tures of interest, and how these 
omplete theories 
an be turned into eÆ
ient

algorithms.

The 
ompa
tness theorem of the �rst-order logi
 provides a powerful tool to

study stru
tures and theories.

Theorem 2.21 (Compa
tness theorem) Let T be a logi
al �rst-order theory,

and � be a formula. T j= � i� T

0

j= � for some �nite part T

0

of T .

Proof: By the 
ompleteness theorem, T j= � i� T ` �. As the proofs are �nite,

they use only a �nite part of the non logi
al axioms of T . Therefore T j= � i�

T

0

j= � for some �nite part T

0

of T . �

Corollary 2.22 A theory T has a model i� every �nite part of T has a model.

Proof: T has no model i� T j= f , i� for some �nite part T

0

of T T

0

j= f , i�

some �nite part of T has no model. �

For instan
e we 
an use this theorem to show that there doesn't exist a logi
al

(�rst-order) theory of �nite �elds. Indeed let us suppose the opposite, let T be su
h

a theory whose only models are �nite �elds. Let us 
onsider the axioms A

n

whi
h

state that there exist at least n distin
t elements, for instan
e A

3

is the formula

9x9y9z x 6= y ^ y 6= z ^ z 6= x. Let T

0

be the theory formed of T and of all the

A

n

's. Then by hypothesis, T

0

has no model, thus there exists a �nite part T

00

of T

0

whi
h has no model. However let n

0

be an index greater than all the n's su
h that

A

n

2 T

00

, and let C be a �nite �eld of more than n

0

elements, then C is a model of

T

00

, a 
ontradi
tion.

The 
ompa
tness theorem 
an also be used to 
onstru
t models. This will be

done in the last 
hapter to obtain some 
ompleteness results w.r.t. the prin
ipe of

resolution for 
onstraint logi
 programmming (
f. 5.19, 5.28).

Another 
lassi
 use of the 
ompa
tness theorem is to generalize to in�nite graphs

the results obtained for the �nite graphs.

Solved Exer
ise 2.23 In 1976 Appel and Haken proved the famous four-
olors


onje
ture: any map 
an be 
olored with four 
olors (i.e. the verti
es of any �nite

planar graph 
an be 
olored with four 
olors in su
h a way as two adja
ent ver-

ti
es have di�erent 
olors). Extend the result to in�nite planar graphs by using the


ompa
tness theorem of �rst-order logi
.

Solution: Let G be an in�nite planar graph. We asso
iate to ea
h vertex of G a

symbol of 
onstant, and we 
onsider the �rst-order language formed on this in�nite

set of 
onstants plus four unary predi
ates, 


1

; 


2

; 


3

; 


4

. Let T be the (possibly

in�nite) set of logi
al �rst-order formulas:

i) 8x

W

4

i=1




i

(x),

ii) 8x

V

1�i<j�4

:(


i

(x) ^ 


j

(x)),

iii)

V

4

i=1

:(


i

(a) ^ 


i

(b)) for every pair of 
onstants fa; bg whi
h denote adja
ent

verti
es in G.

Clearly any 
oloring of G with 4 
olors gives a model of T , and 
onversely if T has

a model then G 
an be 
olored with four 
olors as it is suÆ
ient to 
hoose for ea
h

vertex a the 
olor 


i

(a) whi
h is true in that model.
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Let T

0

be any �nite part of T , and let G

0

be the (�nite) subgraph of G 
ontaining

the verti
es whi
h appear in T

0

. As G

0

is �nite and planar it 
an be 
olored with 4


olors, thus T

0

has a model.

Now as every �nite part of T is satis�able, we dedu
e from the 
ompa
tness

theorem that T is satis�able. Therefore every in�nite planar graph 
an be 
olored

with four 
olors.

The stru
ture of natural numbers, N with 0, s (su

essor), + and =, that is the

linear fragment of integer arithmeti
, 
an be shown to be de
idable. Presburger's

arithmeti
 (N; 0; s;+;=) 
an be presented with a 
omplete axiomati
 theory, formed

with the standard equality axioms:

E

1

: 8x x = x,

E

2

: 8x8y x = y ! s(x) = s(y),

E

3

: 8x8y8z x = y ^ z = v ! (x = z ! y = v),

plus the stronger equality axioms:

E

4

;�

1

: 8x8y s(x) = s(y)! x = y,

E

5

;�

2

: 8x 0 6= s(x),

the de�nition of +:

�

3

: 8x x+ 0 = x,

�

4

: 8x x+ s(y) = s(x+ y).

and the indu
tion prin
iple:

�

5

: �[x 0℄ ^ (8x �! �[x s(x)℄)! 8x� for every formula �.

Note that the following strong equality axioms

E

6

: 8x x 6= s(x),

E

7

: 8x x = 0 _ 9y x = s(y),

are provable by indu
tion. The indu
tion prin
iple 
annot be repla
ed by E

6

and E

7

but there does exist presentation of Presburger's arithmeti
 without the indu
tion

s
hema.

Peano's arithmeti
 
ontains moreover two axioms for �:

�

6

: 8x x� 0 = 0,

�

7

: 8x8y x� s(y) = x� y + x,

This is not suÆ
ient however for obtaining a 
omplete theory, and su
h a 
omplete


annot exist for the integers with multipli
ation:

Theorem 2.24 (G�odel's in
ompleteness theorem ) Any 
onsistent axiomati


extension of Peano's arithmeti
 is in
omplete.

Proof: See for instan
e [44℄. The keystone of this very beautiful proof is the

liar paradox of Epimenides (600 b
) whi
h says: \I lie", 
ombined with Cantor's

diagonal argument (
f . se
tion 4.17). The idea of the proof is to 
onstru
t in

the language of Peano's arithmeti
 � a formula � whi
h is true in the stru
ture

of natural numbers N if and only if � is not provable in �. As N is a model of

�, � is ne
essarily true in N and not provable in �, hen
e � is in
omplete. The
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onstru
tion of su
h a formula � uses an arithmetization of the syntax in whi
h

every formula is asso
iated with an integer, 
alled its G�odel number. One then


onstru
ts a unary relation on N indi
ating whether its argument is the G�odel

number of a provable formula in �, and one exhibits a formula expressing its own

negation (a similar 
onstru
tion of a Prolog program is given in se
tion 5.4, for

showing the inde
idability of the least Herbrand's model of a logi
 program). This

shows that Peano's arithmeti
 is in
omplete. The 
onstru
tion doesn't depend so

mu
h however on the axioms of Peano than on the expressive power of the language

of arithmeti
, and the proof holds in fa
t for any 
onsistent extension of Peano's

arithmeti
. �

Corollary 2.25 The stru
ture (N ; 0; 1;+; �) is not axiomatizable.

G�odel's in
ompleteness theorem refutes the existen
e of (even in�nite) 
omplete

axiomati
 theories for stru
tures of interest su
h as the natural numbers. Fixing the

domain of dis
ourse in 
onstraint programming is thus not harmless, as this time,

G�odel's in
ompleteness theorem 
an apply. It will be possible for some stru
tures

only, or for non axiomatizable stru
tures by restri
ting the language of 
onstraints

to a de
idable fragment. Of 
ourse the theoreti
al de
idability doesn't suÆ
e ei-

ther, we will be espe
ially interested by de
idable fragments with a low algorithmi



omplexity, for whi
h moreover in
remental algorithms 
an be designed.
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Chapter 3

Constraint logi
 programs

The basi
 idea of 
onstraint logi
 programmming, introdu
ed by J. Ja�ar and J.L.

Lassez, is to �x a stru
ture of interpretation S representing the \domain of dis-


ourse", and to distinguish in a logi
 program the language of 
onstraints on S

supposed to be de
idable, from the language of predi
ates de�ned by logi
al formu-

las. The logi
al formulas allowed for the de�nition of predi
ates are restri
ted to be

Horn 
lauses of the form:

A 


1

; :::; 


m

jA

1

; :::A

n

where the 


i

are 
onstraints and the A

j

are atoms. These 
lauses have both a

de
larative logi
al meaning: A is true if 


1

; :::; 


m

; A

1

; :::A

n

are true, and a very

simple pro
edural interpretation: to show A it is suÆ
ient to satisfy 


1

; :::; 


m

and

to show A

1

; :::; A

n

. In this way one de�nes a 
lass of programming languages,

denoted by CLP (S), parametrized by the stru
ture S.

3.1 Constraints

We 
onsider a �rst-order language de�ned by

i) a set S

F

of symbols of 
onstants and of fun
tions,

ii) a set S

C

of predi
ate symbols supposed to 
ontain true and =,

iii) a 
ountable set V of variables.

An atomi
 
onstraint is an atomi
 proposition of this language. We assume a set

of basi
 
onstraints, supposed to be 
losed by variable renaming, and to 
ontain all

atomi
 
onstraints. The language of 
onstraints is the 
losure by 
onjon
tion and

existential quanti�
ation of the set of basi
 
onstraints. Constraints will be denoted

by 
; d; :::

Intuitively the basi
 
onstraints are the formulas that the 
onstraint solver 
an

deal with, they de�ne the de
idable fragment we are interested in, this fragment


an authorize restri
ted forms of negation or of universal quanti�
ation, without


ontaining ne
essarily all �rst-order formulas.

The 
losure by 
onjon
tion of the 
onstraint language is essential to the prin
iple

of resolution. The 
losure by existential quanti�
ation has not the same status, it

serves only to 
he
k the satis�ability of the proje
tion of a 
omputed 
onstraint on

the variables of interest (
f. 3.5).

The interpretation of 
onstraints is supposed to be �xed by the 
hoi
e of some

mathemati
al stru
ture S = (D; E;O;R) formed with:

17
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i) a domain D,

ii) a set E � D of distinguished elements asso
iated to ea
h 
onstant, denoted

by [
℄ for every 
 2 S

F

with arity 0,

iii) a set O of operators on D asso
iated to ea
h fun
tion symbol, denoted by

[f ℄ : D

n

! D for every f 2 S

F

with arity n,

iv) a set R of relations on D asso
iated to ea
h 
onstraint predi
ate symbol,

denoted by [p℄ : D

n

! f0; 1g for every p 2 S

C

with arity n.

An S-valuation is a fun
tion � : V ! D that extends to terms by morphism. If

S j= 
� we say that 
 is satis�able and that � is a solution of 
, otherwise we have

S j= :
�.

We shall assume that in the stru
ture S, the 
onstraint satis�ability problem is

de
idable. We shall thus suppose without loss of generality that S is presented by

an axiomati
 theory T de�ned on the alphabet S

C

, S

F

, satisfying:

1. (soundness) S j= T

2. (
ompleteness for 
onstraint satisfa
tion) for every 
onstraint 
, either T `

9(
), or T ` :9(
).

Under these assumptions we have that S j= 9(
) i� T ` 9(
). We do not

demand however that T is a 
omplete theory be
ause we are merely interested by

the existential 
onjun
tive fragment of the language of 
onstraints. If the 
onstraints


an be arbitrary �rst-order formulas, then 
ondition 2) does express that T is a


omplete theory.

3.2 CLP(S) Programs

We 
onsider also a set of predi
ate symbols S

P

disjoint from S

C

, representing re-

lations de�ned by program. In the following we 
all atom an atomi
 proposition

formed on S

P

, S

F

and V ex
lusively.

De�nition 3.1 A 
onstraint logi
 program 
lause is a 
lause with exa
tly one pos-

itive literal 8(A _ :


1

_ ::::


n

_ :A

1

_ ::: _ :A

n

) where m � 0, n � 0, the 


i

's are

atomi
 
onstraints and the A

j

's are atoms. A 
lause of program is denoted by

A 


1

; :::; 


m

jA

1

; :::A

n

or

A 
j�

where 
 = 


1

^ ::: ^ 


m

, and where � denotes the sequen
e of atoms A

1

; :::; A

n

. A

is 
alled the head of the 
lause, and 
j� the body. The lo
al variables of the 
lause

are the variables whi
h appear uniquely in the body of the 
lause.

A 
onstraint logi
 program is a �nite set of program 
lauses.

De�nition 3.2 A goal 
lause is a 
lause without positive literal

8(:


1

_ ::::


n

_ :A

1

_ ::: _ :A

n

)

A goal, denoted by




1

; :::; 


k

jA

1

; :::; A

n

or a

ording to the previous notations by


j�

stands for the formula 


1

^ ::: ^ 


k

^ A

1

^ ::: ^ A

n

.
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The reason for di�erentiating the logi
al formula asso
iated to a goal from the

one asso
iated to a goal 
lause is that from the point of view of theorem proving,

a refutation expresses that the set of program 
lauses P with the goal 
lause G,

P [G, is unsatis�able, whereas from the point of view of programming, a su

essful

derivation expresses that the goal G is satis�able, P j= 9(G), both viewpoints are

obviously equivalent as P j= 9(G) if and only if P [:9(G) is unsatis�able, and the

negation of the logi
al formula 9G asso
iated to a goal G is indeed a goal 
lause

:9G. In the following we shall be mainly 
on
erned with the programming language

point of view, hen
e we shall manipulate goals, rather than goal 
lauses.

In order to simplify the proofs, we shall 
onsider programs and goals in normal

form, in whi
h the atoms 
ontain no fun
tion symbol. There is obviously no loss of

generality as every program or goal 
an be transformed under this form by intro-

du
ing new variables and equality 
onstraints between these variables and the terms

inside the atoms. For instan
e the normal form of the 
lause p(x+1) p(x� 1) is

p(y) y = x+ 1 ^ z = x� 1 j p(z).

The CLP programs are parametrized by the stru
ture S whi
h �xes the interpre-

tation of the 
onstraint language. An S-interpretation of the language augmented

with predi
ate symbols in S

P

asso
iates in addition to every p 2 S

P

with arity n, a

relation [p℄ : D

n

! f0; 1g. An S-model of a program P is an S-interpretation model

of P . The S-base, denoted by B

S

, is the set of atoms valued in S:

B

S

= fp(x

1

; :::; x

n

)� j p 2 S

P

of arity n and � is an S-valuation g:

An S-interpretation 
an thus be identi�ed to a subset of B

S

formed with the

atoms whi
h are true in the interpretation. Clearly B

S

is a model of every 
onstraint

logi
 program on S. In the following (
f. 5.4) we shall show the existen
e of a least

S-model, denoted by M

S

P

.

The logi
al meaning of a CLP program allows to de�ne several de
larative se-

manti
s a

ording to the observation we are interested in, for instan
e:

� only the satis�ability of a goal, 9(G), (i.e. theorem proving point of view),

� or the 
onstraints whi
h imply a goal, 
 � G, (i.e. programming language

point of view),

Furthermore we 
an 
onsider:

i) the logi
al 
onsequen
es of the program and of the theory of the stru
ture

(proper logi
al semanti
s),

(1) P; T j= 9(G) (4) P; T j= 
 � G;

ii) the logi
al 
onsequen
es of the program in all the S-models of the program

(logi
al semanti
s with a �xed pre-interpretation),

(2) P j=

S

9(G) (5) P j=

S


 � G;

iii) the truth in the least S-model of the program (algebrai
 semanti
s),

(3) M

S

P

j= 9(G) (6) M

S

P

j= 
 � G:

In the following we shall show the equivalen
es (1) , (2) , (3) and (4) )

(5) , (6). Only (4) leads to a notion of 
orre
t answer weaker than (5) and (6).

In a �rst approximation we shall retain the notion of 
orre
t answer to a goal given

by the logi
al semanti
s in a �xed stru
ture S (5).
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De�nition 3.3 Let P be a CLP(S) program. Let G be a goal. A 
onstraint 
 is a

semi-
orre
t answer if:

P j=

S

8(
 � G)


 is a 
orre
t answer if furthermore 
 is S-satis�able:

P j=

S

9(
)

The notion of semi-
orre
t answer is introdu
ed to modelize the 
ase where the


onstraint solver e�e
tively used in a CLP(S) system is not 
omplete (e.g. 4.18,

4.6). The satis�ability of 
omputed 
onstraints is partially 
he
ked in su
h sys-

tems, the 
omputed answers are thus semi-
orre
t answers in general. For sake of

simpli
ity however, the prin
iple of resolution is de�ned in the next se
tion with a


omplete 
he
k of satis�ability.

3.3 Pro
edural interpretation

The pra
ti
al justi�
ation for restri
ting the de�nition of predi
ates to Horn 
lause

formulas, is that it is possible to asso
iate to su
h formulas an extremely simple

proof system, redu
ed to a single inferen
e rule, 
alled CSLD resolution. We present

this inferen
e rule by a rewriting relation on goals.

De�nition 3.4 Let P be a 
onstraint logi
 program on S. The rewriting relation

�! on goals is de�ned as the least relation satisfying the following prin
iple of

CSLD resolution

1

:

(p(N

1

; :::; N

k

) 


0

jA

1

; :::; A

n

)� 2 P S j= 9(
 ^M

1

= N

1

^ ::: ^M

k

= N

k

^ 


0

)

(
j�; p(M

1

; :::;M

k

); �

0

) �! (
;M

1

= N

1

; :::;M

n

= N

n

; 


0

j �;A

1

; :::; A

n

; �

0

)

where � is a renaming substitution of the program 
lause with new variables.

The atom p(M

1

; :::;M

n

) in the goal to redu
e is 
alled the sele
ted atom. Note

that there is no rewriting if the resulting 
onstraint is not S-satis�able. We write

G �!

C

G

0

for a step of resolution with the 
lause C 2 P , and we note �!

�

the

re
exive transitive 
losure of �!.

A CSLD derivation for a goal G is a �nite or in�nite sequen
e of goals (G

j

)

j�0

,

and of variants of program 
lauses C

j

, su
h that G

0

= G and G

j

�!

C

j

G

j+1

for

every j � 0.

A su

essful derivation (or CSLD refutation) is a �nite CSLD derivation whi
h

terminates with a goal 
ontaining 
onstraints only.

De�nition 3.5 Let P be a program CLP(S). A 
omputed answer for a goal G is

a 
onstraint 
 obtained by a CSLD refutation from G:

G �!

�


j�

The proje
ted 
omputed answer is the 
onstraint 9x

1

:::9x

k


 where fx

1

; :::; x

k

g =

V (
) n V (G).

Example 3.6 Consider the following CLP(N) program:

p(0) 

p(x+ 1) p(x)

The goal p(y) has the following su

essful derivations:

p(y) �! y = 0j�

p(y) �! y = y

1

+ 1jp(y

1

) �! y = y

1

+ 1 ^ y

1

= 0j�

et
.

The proje
ted 
omputed 
onstraints are y = 0, y = 1, et
.

1

CSLD stands for Linear resolution for De�nite programs with Constraints and Sele
ted atom.
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... ...

p(y)

y=0j�

y=y1+1jp(y1)

y1=0,y=y1+1j�

y1=y2+1,y=y1+1jp(y2)

y2=0,y1=y2+1,y=y1+1j�

y2=y3+1,y1=y2+1,y=y1+1jp(y3)

Figure 3.1: In�nite CSLD tree of the example 3.6.

Lemma 3.7 (^-
ompositionality) 
 is a 
omputed answer for the goal (djA

1

; :::; A

n

),

if and only if there exist 
omputed answers 


1

; :::; 


n

for the goals truejA

1

; :::; truejA

n

,

su
h that 
 = d ^

V

n

i=1




i

is satis�able.

Proof: By indu
tion on the length of the derivation. �

Corollary 3.8 Independan
e of the sele
tion strategy Let R be a sele
tion strategy

for the atom to sele
t at ea
h resolution step. If 
 is a 
omputed answer with the

strategy R for the goal G, then for every strategy R

0

, there exists a 
omputed answer




0

with the strategy R

0

for the goal G su
h that S j= 
$ 


0

.

The independan
e of the sele
tion strategy shows that for the observation of

su

esses, it is possible to restri
t the sear
h for derivations from a goal G by �xing

an arbitrary sele
tion strategy.

De�nition 3.9 A CSLD derivation tree for a goal G is the tree of all CSLD deriva-

tions obtained from G by �xing a sele
ted atom in ea
h node.

To enumerate all the su

eses to a goal G, the independan
e of the sele
tion

strategy thus shows that it is suÆ
ient to sear
h in an arbitrary CSLD derivation

tree for G.
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Chapter 4

Examples

4.1 CLP(H) and Prolog

In the 
lass of programming languages CLP(H), the interpretation stru
ture is the

algebra of �rst-order terms, the Herbrand's domain H.

The programming language Prolog is an implementation of CLP(H) in whi
h:

i) the 
onstraints are only equalities between terms, they are solved by a uni�-


ation algorithm (some implementations of Prolog treat also disequality 
on-

straints by a me
hanism of 
oroutines, 
f. predi
ate dif(X,Y)),

ii) the sele
tion strategy 
onsists in solving the atoms from left to right a

ording

to their order in the goal, the atoms to solve are thus implemented with a

sta
k (some implementations have a me
hanism of 
oroutines whi
h modi�es

the sele
tion strategy by delaying the sele
tion of some atoms as long as a

variable is not instan
iated, e.g. predi
ate freeze(X,G)),

iii) the sear
h strategy 
onsists in sear
hing the derivation tree depth-�rst by

ba
ktra
king.

In Prolog the syntax of the program 
lauses is

A :- B1,...,Bn.,

A.

the syntax of the goals is

?- A1,...,Year..

The interpreter enumerates the 
omputed answers to a goal by typing ; after

the prompt.

Program 4.1 The dedu
tive data bases give a �rst example of Prolog programs on

an alphabet of 
onstants without fun
tion symbols:

gdfather(X,Y):-father(X,Z),parent(Z,Y).

gdmother(X,Y):-mother(X,Z),parent(Z,Y).

parent(X,Y):-father(X,Y).

parent(X,Y):-mother(X,Y).

father(alphonse,
hantal).

mother(emilie,
hantal).

mother(
hantal,julien).

23
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father(julien,simon).

| ?- gdfather(X,Y).

X = alphonse, Y = julien ? ;

no

| ?- gdmother(X,Y).

X = emilie, Y = julien ? ;

X = 
hantal, Y = simon ? ;

no

Program 4.2 The introdu
tion of a binary fun
tion symbol allows to represent the

list stru
ture, the usual relations on lists 
an be de�ned by simple programs:

member(X,
ons(X,L)).

member(X,
ons(Y,L)):-member(X,L).

append(nil,L,L).

append(
ons(X,L),M,
ons(X,N)):-append(L,M,N).

| ?- member(X,
ons(a,
ons(b,
ons(
,nil)))).

X = a ? ;

X = b ? ;

X = 
 ? ;

no

| ?- member(X,Y).

Y = 
ons(X,_A) ? ;

Y = 
ons(_B,
ons(X,_A)) ? ;

Y = 
ons(_C,
ons(_B,
ons(X,_A))) ? ;

Y = 
ons(_D,
ons(_C,
ons(_B,
ons(X,_A)))) ? ;

Y = 
ons(_E,
ons(_D,
ons(_C,
ons(_B,
ons(X,_A))))) ?

yes

| ?- append(
ons(a,
ons(b,nil)),
ons(
,
ons(d,nil)),L).

L = 
ons(a,
ons(b,
ons(
,
ons(d,nil)))) ? ;

no
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Program 4.3 Lists have a spe
ial syntax in Prolog: [X|L℄ stands for 
ons(X,L)

and [℄ for nil. The naive program for reversing a list has a quadrati
 time 
omplex-

ity, a standard te
hnique for obtaining a reverse program of linear time 
omplexity

is to use a third argument as an a

umulator.

append([℄,L,L).

append([X|L℄,L2,[X|L3℄):-append(L,L2,L3).

reverse([℄,[℄).

reverse([X|L℄,R):-reverse(L,K),append(K,[X℄,R).

| ?- reverse([a,b,
,d℄,M).

M = [d,
,b,a℄ ? ;

no

| ?- reverse(M,[a,b,
,d℄).

M = [d,
,b,a℄ ?

rev(L,R):-rev_lin(L,[℄,R).

rev_lin([℄,R,R).

rev_lin([X|L℄,K,R):-rev_lin(L,[X|K℄,R).

| ?- reverse(X,Y).

X = [℄, Y = [℄ ? ;

X = [_A℄, Y = [_A℄ ? ;

...

Program 4.4 The implementation of the various algorithms for sorting is straight-

forward, prede�ned predi
ates 
an be used for 
omparing integers.

qui
ksort([℄,[℄).

qui
ksort([X|L℄,R):-

partition(L,Linf,X,Lsup),

qui
ksort(Linf,L1),

qui
ksort(Lsup,L2),

append(L1,[X|L2℄,R).

partition([℄,[℄,_,[℄).

partition([Y|L℄,[Y|Linf℄,X,Lsup):-

Y=<X,

partition(L,Linf,X,Lsup).

partition([Y|L℄,Linf,X,[Y|Lsup℄):-

Y>X,

partition(L,Linf,X,Lsup).

Program 4.5 A (non-deterministi
) 
ontext-free grammar 
an be dire
tly trans-

lated in a Prolog program. The �rst Prolog interpreter was designed in 1972 by A.

Colmerauer for this purpose. For example the grammar:

senten
e :: nounphrase, verbphrase;

nounphrase :: determiner, noun j noun;

verbphrase :: verb | verb, nounphrase;

verb :: [eats℄;

determiner :: [the℄;
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noun :: [monkey℄ j [banana℄;


an be systemati
ally translated in the following Prolog program for parsing and

synthesis:

senten
e(L):-nounphrase(L1), verbphrase(L2), append(L1,L2,L).

nounphrase(L):- determiner(L1), noun(L2), append(L1,L2,L).

nounphrase(L):- noun(L).

verbphrase(L):- verb(L).

verbphrase(L):- verb(L1), nounphrase(L2), append(L1,L2,L).

verb([eats℄).

determiner([the℄).

noun([monkey℄).

noun([banana℄).

| ?- senten
e([the,monkey,eats℄).

yes

| ?- senten
e([the,eats℄).

no

| ?- senten
e(L).

L = [the,monkey,eats℄ ? ;

L = [the,monkey,eats,the,monkey℄ ? ;

L = [the,monkey,eats,the,banana℄ ? ;

L = [the,monkey,eats,monkey℄ ?

yes

The basi
 operation of a Prolog interpreter is thus the solving of equality 
on-

straints over �rst-order terms, with an unbounded signature, i.e. a signature 
on-

taining an in�nite set of fun
tion symbols for ea
h arity. The equality in H 
an

be 
ompletely axiomatized by adding few axioms to the standard equality axioms.

From su
h a 
omplete axiomatization one 
an derive a simple uni�
ation algorithm

for solving equality 
onstraints between terms.

De�nition 4.6 The Clark's equational theory CET [8℄ is the theory formed with

the standard axioms for equality:

E

1

: 8x x = x,

E

2

8x

1

; :::; x

n

; y

1

; :::; y

n

x

1

= y

1

^ ::: ^ x

n

= y

n

! f(x

1

; :::; x

n

) = f(y

1

; :::; y

n

) for

every n and every fun
tion symbol f 2 S

F

with arity n,

E

3

8x

1

; :::; x

n

; y

1

; :::; y

n

x

1

= y

1

^ ::: ^ x

n

= y

n

! p(x

1

; :::; x

n

)! p(y

1

; :::; y

n

) for

every n and every predi
ate symbol p 2 S

P

with arity n.
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plus the axioms:

E

4

: 8x

1

; :::; x

n

; y

1

; :::; y

n

f(x

1

; :::; x

n

) = f(y

1

; :::; y

n

)! x

1

= y

1

^ ::: ^ x

n

= y

n

for

every fun
tion symbol f 2 S

F

with arity n,

E

5

: 8x

1

; :::; x

m

; y

1

; :::; y

n

f(x

1

; :::; x

m

) 6= g(y

1

; :::; y

n

) for di�erent fun
tion symbols

f; g 2 S

F

with arity m and n respe
tively,

E

6

: 8x M [x℄ 6= x for every term M stri
tly 
ontaining x.

One 
an noti
e that Presburger's arithmeti
 
ontains the axioms E

1

� E

6

for

0 and s, while E

7

simply disappears here as we have an in�nite set of fun
tion

symbols.

Proposition 4.7 H is a model of CET.

Exer
ise 4.8 Give a model of E

1

; E

2

; E

3

; E

4

; E

5

not satisfying E

6

(hint: imagine

a stru
ture of in�nite terms).

Give a non standard model of CET, i.e. a model of CET not isomorphi
 to H

(hint: restri
t the stru
ture of in�nite terms to those terms whi
h satisfy E

6

).

The theory CET is an axiomati
 theory whi
h is 
omplete for the satisfa
tion of

equality 
onstraints between terms in H. This 
an be shown simply by orientating

the axioms of CET so as to derive an algorithm for solving equality 
onstraints. The

algorithm we obtain in this way was proposed by Herbrand in his thesis in 1930

[22℄, and was later redis
overed by Robinson in his seminal work on automated

dedu
tion [42℄.

De�nition 4.9 A system of equations � is either the symbol false ?, or a 
onjon
-

tion of equations between terms M

1

= N

1

^ ::: ^M

n

= N

n

(true if n = 0).

A system of equations is in solved form if it is of the form

x

1

=M

1

^ ::: ^ x

n

=M

n

with n � 0 and fx

1

; :::; x

n

g \ (V (M

1

) [ ::: [ V (M

n

)) = ;.

Clearly if � is a solved form then CET j= 9(�). The Herbrand's uni�
ation

algorithm de
ides the satis�ability of a system � by 
omputing a solved form.

De�nition 4.10 The uni�
ation algorithm of Herbrand simpli�es a system of equa-

tions by applying the following rules:

De
 : f(M

1

; :::;M

n

) = f(N

1

; :::; N

n

) ^ � �!M

1

= N

1

^ ::: ^M

n

= N

n

^ �,

De
? : f(M

1

; :::;M

n

) = g(N

1

; :::; N

m

) ^ � �! ? if f 6= g,

Triv : x = x ^ � �! �,

Var : x =M ^ � �! x =M ^ �� if x 62 V (M), x 2 V (�), � = fx Mg,

Var? : x =M ^ � �! ? if x 2 V (M) and x 6=M .

Lemma 4.11 (Validity) If � �!

�

�

0

then CET j= �$ �

0

.

Lemma 4.12 (Termination) There are no in�nite sequen
e of simpli�
ations.

Proposition 4.13 (De
idability of uni�
ation) CET j= 9(�) i� the irredu
ible

form of � is a solved form.

Corollary 4.14 (Completeness of CET) For any equation system �, either CET `

9(�), or CET ` :9(�).

Corollary 4.15 H ` 9(�) i� CET ` 9(�).
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Robinson's uni�
ation algorithm represents the unsolved part of the system as

a sta
k and traverses the terms depth-�rst in left-right order. It 
omputes further-

more, if the terms are uni�able, a substitution � whi
h represents the solution set.

Although there exist other uni�
ation algorithms with better (linear) theoreti
al


omplexity, the Herbrand-Robinson's uni�
ation algorithm has a good pra
ti
al ef-

�
ien
y. It is used in the implementation of Prolog, in parti
ular in the Warren's

abstra
t ma
hine, with the optional ommission of the o

ur 
he
k (rule V ar?) for

eÆ
ien
y reasons.

Remark 4.16 The de
idability of uni�
ation and the validity lemma show that

the theory CET is 
omplete for the existential 
onjun
tive fragment of equality


onstraints. If we enri
h the language of 
onstraints by authorizing for instan
e

disequality 
onstraints (8Y X 6= f(Y )), or arbitrary �rst-order formulas, then the

situation depends on the alphabet.

If the alphabet 
ontains an in�nite set of 
onstant symbols and fun
tion symbols,

then CET is a 
omplete theory [33℄ [38℄, the stru
ture H is thus de
idable.

If the alphabet is �nite, formed of fun
tion symbols f

1

; :::; f

n

with arity n

1

; :::; n

k

,

then it is ne
essary to 
onsider the theory CET augmented with the domain-
losure

axiom (DCA):

DCA: 8x9y

1

:::9y

n

x = f

1

(y

1

; :::; y

n

1

) _ ::: _ x = f(y

1

; :::; y

n

k

)

In the 
ase of a �nite alphabet the theory CET+DCA is a 
omplete theory [38℄.

Therefore in all 
ases the stru
ture H is de
idable. The 
lass CLP(H) 
an thus

be de�ned with more or less powerful 
onstraint languages.

4.2 CLP(RT )

The absen
e of o

ur 
he
k in Prolog is not justi�ed uniquely by (histori
al) rea-

sons of pra
ti
al eÆ
ien
y but also by the need of programming with 
ir
ular data

stru
ture, for representing 
ross-referen
es for instan
e.

We 
an thus 
onsider as 
omputation domain the algebra of �nite and in�nite

terms [11℄ or more pre
isely the algebra RT of rational terms, whi
h are �nite or

in�nite terms having a �nite number of distin
t subterms, and whi
h 
an thus be

represented by �nite graphs.

If we repla
e in the theory CET the axiom of o

ur 
he
k (E

6

) by a new axiom

stating the existen
e of solutions to equation of the form x = f(x), we obtain a


omplete theory of both the algebra RT and the algebra of �nite and in�nite terms

[38℄, these stru
tures are thus elementarily equivalent.

The uni�
ation algorithm of Huet [25℄ is a 
omplete uni�
ation algorithm inRT .

The language Prolog II introdu
ed by A. Colmerauer in 1982 in
luded that uni�
a-

tion algorithm together with a treatment of disequality 
onstraints by a me
hanism

of 
oroutines. Today we 
an see Prolog II as an instan
e of CLP(RT ). Histori
ally,

it is the theoreti
al study of Prolog II whi
h lead J. Ja�ar and J.L. Lassez in 1986

to the general 
on
ept of the 
lass CLP.

4.3 CLP(H=E)

By still 
onsidering term algebras, we 
an de�ne the 
lass CLP(H=E) presented by

an equational theory E , that is a theory formed with a re
ursive set of identities

between terms. Birkho�'s theorem shows the 
ompleteness of equational reasoning

for semi-de
iding equality in E : E j= M = N i� M =

E

N , i.e. i� M and N are


ongruent modulo E . It is also possible to semi-de
ide the satis�ability of equality


onstraints, E j= 9(M = N), In general however the problem of E-equality in an

equational theory is unde
idable.
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The notion of uni�
ation in H 
an be generalized to a notion of uni�
ation with


omplete sets of uni�ers in H=E . However these sets 
an be in�nite, for instan
e

the equation f(x; a) = f(a; x) where f is an asso
iative operator has an in�nite

base of uni�ers, �

0

= fx  ag; �

1

= fx  f(a; a)g; �

2

= fx  f(a; f(a; a))g; :::.

It 
an also be the 
ase that there doesn't exist bases of uni�ers in some equational

theories admitting de
reasing 
hains of more and more general uni�ers.

The equational theories of interest are those in whi
h the satis�ability of equality


onstraints is de
idable. It is the 
ase for instan
e in theories 
ontaining an asso-


iative fun
tion symbol and 
onstants, in theories on an arbitrary alphabet with

asso
iative-
ommutative fun
tion symbols (in these theories there exists further-

more an a uni�
ation algorithm whi
h 
omputes a �nite base of uni�ers), in some

disjoint unions of equational theories, et
. See [29℄ for a survey.

The equational uni�
ation algorithms, when they exist, do not always pro-

vide eÆ
ient algorithms for solving equality 
onstraints. For instan
e asso
iative-


ommutative uni�ability is an NP-
omplete problem whereas the 
omputation of

a base of asso
iative-
ommutative unifers is 
omplete for the double exponential


omplexity 
lass [30℄.

4.4 CLP(�)

In CLP(�) we 
onsider the terms of the simply typed �-
al
ul, they are de�ned by

the following grammar of types t and typed expressions e : t:

t ::= v j t

1

! t

2

e : t ::= x : t j (�x : t

1

:e : t

2

) : t

1

! t

2

j (e

1

: t

1

! t

2

(e

2

: t

1

)) : t

2

The symbol � represents the operation of formation of a fun
tion by abstra
tion

of a variable in an expression. The other operation is the appli
ation of a fun
tion

to an expression of the right type. The theory of fun
tionality is de�ned by two

axioms for variable renaming � and appli
ation �:

�x:e

1

=

�

�y:e

1

[y=x℄ if y 62 V (e

1

),

(�x:e

1

)e

2

!

�

e

1

[e

2

=x℄

The type system insures the termination of �-redu
tions modulo �-
onversion.

The property of termination 
ombined with the property of 
on
uen
e of the �-


al
ulus, allows us to de
ide equality in this theory by simple rewriting:

e

1

=

�;�

e

2

i� #

�

e

1

=

�

#

�

e

2

:

However rewriting doesn't suÆ
e to de
ide the satis�ability of equality 
on-

straints. For instan
e to solve the equation FX = GY where F and G are fun
-

tional variables, we 
an impose F = G, X = Y , or F = �x:GY , or again F = �x:H ,

G = �y:I with HX = IY whi
h leads ba
k to the previous problem. Uni�
ation in

higher-order languages is an unde
idable problem [24℄, already at order 2 [19℄. It is

worth noting however that as the equality of typed �-expressions is de
idable, the

set of uni�ers of two typed �-expressions is re
ursively enumerable.

Su
h a generalization of Prolog to higher-order logi
 has an extraordinary (ex-


essive!) expressive power. As an illustration of this phenomenon, Cantor's theorem


an be shown in two steps of SLD resolution where the 
omputed substitution rep-

resents Cantor's diagonal argument!

Theorem 4.17 (Cantor's Theorem) N

N

is not 
ountable.

Proof: (adapted from [24℄).

Let us suppose the opposite 9h : N! (N! N) 8f : N! N 9n : N h(n) =

f After Skolemisation, the formula to refute be
omes 8F h(n(F )) = F whi
h is

equivalent to the goal 
lause 8F :h(n(F )) 6= F .
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A refutation of the goal h(n(F ) 6= F 
an be obtained by two steps of CSLD reso-

lution with two simple properties of the natural numbers expressed by the following

program:

F 6= G  F (N) 6= G(N):

N 6= s(N):

The �rst program 
lause is used to form the �rst resolvant:

h(n F ) 6= F �!

�

1

(h(n F ))(I) 6= F (I)

The se
ond 
lause gives the refutation

(h(n F ))(I) 6= F (I) �!

�

2

[℄

with the sequential substitution

�

2

= fJ  h I Ig:fI = n(F )g:fF = �i:s(h i i)g

One veri�es that (h(n F ))(I)�

2

= J�

2

and F (I)�

2

= s(J)�

2

. The uni�er �

2

of

the last step of resolution, whi
h generates the 
ontradi
tion, 
ontains \the diagonal

argument" of Cantor: we 
onsider the diagonal (Hii) of H whi
h indi
ates the value

taken by the fun
tion number i at value i, and we 
onstru
t the fun
tion f whi
h

asso
iates to i the su

essor of (Hii); then we 
onsider the value of f at n = Nf ,

that is at the number of f ; the 
ontradi
tion 
omes from the fa
t that on the one

hand, by de�nition of H , fn = (Hnn), and on the other hand, by 
onstru
tion of

f , fn = S(Hnn). Hen
e su
h a fun
tion h 
annot exist. �

It is worth noting that the uni�
ation algorithm on �rst-order terms 
ould a

ept

variables in position of fun
tion. However the uni�
ation of these expressions would

be done in the �rst-order model of terms, and not in a theory of fun
tionality.

This generalization of �rst-order uni�
ation is thus not suÆ
ient for �nding the

substitution of f in the previous example, but it allows to �nd the simple 
ases of

higher-order uni�
ation, as in the �rst step of resolution.

In fa
t the implemented CLP(�) systems su
h as �-Prolog [39℄ 
onsider weak

theories of fun
tionality whi
h 
orrespond to simple 
ases of higher-order uni�
ation.

The interesting features of these programming languages lies in parti
ular in their

type system inherited from the �-
al
ulus, and in the natural generalisation in this


ontext of Horn 
lauses to imbri
ated impli
ations, whi
h is the basis of an original

system of modules and of powerful methods for meta-programming.

4.5 CLP(R)

The de
idability of real arithmeti
 (R; 0; 1;+; �;=; <) was shown by Tarski by show-

ing the 
ompleteness of the axiomati
 theory of real 
losed �elds:

C

1

: (x+ y) + z = x+ (y + z),

C

2

: x+ 0 = x,

C

3

: x+ (�1 � x) = 0,

C

4

: x+ y = y + x,

C

5

: (x � y) � z = x � (y � z),

C

6

: x � 1 = x,

C

7

: x 6= 0! 9y x � y = 1,
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C

8

: x � y = y � x,

C

9

: x � (y + z) = (x � y) + (x � z),

C

10

: 0 6= 1,

O

1

: :(x < x),

O

2

: x < y ! (y < z ! x < z),

O

3

: x < y _ x = y _ y < x,

O

4

: x < y ! x+ z < y + z,

O

5

: 0 < x! (0 < y ! 0 < x � y),

R

1

: 0 < x! 9y y � y = x,

R

2

: y

n

6= 0! 9x y

n

� x

n

+ y

n�1

� x

n�1

+ :::+ y

0

= 0 for every odd integer n.

The result of 
ompleteness of this theory shows the de
idability of elementary

geometry, the proof is based on a method for quanti�er elimination [44℄. In prin
i-

ple this method allows us to de
ide the satis�ability of arbitrary �rst-order logi
al

formulas on the reals, with however a tower of exponentials as algorithmi
 
om-

plexity... CLP(R) systems with that degree of generality have been realized, see

for instan
e [23℄. These prototype systems 
ompute answers with of 
ourse widely

unstable and unpredi
tible performan
es.

If we limit the 
onstraint language to the linear existential fragment, the sat-

isfa
tion problem be
omes polynomial and the algorithms of linear programming

provide powerful de
ision methods [7℄. The Simplex algorithm, for example, has

a quasi-linear pra
ti
al 
omplexity in the number of variables. This algorithm 
an

moreover handle the in
remental addition and deletion of 
onstraints. For these

reasons the Simplex algorithm is still the algorithm of 
hoi
e for solving linear 
on-

straints in CLP(R) systems, while non-linear 
onstraints are simply delayed until

they be
ome linear (e.g. with the freeze predi
ate). Several CLP(R) systems have

been implemented sin
e the mid 80's [26℄ [41℄, and have been su

esfully used in

a wide variety of appli
ations ranging from de
ision support in �nan
ial domains,

veri�
ation and synthesis of analogi
al 
ir
uits, 
ombinatorial optimization, et
.

[28℄.

The following CLP(R) program expresses the formula for 
omputing mortgage.

In the predi
ate mortgage(P; T; I; B;M), P is the total amount, T the duration in

months, I the monthly rate, B the balan
e, andM the monthly reimbursement. The

program 
omputes instan
iated answers for di�erent 
ombinations of the inputs. It


omputes also linear 
onstraints as answers. The last query of the example shows a


ase where the answer is a non-linear 
onstraint, the satis�ability of this 
onstraint

is not 
he
ked by the system (semi-
orre
t answer in general, 
f. 3.3).

Program 4.18 [27℄ Example of a CLP(R) program for 
omputing mortgage.

mortgage(P,T,I,B,M):- T > 0, T <= 1, B + M = P * (1 + I).

mortgage(P,T,I,B,M):- T > 1, mortgage(P * (1 + I) - M, T - 1, I, B, M).

| ?- mortgage(120000,120,0.01,0,M).

M = 1721.651381 ?

yes
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| ?- mortgage(P,120,0.01,0,1721.651381).

P = 120000 ?

yes

| ?- mortgage(P,120,0.01,B,M).

P = 0.302995*B + 69.700522*M ?

yes

| ?- mortgage(999, 3, Int, 0, 400).

400 = (-400 + (599 + 999*Int) * (1 + Int)) * (1 + Int) ?

yes

The need for 
omputing with 
omplex data stru
ture obviously remains in

CLP(R). The stru
ture of interest is thus not exa
tly R but more pre
isely the

algebra H(R) of �rst-order terms formed on an alphabet of 
onstant and fun
tion

symbols, possibly 
ontaining arithmeti
 expressions in their leaves. It has been

shown that under some general 
onditions the 
ompleteness of a theory for a stru
-

ture S remains for the stru
ture H(S) [46℄. The following example illustrates the

use of lists in CLP(R).

Program 4.19 [26℄ Example of a CLP(R) program for 
omputing the tempera-

ture on a dis
rete surfa
e, or more generally for solving the Diri
hlet problem for

Lapla
e's equation by the �nite di�eren
e method. The program spe
i�es that the

temperature in ea
h interior point is the mean of its four neighbors. If the data are

suÆ
iently instan
iated, for instan
e the temperature on the edges is known, the

answers are numeri
al values, otherwise they are linear 
onstraints.

lapla
e([H1,H2,H3|T℄):-

lapla
e_ve
(H1,H2,H3), lapla
e([H2,H3|T℄). lapla
e([_,_℄).

lapla
e_ve
([TL,T,TR|T1℄,[ML,M,MR|T2℄,[BL,B,BR|T3℄):-

B + T + ML + MR - 4 * M = 0,

lapla
e_ve
([T,TR|T1℄,[M,MR|T2℄,[B,BR|T3℄).

lapla
e_ve
([_,_℄,[_,_℄,[_,_℄).

| ?- X = [

[0,0,0,0,0,0,0,0,0,0,0℄,

[100,_,_,_,_,_,_,_,_,_,100℄,

[100,_,_,_,_,_,_,_,_,_,100℄,

[100,_,_,_,_,_,_,_,_,_,100℄,

[100,_,_,_,_,_,_,_,_,_,100℄,

[100,_,_,_,_,_,_,_,_,_,100℄,

[100,_,_,_,_,_,_,_,_,_,100℄,

[100,_,_,_,_,_,_,_,_,_,100℄,

[100,_,_,_,_,_,_,_,_,_,100℄,

[100,_,_,_,_,_,_,_,_,_,100℄,

[100,100,100,100,100,100,100,100,100,100,100℄

℄, lapla
e(X).
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X=[[0,0,0,0,0,0,0,0,0,0,0℄,

[100,51.11,32.52,24.56,21.11,20.12,21.11,24.56,32.52,51.11,100℄,

[100,71.91,54.41,44.63,39.74,38.26,39.74,44.63,54.41,71.91,100℄,

[100,82.12,68.59,59.80,54.97,53.44,54.97,59.80,68.59,82.12,100℄,

[100,87.97,78.03,71.00,66.90,65.56,66.90,71.00,78.03,87.97,100℄,

[100,91.71,84.58,79.28,76.07,75.00,76.07,79.28,84.58,91.71,100℄,

[100,94.30,89.29,85.47,83.10,82.30,83.10,85.47,89.29,94.30,100℄,

[100,96.20,92.82,90.20,88.56,88.00,88.56,90.20,92.82,96.20,100℄,

[100,97.67,95.59,93.96,92.93,92.58,92.93,93.96,95.59,97.67,100℄,

[100,98.89,97.90,97.12,96.63,96.46,96.63,97.12,97.90,98.89,100℄,

[100,100,100,100,100,100,100,100,100,100,100℄℄ ?

yes | ?- lapla
e([

[B11, B12, B13, B14℄,

[B21, M22, M23, B24℄,

[B31, M32, M33, B34℄,

[B44, B42, B43, B44℄

℄).

B12 = -B21 - 4*B31 + 16*M32 - 8*M33 + B34 - 4*B42 + B43,

B13 = -B24 + B31 - 8*M32 + 16*M33 - 4*B34 + B42 - 4*B43,

M22 = -B31 + 4*M32 - M33 - B42,

M23 = -M32 + 4*M33 - B34 - B43 ?

yes

4.6 CLP(FD) and CLP(N )

G�odel's in
ompleteness theorem gives fundamental limits on integer arithmeti
 
on-

straints. In order to obtain a de
idable 
onstraint language we 
an either 
onsider

the linear fragment, (N; 0; 1;+;=), whi
h is 
ompletely axiomatized by Presburger's

arithmeti
, or restri
t the 
onstraint language on N given with all its operators.

The later approa
h is generally undertaken in the implementations of CLP(FD)

on \�nite domains" where the variables are assumed to take their value in �nite

intervals of the integers. The system CHIP [48℄ was the �rst CLP(FD) system devel-

oped in the mid 80's, following the pioneering work of J.L. Lauriere [34℄. CLP(FD)

systems in
lude in addition to usual arithmeti
 predi
ates,

symboli
 
onstraints, e.g.

element(I,[x1,...,xk℄,V) true if x

I

= V where I and V are unknowns,

set 
ardinality 
onstraints, e.g.


ard(N,[X1,...,Xk℄,V) true if there are exa
tly N values equal to V in the

list of unknowns X

1

; :::; X

k

,

higher-order 
ardinality 
onstraints, e.g.


ard(N,[C1,...,Ck℄) true if there are exa
tly N 
onstraints true in the list

C

1

; :::; C

k

.

These 
onstraints greatly enhan
e the expressive power of the 
onstraint lan-

guage for modeling 
ombinatorial optimization problems[48℄.

Program 4.20 One of the simplest example of CLP(FD) program is the N-queens

program. The problem, introdu
ed by Gauss in the early days of 
ombinatori
s, is

to pla
e N queens on an N�N 
hess board su
h that no two queens are pla
ed on

a same row, 
olumn or diagonal. The CLP(FD) program modelizes the problem

with a list of N unknowns whi
h give the line number of ea
h queen in ea
h 
olumn

(domain(L,[1,N℄)). The program pla
es �rst the inequality 
onstraints between the

variables (X.=/=Y+d), and then enumerates the possible values (labeling), with
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some heuristi
s for 
hoosing �rst the queen with the least domain of possible values

((�rst-fail heuristi
s ff) and trying �rst the (lines) values in the middle. Solving

the 200-queens problem is untra
table by pure ba
ktra
king, but takes a few se
onds

with this CLP(FD) program.

queens(N, L) :- list(N, L), domain(L,[1,N℄),

safe(L), labeling(L,ff,middle).

safe([℄).

safe([X| Y℄) :- noatta
k(X, Y), safe(Y).

noatta
k(X, Xs) :- noatta
k(X, Xs, 1).

noatta
k(X, [℄, Nb) :- !.

noatta
k(X, [Y | Ys℄, Nb) :- X.=/=Y, X.=/=Y+Nb, X.=/=Y-Nb,

Nb1 is Nb+1, noatta
k(X, Ys, Nb1).

list(0, [℄):- !.

list(N, [ _| L℄ ) :- M is N-1, list(M, L).

| ?- queens(4,L).

L = [2,4,1,3℄ ? ;

L = [3,1,4,2℄ ? ;

no

Program 4.21 [20℄ The organizers of a 
ongress have 3 rooms and 2 days for

eleven half-day sessions (A,B,C,...,K).

The sessions sets

AJ, JI, IE, CF, FG, DH, BD, KE, BIHG, AGE, BHK, ABCH, DFJ


an't be simultaneous (there exists at least one parti
ipant in all the sessions of

these sets). Moreover session E has to be given before session J , and the sessions

D and F before K.

The organizers have to determine a time-tabling. The problem 
an be expressed

with a simple CLP(FD) query.

| ?- domain([A,B,C,D,E,F,G,H,I,J,K℄,[1,4℄),

alldifferent([A,J℄),alldifferent([J,I℄),alldifferent([I,E℄),

alldifferent([E,C℄),alldifferent([C,F℄),alldifferent([F,G℄),

alldifferent([D,H℄),alldifferent([B,D℄),alldifferent([K,E℄),

alldifferent([B,I,H,G℄),alldifferent([A,G,E℄),

alldifferent([B,H,K℄),alldifferent([A,B,C,H℄),

alldifferent([D,F,J℄),

J.>E, K.>D, K.>F,

atmost(3,[A,B,C,D,E,F,G,H,I,J,K℄,1),

atmost(3,[A,B,C,D,E,F,G,H,I,J,K℄,2),

atmost(3,[A,B,C,D,E,F,G,H,I,J,K℄,3),

atmost(3,[A,B,C,D,E,F,G,H,I,J,K℄,4),

labeling([A,B,C,D,E,F,G,H,I,J,K℄).

A = 1, B = 2, C = 4, D = 1, E = 2, F = 2, G = 4, H = 3, I = 1, J = 3, K = 4 ?

yes
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For pra
ti
al eÆ
ien
y reasons, the algorithms for 
he
king the satis�ability of

CLP(FD) 
onstraints are generally not 
omplete (the satis�ability of the store of


onstraints is partially 
he
ked only), a 
omplete 
he
k of satis�ability requires

enumeration. The 
omputed answers in CLP(FD) systems are thus semi-
orre
t in

general 3.3.

The 
onstrained propagation algorithms that are used have for e�e
t to restri
t

the domain of variables by propagating the 
onstraints at ea
h resolution step,

often by a simple reasoning on the bounds of the domain of the variables. The

unsatis�ability of the 
onstraints is dete
ted when the domain of a variable be
omes

empty. The 
onstraints are used to prune the sear
h spa
e 
on
urrently to the

logi
al resolution pro
ess. The 
onstraint propagation algorithms used in CLP (FD)

originate from Arti�
ial Intelligen
e, they 
he
k the 
onsisten
y of ea
h 
onstraint

separately a

ording to the domain of the variables (ar
-
onsisten
y).

The 
onstraint propagation algorithms used in CLP(FD) 
an be de
ribed as

parti
ular implementations of a generi
 algorithm based on few prin
iples. For this

purpose let us denote basi
 
onstraints by 
; d::: and 
onstraint systems by �;�

0

; ::::

A variable x will be written with its domain x

d

. By abuse of notation, a variable

with a singleton domain x

fvg

denotes the value v 2 FD of the domain. As terms,

v and x

fvg

are not distinguished.

The set of solutions of a 
onstraint system � over FD is the set of substitutions

Sol(�;FD) = f� j � = fx

d

 v j x

d

2 V (�); v 2 dg; FD j= ��g

The redu
ed domain of a variable x

d

w.r.t. a basi
 
onstraint 
 is the domain

DR(x

d

; 
) = fv 2 d j FD j= 9(
[v=x

d

℄)g

of values v for whi
h the 
onstraint 
[v=x℄ is satis�able. A 
onstraint system � is

ar
-
onsistent if

8
 2 � 8x

d

2 V (
) DR(x

d

; 
) = d

De�nition 4.22 The generi
 
onstraint propgation algorithm simpli�es a system

� of 
onstraints over FD with the following rules asso
iated to basi
 
onstraints:

\forward 
he
king" (FC), \looking-ahead" (LA), \partial looking-ahead" (PLA)

and elimination (EL)

Fail: 
 ^ � �! ?

if x

d

2 V (
) and DR(x

d

; 
) = ;.

FC: 
 ^ � �! ��

if V (
) = fx

d

g, d

0

= DR(x

d

; 
), d

0

6= ;, and � = fx

d

 y

d

0

g where y 62 V (�).

LA: 
 ^ � �! 
� ^ ��

if jV (
)j > 1, x

d

2 V (
), d

0

= DR(x

d

; 
), d

0

6= ;, d

0

6= d, � = fx

d

 y

d

0

g.

PLA: 
 ^ � �! 
� ^ ��

if jV (
)j > 1, x

d

2 V (
), DR(x

d

; 
) � d

0

� d, d

0

6= ;, � = fx

d

 y

d

0

g.

EL: 
 ^ � �! � if FD j= 
� for every valuation � of the variables in 
 by values

of their domain.

Lemma 4.23 (Validity) If � �!

�

�

�

0

then Sol(�;FD) = f�� j � 2 Sol(�

0

;FD)g.



36 CHAPTER 4. EXAMPLES

For instan
e, disequality 
ontraints X.=n=Y) are propagated with the FC rule,

symboli
 
onstraints as element(I,L,V) are propagated with the LA rule, linear

equalities are propagated with the LA rule using a simple reasoning on the bounds

of the domain: for a 
onstraint 
 of the form

aX

[k;l℄

� bY

[m;n℄

+ d; a; b > 0; d � 0

we have

DR(X

[k;l℄

; 
) = [max(k; k

0

); l℄

DR(Y

[m;n℄

; 
) = [m;min(n; n

0

)℄

where k

0

= d

bm+d

a

e and n

0

= b

an�d

b


. The redu
ed domain 
an thus be 
omputed

in 
onstant time in this 
ase.

Program 4.24 Resolution of the puzzle SEND+MORE=MONEY by a CLP(FD)

program whi
h requires the exploration of at most two 
hoi
e points (or less a

ording

to the 
hoi
e of the variable to enumerate �rst).

send(L):-send
(L), labeling(L).

send
([S,E,N,D,M,O,R,Y℄) :-

domain([S,E,N,D,M,O,R,Y℄,[0,9℄),

alldifferent([S,E,N,D,M,O,R,Y℄),

S.=\=0,

M.=\=0,

1000*S+100*E+10*N+D

+ 1000*M+100*O+10*R+E

.= 10000*M+1000*O+100*N+10*E+Y.

| ?- send(L).

L = [9,5,6,7,1,0,8,2℄ ? ;

no

| ?- send
([S,E,N,D,M,O,R,Y℄).

M = 1, O = 0, S = 9,

Y+90*N.=10*R+D+91*E,

alldifferent([E,N,D,R,Y℄),

domain(E,[4,7℄),

domain(N,[5,8℄),

domain(D,[2,8℄),

domain(R,[2,8℄),

domain(Y,[2,8℄) ?

yes

| ?- send
([S,E,N,D,M,O,R,Y℄),indomain(E).

D = 7, E = 5, M = 1, N = 6,

O = 0, R = 8, S = 9, Y = 2 ? ;

no

| ?- send
([S,E,N,D,M,O,R,Y℄),indomain(R).

M = 1, O = 0, R = 8, S = 9,
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Y+90*N.=D+91*E+80,

alldifferent([E,N,D,Y℄),

domain(E,[5,6℄),

domain(N,[6,7℄),

domain(D,[2,7℄),

domain(Y,[2,7℄) ? ;

no

Constraint propagation is a 
omplete method for some 
onstraints, i.e. it pro-

vides a de
ision pro
edure. It is the 
ase for instan
e for systems of inequalities

of the form aX � bY + 
 where a; b; 
 � 0 [48℄. In this 
ase the prin
iple LA is


omplete and gives a simple de
ision pro
edure.

Proposition 4.25 (Completeness of LA) Let � be a 
onstraint system of the

form

aX � bY + d; a; b > 0; d � 0:

Let � �!

�

�

�

0

6�!. Then � is satis�able if and only if �

0

6= ?, in whi
h 
ase

fx

[k;l℄

 k j x 2 V (�

0

)g is a solution.

Proof: If �

0

= ? then by the validity lemma � is insatis�able. If �

0

6= ? is

irredu
tible, then for every 
onstraint 
 2 �

0

, and every variable x

d

2 V (
) we have

d = DR(x

d

; 
). Let � = fx

[k;l℄

 k j x 2 V (�

0

)g, we 
an easily 
he
k that ea
h


onstraint in �

0

is satis�ed by �. Indeed let aX

k;l℄

� bY

[m;n℄

+ d be a 
onstraint in

�

0

, by de�nition of the redu
ed domain, the 
onstraint a:k � Y

[m;n℄

+d is satis�able,

thus a:k � b:m+ d that is � is a solution. Therefore FD j= �

0

�, and by the validity

lemma we get that � is satis�able. �

This 
lass of 
onstraints is important for s
heduling problems, as they express

pre
eden
e 
onstraints, as well as mutual ex
lusion 
onstraints with a disjon
tion.

Program 4.26 Solving by simple CLP(FD) queries of a PERT s
heduling problem

with �ve tasks A,B,C,D,E, and of a disjun
tive s
heduling problem where the mutual

ex
lusion 
onstraints between the tasks C and D are treated as Prolog 
hoi
e point

;.

The higher-order predi
ate minimize(Goal,Cost) 
omputes the optimal solu-

tions to the goal Goal w.r.t. the obje
tive fun
tion Cost by bran
h and bound.

?- X.>=Y+2.

domain(Y,[0,4294967290℄),

domain(X,[2,4294967292℄),

X.>=Y+2, t ?

yes | ?- minimize((B.>=A+5,C.>=B+2,D.>=B+3,E.>=C+5,E.>=D+5) , E).

Solution with 
ost 13

A = 0, B = 5, D = 8,

E = 13,

domain(C,[7,8℄),

C.>=5+2 ? ;

no | ?- minimize((B.>=A+5,C.>=B+2,D.>=B+3,E.>=C+5,E.>=D+5,

(C.>=D+5 ; D.>=C+5)) , E).
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Solution with 
ost 18

Solution with 
ost 17

A = 0, B = 5, C = 7, D = 12, E = 17 ? ;

no

Although simple in their prin
iple, 
onstraint propagation algorithms have in-

teresting performan
es for solving large systems of 
onstraints. Furthermore they


an be applied to 
omplex global 
onstraints for whi
h the redu
ed domains 
an be


omputed or approximated by powerful algorithms from Operations Resear
h and

graph theory. The CLP(FD) programs whi
h have been developed for disjun
tive

s
heduling problems 
ompete today with the best solutions from Operations Re-

sear
h [6℄. The reason for this su

ess is the 
apability of the language to express

(and experiment qui
kly) both 
omplex propagation s
hemes for global 
onstraints

and 
omplex sear
h strategies.



Chapter 5

Formal semanti
s

The �rst role of the formal semanti
s of a programming language is to de�ne math-

emati
ally what a program 
omputes. But of 
ourse the notion of 
omputation is

relative to the 
hoi
e of the properties of the exe
ution that we wish to observe.

We 
an be interested for instan
e in the tra
e of the exe
ution, or in the 
omputed

answers (the ordered list of answers or the multi-set or the set), or just in the

termination, et
.

A set of observable properties (or observations) of the exe
ution de�nes an equiv-

alen
e relation on the programs: P � P

0

i� for every input, P and P

0

are obser-

vationally undistinguishable. A formal semanti
s S(P ) is 
orre
t w.r.t. an equiv-

alen
e relation on programs �, if S(P ) = S(P

0

) ) P � P

0

, fully abstra
t if

S(P ) = S(P

0

), P � P

0

.

The formal semanti
s 
an be used for analyzing programs or verifying the sound-

ness of program transformations (for optimizing exe
ution for example ). The dif-

ferent ways of de�ning the formal semanti
s provide us with di�erent tools for

analyzing programs.

In the following se
tion we study the operational semanti
s of CLP languages,

whi
h are based on the de�nition of the program behavior by an abstra
t ma
hine

(the CSLD resolution rule), then we study for ea
h notion of observable, their related

logi
al, algebrai
 and �xed point semanti
s.

5.1 Operational Semanti
s

For CLP programs, a natural 
hoi
e of observation from the point of view of

theorem proving, is the observation of su

esses, that is the existen
e of a CSLD

refutation for a goal. We thus de�ne a �rst equivalen
e relation P �

1

P

0

i� for

every goal G, G has a CSLD refutation in P i� G has one in P

0

.

From the point of view of a programming language, we are of 
ourse more

interested by the set of 
omputed answers to a goal. We 
an thus de�ne a �ner

equivalen
e relation, P �

2

P

0

i� for every goal G, a 
onstraint 
 is a 
omputed

answer a G in P if and only if 
 is a 
omputed answer to G in P

0

.

We 
ould de�ne the operational semanti
s of a program CLP, as respe
tively

the set of goals whi
h admit a CSLD refutation, and the set of pairs of goals and


onstraints, < 
;G >, su
h that 
 is a 
omputed answer for G. The lemma of ^-


ompositionality 3.7 shows however that the 
omputed answers to a 
ompound goal

(
jA

1

; :::; A

n

), are a simple 
ombination of answers to the atomi
 goals (truejA

i

),

1 � i � n. The operational behavior of a CLP program w.r.t. the set of 
omputed

answers 
an thus be entirely 
ara
terized by the set of 
omputed answers to atomi


goals only. We 
an thus de�ne formally the operational semanti
s of CLP programs

39
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for the observation of 
omputed answers by the set of 
onstrained atoms:

O

2

(P ) = f
jA j truejA �!

�


j�g

Clearly we have P �

2

P

0

i� O

2

(P ) = O

2

(P

0

).

For the observation of su

eses we 
an de�ne the operational semanti
s of the

program simply as a subset of the S-base:

O

1

(P ) = fA� 2 B

S

j truejA �!

�


j�; S j= 
�g

We have P �

1

P

0

i� O

1

(P ) = O

1

(P

0

).

5.2 Observation of Su

esses

In this se
tion we de�ne the �xed point semanti
s and the logi
al semanti
s of

CLP programs for the observation of su

esses, and we show the equivalen
e with

the operational semanti
s O

1

.

De�nition 5.1 Let P be a CLP(S) program. The immediate 
onsequen
e operator

T

S

P

: 2

B

S

! 2

B

S

is de�ned as:

T

S

P

(I) = fA� 2 B

S

j there exists a renamed 
lause in normal form

(A 
jA

1

; :::; A

n

) 2 P; and a valuation � s.t.

S j= 
� and fA

1

�; :::; A

n

�g � Igg

Proposition 5.2 Let P be a CLP(S) program, and I be an S-interpretation. I is

a S-model of P if and only if I is a post-�xed point of T

S

P

, T

S

P

(I) � I. Furthermore

I is a supported S-model of P if and only if I is a �xed point of T

S

P

, T

S

P

(I) = I.

Proof: I is a S-model of P ,

i� for ea
h 
lause A  
jA

1

; :::; A

n

2 P and for ea
h S-valuation �, if S j= 
�

and fA

1

�; :::; A

n

�g � I then A� 2 I ,

i� T

S

P

(I) � I .

I is a �xed point of T

S

P

,

i� T

S

P

(I) = I ,

i� I = fA� 2 I j(A 
jA

1

; :::; A

n

) 2 P; S j= 
�; fA

1

�; :::; A

n

�g � Ig

i� I is a supported S-model of P . �

Proposition 5.3 T

S

P

is a 
ontinuous operator on the latti
e of S-interpretations.

Proof: Let X be a 
hain of S-interpretations.

A� 2 T

S

P

(sup(X)),

i� (A 
jA

1

; :::; A

n

) 2 P , S j= 
� and fA

1

�; :::; A

n

�g � sup(X),

i� (A 
jA

1

; :::; A

n

) 2 P , S j= 
� and fA

1

�; :::; A

n

�g � I , for some I 2 X ,

i� A 2 T

S

P

(I) for some I 2 X ,

i� A 2 sup(T

S

P

(X)). . �

By the theorem of Knaster-Tarski, the operator T

S

P

has a least �xed point, equal

to T

S

P

" !, also equal to its least post-�xed point. We 
an thus de�ne the �xed

point semanti
s of a program CLP(S) as the least �xed point of this operator:

F

1

(P ) = lfp(T

S

P

) = T

S

P

" !

Theorem 5.4 (Least S-model) [26℄ Let P a 
onstraint logi
 program on S. P

has a least S-model, denoted by M

S

P

satisfying:

M

S

P

= F

1

(P )
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Proof: F

1

(P ) = lfp(T

S

P

) is also the least post-�xed point of T

S

P

, thus by 5.2,

lfp(T

S

P

) is the least S-model of P . �

Theorem 5.5 [26℄ F

1

(P ) = O

1

(P ).

Proof: This result is a 
orollary of the more general theorem 5.13, given in the

following se
tion on the observation of 
omputed 
onstraints. �

5.3 Observation of Computed Constraints

The 
omputed answers of a program CLP(S) 
an also be 
hara
terized by a �xed

point semanti
s. The idea is to de�ne an immediate 
onsequen
e operator on the

latti
e of 
onstrained atoms. There is a 
omplete adequa
y between the 
omputed


onstraints by CSLD resolution and the 
onstraints asso
iated to atoms in the

least �xed point of this operator. This will be used to show a 
ompleteness result

w.r.t. 
orre
t answers of the logi
al semanti
s.

Let P a 
onstraint logi
 program on a stru
ture S presented by a theory T . A


onstrained atom is a pair 
jA 
omposed of a S-satis�able 
onstraint 
 and of an

atom A 
ontaining no fun
tion symbol. The set of 
losed instan
es of a 
onstrained

atom is de�ned as:

[
jA℄

S

= fA� j S j= 
�g

The set of 
onstrained atoms forms a 
omplete latti
e 
alled the T -base and denoted

by B

T

. A 
onstrained interpretation I is a subset of the T -base. We note [I ℄

S

=

fA� j 
jA 2 I; S j= 
�g the S-interpretation asso
iated to I .

De�nition 5.6 The immediate 
onsequen
e operator S

S

P

: 2

B

T

! 2

B

T

is de�ned

as:

S

S

P

(I) = f
jA 2 B

T

j there exists a renamed 
lause in normal form

(A djA

1

; :::; A

n

) 2 P; and 
onstrained atoms f


1

jA

1

; :::; 


n

jA

n

g � I,

s.t. 
 = d ^

V

n

i=1




i

is S-satis�ableg.

Exer
ise 5.7 Show that S

S

P

is a 
ontinuous operator on the latti
e of 
onstrained

interpretations.

De�nition 5.8 The �xed point semanti
s of a program CLP(S) is de�ned as the

least �xed point of S

S

P

,

F

2

(P ) = lfp(S

S

P

) = S

S

P

" !:

Example 5.9 Consider the CLP(H) append program

append(A,B,C):- A=[℄, B=C.

append(A,B,C):- A=[X|L℄, C=[X|R℄, append(L,B,R).

The iteration of the non-ground immediate 
onsequen
e operator from the empty


onstrained interpretation enumerates the CSLD answer 
onstraints to the goal

append(A,B,C):

S

H

P

" 0 = ;

S

H

P

" 1 = fA = [℄; B = Cjappend(A;B;C)g

S

H

P

" 2 = S

H

P

" 1[

fA = [X jL℄; C = [X jR℄; L = [℄; B = Rjappend(A;B;C)g

= S

H

P

" 1 [ fA = [X ℄; C = [X jB℄jappend(A;B;C)g

S

H

P

" 3 = S

H

P

" 2 [ fA = [X;Y ℄; C = [X;Y jB℄jappend(A;B;C)g

S

H

P

" 4 = S

H

P

" 3 [ fA = [X;Y; Z℄; C = [X;Y; ZjB℄jappend(A;B;C)g

::: = :::
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Lemma 5.10 For every 
onstrained interpretation I, [S

S

P

(I)℄

S

= T

S

P

([I ℄

S

).

Proof: We prove the two in
lusions separately.

Let 
jA 2 S

S

P

(I) and � be a valuation solution of 
. By de�nition of S

S

P

there

exists a renamed 
lause in normal form (A  djA

1

; :::; A

n

) 2 P and 
onstrained

atoms f


1

jA

1

; :::; 


n

jA

n

g � I , su
h that 
 = d ^

V

n

i=1




i

. Thus � is also a solution

of 


1

; :::; 


n

. Therefore fA

1

�; :::; A

n

�g � [I ℄

S

and by de�nition of T

S

P

, we have

A� 2 T

S

P

.

In the other dire
tion, let A� 2 T

S

P

([I ℄

S

). By de�nition of T

S

P

, there exists a


lause (A djA

1

; :::; A

n

) 2 P su
h that A

1

�; :::; A

n

�g � [I ℄

S

and � is solution of d.

By de�nition of [I ℄

S

, there exist 
onstrained atoms f


1

jA

1

; :::; 


n

jA

n

g � I renamed

in su
h a way as � is a solution of 


1

; :::; 


n

. Let 
 = d ^

V

n

i=1




i

, � is a solution of


, thus 
 is S-satis�able and by de�nition of S

S

P

, we have 
jA 2 S

S

P

(I). Therefore

A� 2 [S

S

P

(I)℄

S

. �

Theorem 5.11 [26℄ For every ordinal �, T

S

P

" � = [S

S

P

" �℄

S

.

Proof: The proof is by trans�nite indu
tion on �.

The base 
ase � = 0 is trivial.

For a su

essor ordinal, we have

[S

S

P

" �℄ = [S

S

P

(S

S

P

" �� 1)℄

S

,

= T

S

P

([S

S

P

" �� 1℄

S

) by lemma 5.10,

= T

S

P

(T

S

P

" �� 1) by indu
tion,

= T

S

P

" �.

For a limit ordinal, we have

[S

S

P

" �℄

S

= [

S

�<�

S

S

P

" �℄

S

=

S

�<�

[S

S

P

" �℄

S

,

=

S

�<�

T

S

P

" � by indu
tion,

= T

S

P

" �. �

Corollary 5.12 For every integer n � 0, T

S

P

" n has a �nite presentation.

Proof: For every integer n, S

S

P

" n is �nite and [S

S

P

" n℄

S

= T

S

P

" n. �

Theorem 5.13 (Full abstra
tion) [18℄ O

2

(P ) = F

2

(P ).

Proof: If 
 is a 
omputed answer for the goal truejA, we show that 
jA 2 S

S

P

" !

by indu
tion on the length of the derivation m.

The base 
ase m = 1 
orresponds to the resolution of the goal by a fa
t of the

form A 
: We have 
jA 2 S

S

P

" 1.

For the indu
tion step, the derivation is of the form:

(truejA) �! (djA

1

; :::; A

n

) �!

�

(
j�):

By the ^-
ompositionality lemma there exist 
omputed answers 


1

; :::; 


n

for the

goals A

1

; :::; A

n

, su
h that 
 = d ^

V

n

i=1




i

. By the indu
tion hypothesis there exist




1

jA

1

; :::; 


n

jA

n

2 S

S

P

" !. Thus by de�nition of S

S

P

we obtain 
jA 2 S

S

P

" ! + 1 =

S

S

P

" !.

In the other dire
tion, if 
jA 2 S

S

P

" n, we show by indu
tion on n that 
 is

a 
omputed answer for the goal truejA. The base 
ase n = 1 is equivalent to the

previous base 
ase.

For the indu
tion step, by de�nition of S

S

P

, there exists a renamed 
lause in

normal form (A djA

1

; :::; A

n

) 2 P and f


1

jA

1

; :::; 


n

jA

n

g � S

S

P

" n� 1 su
h that


 = d ^

V

n

i=1

is S-satis�able.
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We thus have the �rst step of resolution:

(truejA) �! (djA

1

; :::; A

n

)

and by indu
tion, for every i, 1 � i � n:

(truejA

i

) �!

�

(


i

j�):

As 
 is satis�able then by lemma 3.7, we dedu
e that

(truejA) �!

�

(
j�):

�

Corollary 5.14 
 is a 
omputed answer for the goal djA

1

; :::; A

n

if and only if there

exists f


1

jA

1

; :::; 


n

jA

n

g � S

S

P

" ! su
h that 
 = d ^

V

n

i=1




i

.

Proof: By the ^-
ompositionality lemma 3.7. �

S

S

P

" ! 
aptures the set of 
omputed answer 
onstraints with program P , never-

theless this set may be in�nite and it may 
ontain too mu
h information for proving

some properties of the program. Abstra
t interpretation [5℄ is a method for prov-

ing properties of programs without handling irrelevant information. The idea is

to repla
e the real 
omputation domain by an abstra
t 
omputation domain whi
h

retains suÆ
ient information w.r.t. the property to prove.

Example 5.15 (Groundness analysis by abstra
t interpretation) Let us 
on-

sider the CLP(H) append program in 5.9, and let us infer information about the

groundness of the arguments of append after a su

ess. More pre
isely let us ask

the following question: what is the groundness relation between arguments after a

su

ess in append?

The term stru
ture 
an be abstra
ted by a boolean stru
ture whi
h expresses the

groundness of the arguments. We thus asso
iate a CLP(Bool) abstra
t program

by abstra
ting equality 
onstraints over Herbrand variables by boolean 
onstraints

representing the groundness of the variables:

append(A,B,C):- A=true, B=C.

append(A,B,C):- A=X/\L, C=X/\R, append(L,B,R).

The least �xed point of the immediate 
onsequen
e operator, 
omputed in at

most 2

3

steps, expresses the groundness relation between arguments of the 
on
rete

program.

S

Bool

P

" 0 = ;

S

Bool

P

" 1 = fA = true;B = Cjappend(A;B;C)g

S

Bool

P

" 2 = S

Bool

P

" 1[

fA = X ^ L;C = X ^ R;L = true;B = Rjappend(A;B;C)g

= S

Bool

P

" 1 [ fC = A ^ Bjappend(A;B;C)g

S

Bool

P

" 3 = S

Bool

P

" 2[

fA = X ^ L;C = X ^ R;R = X ^ Bjappend(A;B;C)g

= S

Bool

P

" 2 [ fC = A ^ Bjappend(A;B;C)g

= S

Bool

P

" 2 = S

Bool

P

" !

In a su

ess of append(A;B;C) C is ground if and only if A and B are ground.

Example 5.16 (Groundness analysis of reverse) Con
rete CLP(H) program:

rev(A,B) :- A=[℄, B=[℄.

rev(A,B) :- A=[X|L℄, rev(L,K), append(K,[X℄,B).
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Abstra
t CLP(Bool) program:

rev(A,B) :- A=true, B=true.

rev(A,B) :- A=X/\L, rev(L,K), append(K,X,B).

S

Bool

P

" 0 = ;

S

Bool

P

" 1 = fA = true;B = truejrev(A;B)g

S

Bool

P

" 2 = S

Bool

P

" 1[fA = X;B = X jrev(A;B)g

= S

Bool

P

" 1 [ fA = Bjrev(A;B)g

S

Bool

P

" 3 = S

Bool

P

" 2[fA = X ^ L;L = K;B = K ^X jrev(A;B)g

= S

Bool

P

" 2 [ fA = Bjrev(A;B)g= S

Bool

P

" 2 = S

Bool

P

" !

The �xpoint semanti
s is also useful to link the operational semanti
s of CLP

programs to their logi
al semanti
s.

Theorem 5.17 (Soundness of CSLD resolution) [26℄ Let P be a CLP (S) pro-

gram. If 
 is a 
omputed answer for the goal G then 
 is a 
orre
t answer.

Proof: If G = (djA

1

; :::; A

n

), we dedu
e from the ^-
ompositionality lemma

3.7,that there exist 
omputed answers 


1

; :::; 


n

for the goals A

1

; :::; A

n

su
h that


 = d ^

V

n

i=1




i

is satis�able. For every i, 1 � i � n we have




i

jA

i

2 S

S

P

" !, by 5.13,

[


i

jA

i

℄

S

�M

S

P

, by 5.11, and 5.2,

P j=

S

8(


i

� A

i

) as M

S

P

is the least S-model of P ,

P j=

S

8(
 � A

i

) as S j= 8(
 � 


i

).

Therefore we have P j=

S

8(
 � (d ^ A

1

^ ::: ^A

n

)). �

Theorem 5.18 (Completeness of CSLD resolution) [36℄ Let P be a CLP (S)

program. If 
 is a 
orre
t answer for the goal G then there exists a (possibly in�nite)

set f


i

g

i�0

of 
omputed answers for G, su
h that:

S j= 8(
 �

_

i�0

9Y

i




i

):

Proof: A

ording to the ^-
ompositionality lemma 3.7, it is suÆ
ient to prove

the theorem for an atomi
 goal A. Let 
 be a 
orre
t answer for the goal A. For

every solution � of 
,

A� is true in all the S-models of P ,

i� A� is true in the least S-model of P ,

i� A� 2 T

S

P

" !, by 5.5,

i� A� 2 [S

S

P

" !℄

S

, by 5.10,

i� 


�

jA 2 S

S

P

" !, for some 
onstraint 


�

s.t. � is solution of 9Y

�




�

, where

Y

�

= V (


�

) n V (A),

i� 


�

is a 
omputed answer for A (by 5.13).

By taking the 
olle
tion of all these 
onstraints 


�

we obtain:

S j= 8(
 �

_




�

9Y

�




�

)

�

The fa
t that a possibly in�nite set of 
omputed answers has to be 
onsidered

to insure the 
ompleteness w.r.t. 
orre
t answers in the stru
ture S, is the same as

for logi
 programs without 
onstraints, when the Herbrand's domain, H, is formed

on a �nite alphabet. For instan
e if S

F

= f0; sg, then with the program

P = fp(0); p(s(X)) p(X)g
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the goal p(X) has an in�nite set of su

essful derivations with set of 
omputed

substitutions

fX  s

i

(0) j i � 0g:

We have P;H j= 8Xp(X), but the identity substitution is not a 
omputed answer.

If we take for the notion of 
orre
t answers, not the truth in the stru
ture S,

but the truth w.r.t. the logi
al 
onsequen
es of the theory T of presentation of S,

the number of 
omputed answers to 
onsider is �nite.

Theorem 5.19 (Completeness w.r.t. the theory of the stru
ture) [36℄ Let

P be a 
onstraint logi
 program on a stru
ture S presented by a theory T . If

P; T j= 8(
 � G) ^ 9(
)

then there exists a �nite set f


1

; :::; 


n

g of 
omputed answers to G, su
h that:

T j= 8(
 � 9Y

1




1

_ ::: _ 9Y

n




n

):

Proof: If P; T j= 
 � G then for every model S of T , for every S-solution � of 
,

there exists a 
omputed 
onstraint 


S;�

for G s.t. S j= 


S;�

�. Let f


i

g

i�0

be the set

of these 
omputed answers.

Then for every model S and for every S-valuation �, S j= 
 � _

i�1

9Y

i




i

,

therefore T j= 
 � _

i�1

9Y

i




i

, hen
e by applying the 
ompa
tness theorem of �rst-

order logi
, there exists a �nite part, let f


i

g

1�i�n

, su
h that T j= 
 � _

n

i=1

9Y

i




i

.

�

5.4 Observation of Finite Failures

De�nition 5.20 Let P a program CLP(S). A derivation CSLD is fair if every

atom whi
h appears in a goal of the derivation is sele
ted after a �nite number of

resolution steps.

A fair CSLD tree for a goal G is a CSLD derivation tree for G in whi
h all

derivations are fair.

A goal G i �nitely failed if G has a fair CSLD derivation tree to G, whi
h is

�nite and whi
h 
ontains no su

ess.

Finite failure is another observable property of logi
 programs that it is worth


onsidering in addition to 
omputed answers. Finite failure 
orresponds to a notion

of negative answer to a goal. However the logi
al semanti
s based on the logi
al


onsequen
es of the program where ea
h rule is viewed as an impli
ation doesn't

allow us to infere negative logi
al 
onsequen
es, just be
ause the Herbrand's base


onstitute a model of the program in whi
h all the atoms are true.

On the other hand, the de
larative semanti
s based on the least S-model of the

program is unde
idable. This is easy to see on the Herbrand's domain with a Prolog

program. Indeed, let us suppose the opposite, as Prolog is a language universal,

there thus exists a Prolog program for de�ning the following predi
ates:

su

ess(P,B) whi
h is true if M

P

j= 9B (i.e. if the goal B has a su

essful

SLD derivation with the program P ), false otherwise (i.e. M

P

j= :9B),

fail(P,B) the negation of su

ess(P,B).

We obtain a 
ontradi
tion by 
onsidering the following program and goal:
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loop:- loop.


ontr(P):- su

ess(P,P), loop.


ontr(P):- fail(P,P).

?- 
ontr(
ontr).

If 
ontr(
ontr) has an SLD refutation, then it is also the 
ase for the goal

su

ess(
ontr,
ontr) whi
h is true, hen
e fail(
ontr,
ontr) fails, thus by

de�nition of the predi
ate 
ontr, the goal 
ontr(
ontr) doesn't admit an SLD

refutation: a 
ontradi
tion.

If 
ontr(
ontr) admits a su

essful derivation, then the goal fail(
ontr,
ontr)

is true, thus the goal has an SLD refutation: a 
ontradi
tion.

Hen
e we 
on
lude that the programs su

ess and fail 
an not exist.

In order to give a de
larative semanti
s to �nite failures, it is thus ne
essary

to review the logi
al interpretation of the program, and to read the rules of the

program, as de�nitions of the predi
ates by equivalen
es, and instead of by impli-


ations.

De�nition 5.21 Let P be a CLP program on a stru
ture S, presented by a theory

T . The Clark's 
ompletion of P is the set of formulas formed of T and of P

�

de�ned as the set of formulas of the form

8Xp(X)$ (9Y

1




1

^ A

1

1

^ ::: ^ A

1

n

1

) _ ::: _ (9Y

k




k

^ A

k

1

^ ::: ^ A

k

n

k

)

obtained for ea
h predi
ate symbol p 2 P by 
olle
ting the rules whi
h de�ne p in

P , p(X) 


i

jA

i

1

; :::; A

i

n

i

with lo
al variables Y

i

,

or of the form

8X:p(X)

if p is not de�ned in P .

Example 5.22 Let P be the program CLP (H) de�ned by the only rule

p(s(X) p(X)

i.e. p(X)  X = s(Y )jp(Y ). The Clark's 
ompletion of P is the equality theory

CET augmented with

P

�

= f8x p(x)$ 9y x = s(y) ^ p(y):

The goal p(0) is �nitely failed, we verify easily that P

�

; CET j= :p(0). On

the other hand the goal p(X) has an in�nite fair derivation, it is thus not �nitely

failed, hen
e P

�

; CET 6j= :9xp(x). The 
ause of this situation is the existen
e of

non-standard models of CET (
f. 4.8), on the other hand in the standard model

P

�

;H j= :9xp(x).

We shall show that the logi
al 
onsequen
es of the program's 
ompletion does


hara
terize �nite failures. Before that we show that the Clark's 
ompletion doesn't


hange the logi
al semanti
s of 
orre
t answers.

Proposition 5.23 Let P be a 
onstraint logi
 program on a stru
ture S and I be

an S-interpretation on P . The following propositions are equivalent:

i) I is a supported S-model of P ,
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ii) I is a S-model of P

�

.

iii) I is a �xed point of T

S

P

Proof: I is a S-model of P

i� I is a S-model of 8X p(X)  �

1

_ ::: _ �

k

for every formula 8X p(X) $

�

1

_ ::: _ �

k

in P

�

,

i� I is a post-�xed point of T

S

P

, i.e. :T

S

P

(I) � I .

I is a supported S-interpretation of P ,

i� I is a S-model of 8X p(X) ! �

1

_ ::: _ �

k

for every formula 8X p(X) $

�

1

_ ::: _ �

k

in P

�

,

i� I is a pre-�xed point of T

S

P

, i.e. I � T

S

P

(I).

We dedu
e that I is a supported S-model of P ,

i� I is a S-model of P

�

,

i� I is a �xed point of T

S

P

. �

Theorem 5.24 Let P be a 
onstraint logi
 program on a stru
ture S.

i) P

�

has the same least S-model than P , M

S

P

=M

S

P

�

,

ii) P j=

S


! A i� P

�

j=

S


! A, for every 
onstraint 
 and every atom A,

iii) P; T j= 
! A i� P

�

; T j= 
! A.

Proof: i) follows immediately from 5.5 and 5.23.

For iii) we 
learly have (P; T j= 
 ! A) ) (P

�

; T j= 
 ! A). We show the


ontrapositive of the opposite, (P; T 6j= 
! A)) (P

�

; T 6j= 
! A).

Let I be a model of P and T , based on a stru
ture S, let � be a valuation su
h

that I j= :A� and S j= 
�.

We have M

S

P

j= :A�, thus M

S

P

�

j= :A�, and as T j= 
�, we 
on
lude that

P

�

; T 6j= 
! A.

The proof of ii) is identi
al, the stru
ture S being �xed. �

Remark 5.25 As shown by the 
ompleteness theorems 5.18, and 5.19, P j=

S


!

A doesn't imply P; T j= 
! A. The previous theorem shows that the repla
ement of

P by P

�

exa
tly preserves these di�eren
es for the logi
al 
onsequen
es of the form


! A.

Theorem 5.26 (Soundness of the negation by �nite failure) Let P be a logi


program with 
onstraint on a stru
ture S presented by a theory T . If G is �nitely

failed then P

�

; T j= :G.

Proof: By indu
tion on the height h of the tree in �nite failure for G = 
jA;�

where A is the sele
ted atom at the root of the tree.

In the base 
ase h = 1, the 
onstrained atom 
jA has no CSLD transition, we


an dedu
e that P

�

; T j= :(
 ^ A) hen
e that P

�

; T j= :G.

For the indu
tion step, let us suppose h > 1. Let G

1

; :::; G

n

be the sons of

the root and Y

1

; :::; Y

n

be the respe
tive sets of introdu
ed variables. We have

P

�

; T j= G $ 9Y

1

G

1

_ ::: _ 9

n

G

n

. By indu
tion hypothesis, P

�

; T j= :G

i

for

every 1 � i � n, therefore P

�

; T j= :G. �

Lemma 5.27 If (
jA) �! (djA

1

; :::; A

n

) then [djA℄

S

� T

S

P

([fdjA

1

; :::; djA

n

g℄

S

).

Theorem 5.28 (Completeness of �nite failure) [26℄ Let P be a 
onstraint logi


program on a stru
ture S presented by a theory T . If P

�

; T j= :G then G is �nitely

failed.
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Proof: We show that if G has a fair CSLD tree whi
h is not �nitely failed then

P

�

; T ; 9(G) is satis�able.

If G has a su

esful derivation then by the soundness theorem (5.17), P

�

; T j=

9G. Otherwise G has a fair in�nite CSLD-derivation

G = 


0

jG

0

�! 


1

jG1 �! 


2

jG2 �! :::

For every i � 0, 


i

is T -satis�able, thus by the 
ompa
tness theorem of �rst-order

logi
, 


!

=

S

i�0




i

is T -satis�able.

Let S be a model of T s.t. S j= 9(


!

). Let I

0

= fA� j A 2 G

i

for some i � 0

and let S j= 


!

�g. As the derivation is fair, every atom A in I

0

is sele
ted in a step

of resolution, thus 


!

jA �! 


!

jA

1

; :::; A

n

with [


!

jA℄

S

[ ::: [ [


!

jA

n

℄

S

� I

0

. Of the

lemma 5.27 we dedu
e that I

0

� T

S

P

(I

0

) hen
e I

0

� T

S

P

(I

0

).

By the theorem of Knaster-Tarski, the iterated appli
ation up to ordinal ! of

the operator T

S

P

from I

0

leads to a �xed point I s.t. I

0

� I , thus [


!

jG

0

℄

S

2 I . We

dedu
e that P

�

; 9(G) is S-satis�able, thus that P

�

; T ; 9(G) is satis�able. �

Introdu
ing the 
onne
tive of negation in logi
 programs, suppresses the restri
-

tion to Horn 
lause formulas, and generalizes the approa
h to the whole �rst-order

logi
. The Clark's 
ompletion of logi
 programs with negation 
an be in
onsistent

however, e.g. p  :p:. One solution to restore the 
onsisten
y of su
h programs

is to skip to Kleene's three-valued logi
 [17℄, [33℄. The prin
iple of negation by

�nite failure is 
orre
t but in
omplete w.r.t. the three-valued logi
 semanti
s of

logi
 programs with negation. Another prin
iple 
alled of 
onstru
tive negation is

proved 
omplete for CLP programs with negation in [46℄. In [13℄ we de�ne a prin
i-

ple of 
onstru
tive negation by pruning, where negation is handled by a 
on
urrent

me
hanism of pruning between standard CSLD derivation trees, and whose 
om-

puted answers are 
hara
terized by a simple �xed point semanti
s. These results

make it possible to investigate the implementation of CLP systems not limited to

Horn 
lausal formulas, in whi
h for instan
e the implementation of the optimization

predi
ates (
f. 4.26) 
an be derived [13℄.
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