
Constraint Logi
 Programming

Fran�
ois Fages

2

Copyright 1997-2001 Fran�
ois Fages.

These notes are extra
ted from a
ourse given at E
ole Polyte
hnique, published in

Fren
h by Ellipses, Paris, 1996 [14℄.

Fran�
ois Fages

INRIA Ro
quen
ourt

BP 105

78153 Le Chesnay Cedex

Fran
e.

http://
ontraintes.inria.fr/~fages

Fran
ois.Fages�inria.fr

Contents

1 Introdu
tion 5

2 Logi
al Theories 7

2.1 First-Order Languages . 7

2.2 Mathemati
al Stru
tures . 8

2.3 Proofs . 11

2.4 Completeness of theories and de
idability of stru
tures 12

3 Constraint logi
 programs 17

3.1 Constraints . 17

3.2 CLP(S) Programs . 18

3.3 Pro
edural interpretation . 20

4 Examples 23

4.1 CLP(H) and Prolog . 23

4.2 CLP(RT) . 28

4.3 CLP(H=E) . 28

4.4 CLP(�) . 29

4.5 CLP(R) . 30

4.6 CLP(FD) and CLP(N) . 33

5 Formal semanti
s 39

5.1 Operational Semanti
s . 39

5.2 Observation of Su

esses . 40

5.3 Observation of Computed Constraints 41

5.4 Observation of Finite Failures . 45

3

4 CONTENTS

Chapter 1

Introdu
tion

There exist several fundamental
onne
tions between logi
 and
omputation, that

allow to design programming languages for whi
h the problems of program spe
i�-

ation and program validation have a pre
ise meaning inside the logi
al formalism.

Logi
 programming in a broad sense relies on the following identi�
ations :

Programs = Theories

Computation = Proof sear
h

The basi
 idea is to identify a program to a theory, and the program's exe
ution

to proof sear
h in that theory. In this paradigm, programming is �rst of all a

modeling task.

In the pioneering work of A. Colmerauer and R. Kowalski in the 70's, one
on-

sidered only logi
al
lauses interpreted pro
edurally by a prin
iple of automated

dedu
tion [31℄ [42℄. The programming language Prolog was an in
arnation of these

ideas. D. Warren showed that Prolog
ould be
ompiled very eÆ
iently on standard

ma
hines, but Prolog su�ered from two main drawba
ks: on the one hand the la
k

of data stru
tures other than the logi
al terms, hen
e the unmanageable ne
essity

of axiomatizing \the domain of dis
ourse" in the logi
, on the other hand the la
k of

ontrol stru
tures, hen
e the loss of de
larativity for obtaining exe
utable programs.

The emergen
e of
onstraint logi
 programming (CLP) as de�ned by J. Ja�ar

and J.L. Lassez in the mid 80's,
ontributed to
orre
t these defe
ts in a fundamental

way [26℄. The dis
overy was that both the theory and the te
hnology of logi

programming
ould be generalized to arbitrary mathemati
al stru
tures given with

a de
idable
onstraint language, representing \the domain of dis
ourse". Beside

the Prolog
omputation stru
ture of �rst-order terms with equality
onstraints (the

Herbrand's domain), one
an thus
onsider for instan
e, disequality
onstraints

over �nite or in�nite terms [9℄, real arithmeti
 with linear
onstraints [26℄, integer

arithmeti
, �nite domains [48℄, theories of fun
tionality, et
. One then distinguihes

in the theory, the axiomatization of the stru
tures of interest, from the modeling of

the problem to be solved. Proof sear
h then
ombines hybrid te
hniques for logi
al

resolution, and for
onstraint solving in spe
i�
 stru
tures. Constraints are solved

on
urrently to the logi
al dedu
tion pro
ess, by numeri
al or symboli
 algorithmi

means, exe
uted with
oroutines.

CLP is a
on
ept of programming in whi
h the problem at hand is modeled by

a set of mathemati
al variables and by a set of relations de�ned by:

i) primitive
onstraints, e.g. U = R � I ,

ii) predi
ate symbols de�ned by expressions of the language, e.g.

8x8y path(x; y) () edge(x; y) _ 9z(edge(x; z) ^ path(z; y)):

5

6 CHAPTER 1. INTRODUCTION

The resulting programming style is the one of relational model-based
omputing.

In that paradigm a model is identi�ed to a relation de�ned on the interfa
e variables

R(x; y). The
omposition of relational models is the logi
al
onjun
tion of the

relations,

R

1

jR2(x; y; z) = R

1

(x; y) ^ R

2

(x; z):

The set of solutions of a
omposite model is the interse
tion of the solutions of the

omposing models. This way of stru
turing data and programs into
omposable en-

tities is somewhat similar to the one of obje
t-oriented languages. A fundamental

di�eren
e is that
ontrarily to the paradigm of message passing, whi
h is dire
tional,

relational CLP programs are reversible: the relation on the interfa
e variables are

de�ned whatever are the unknowns, the
omputation involves partial information

stru
tures, the distin
tion between input and output o

urs at exe
ution-time, a
-

ording to the nature of the arguments, that is a

ording to the use of the model.

The
hoi
e of the language for de�ning new relations is
ru
ial for the mathe-

mati
al analysis of the software, as well as for its eÆ
ient
ompilation into ma
hine

ode. The
on
ept of
onstraint logi
 programming doesn't ex
lude that this lan-

guage
omprises programming
on
epts
oming from
on
urrent, obje
t-oriented or

imperative programming. A natural
hoi
e however from the mathemati
al point

of view is to take the predi
ate
al
ulus as the kernel language for de�ning new

relations.

By limiting ourselves to Horn
lausal theories, one de�nes in this way a
lass,

denoted by CLP(S), of
onstraint logi
 programming languages parametrized by

the interpretation stru
ture S [26℄. The
lass of
on
urrent
onstraint languages

CC(S) [43℄ introdu
es in addition some primitives for
on
urren
y (
ommuni
ation,

syn
hronisation) based on
onstraint entailment. CC programs introdu
e a form

of dynami

ontrol with data-driven
omputation, whi
h
an be used to program

onstraint solvers by a set of
on
urrent agents, or to program
omplex resolution

strategies, this opens the way to a new �eld of appli
ations ne
essiting rea
tive

systems instead of transformational systems. CC programs gan be given a sound

and
omplete logi
al semanti
s in the logi
 programming paradigm, yet with a shift

to linear logi
 in order to model a

urately
on
urren
y in CC [15℄.

The su

ess of
ommer
ial produ
ts for
onstraint programming, as for instan
e

CHIP (Cosyte
), Prolog III, IV (PrologIA), ILOG-Solver (ILOG), has shown the

ability of this approa
h of
omputer programming to solve de
laratively industrial

problems of
ombinatorial optimization and
omplex system modeling. However

these su

esses show also that the
urrent state of the art
annot be improved

without some fundamental extensions of :

i) the languages (e.g. negation, quanti�ers, optimization predi
ates, higher-order,

stati
 typing, obje
t-orientation...),

ii) the
onstraint solvers (e.g. global
onstraints, expli
it
ontrol, quanti�ed
on-

straints,
ombination of solvers, fun
tional domains,...),

iii) the exe
ution models (e.g.
on
urren
y, rea
tivity, parallelism, distribution,...).

In these notes we present the
lass of languages CLP, by studying its mathemat-

i
al properties, its prin
iples of implementation, and some examples of appli
ations.

Chapter 2

Logi
al Theories

In this
hapter we re
all the basi
 results of �rst-order logi
 whi
h are relevant

to
onstraint programming. In order to be self-
ontained we present the �rst-order

languages, the mathemati
al stru
tures whi
h give their semanti
s, and their related

proof systems. For a more
omplete treatment of these subje
ts, see e.g. [44℄.

2.1 First-Order Languages

De�nition 2.1 Let S

F

be a
ountable set of fun
tion symbols, denoted by f; g; :::,

given with their arity � (i.e. their number of arguments). Constants are fun
tion

symbols with arity 0. Let V be an in�nite
ountable set of variables (with arity 0),

denoted by x; y:::. The set T of �rst-order terms, denoted by M;N; :::, is de�ned

indu
tively as the least set satisfying :

i) V � T

ii) if f 2 S

F

; �(f) = n; M

1

; :::;M

n

2 T then f(M

1

; :::;M

n

) 2 T

The set of variables o

urring in a term M is denoted by V (M). A term M

ontaining a variable x will be sometimes written M [x℄.

The size of a term, denoted by jM j, is the number of o

urren
es of fun
tions,

onstants and variables symbols in M :

i) jxj = 1 if x 2 V ,

ii) if jf(M

1

; :::;M

n

)j = jM

1

j+ :::+ jM

n

j.

Remark 2.2 Zero-order languages
ontain no variables. Se
ond-order languages

ontain se
ond-order terms representing fun
tions, and allow the presen
e of vari-

ables in pla
e of fun
tions inside �rst-order terms (se
ond-order terms
an be substi-

tuted for se
ond-order variables). Third-order languages
ontain third-order terms

representing fun
tionals and allow the presen
e of variables in pla
e of fun
tion-

als inside se
ond-order terms. Omega-order languages
ontain terms of all �nite

orders.

De�nition 2.3 Let S

P

be a set of predi
ate symbols, denoted by p; q; :::, given with

their arity �. The set P

a

of (�rst-order) atomi
 propositions is the set

P

a

= fp(M

1

; :::;M

n

)jp 2 S

P

; �(p) = n; M

1

; :::;M

n

2 Tg:

De�nition 2.4 Let S

L

= f:;_; 9g be the set of logi
al symbols not, or, there exists

(existen
ial quanti�er). The set P of (�rst-order) logi
al formula denoted by �; ; :::

is de�ned indu
tively as the least set satisfying :

7

8 CHAPTER 2. LOGICAL THEORIES

i) P

a

� P

ii) � 2 P) :� 2 P

iii) �; 2 P) � _ 2 P

iv) x 2 V; � 2 P) 9x� 2 P

The other logi
al symbols ftrue;�;^;�g are de�ned as abbreviations :

� � = :� _

true = � � �

� ^ = :(� � :)

� � = (� �) ^ (� �)

the universal quanti�er, 8, is de�ned as an abbreviation for :

8x� = :9x:�

Quanti�ers are logi
al symbols that de�ne the (universal or existential) nature

of a variable in a proposition. The variables of a proposition � whi
h are not bound

by a quanti�er are said to be free in �. In a term all variable are free. The set of

free variables of a formula �, denoted by V (�), is de�ned indu
tively by:

i) V (x) = fxg

ii) V (f(M

1

; :::;M

n

)) =

S

n

i=1

V (M

i

)

iii) V (p(M

1

; :::;M

n

)) =

S

n

i=1

V (M

i

)

iv) V (:�) = V (�)

v) V (� _) = V (�) [V ()

vi) V (8x�) = V (9x�) = V (�)� fxg

A formula � is
losed if V (�) = ;.

We write 8(�) (resp. 9(�)) for the
losed formula 8x

1

:::8x

n

� (resp. 9x

1

:::9x

n

�)

where fx

1

; :::; x

n

g = V (�).

De�nition 2.5 A
lause is a disjun
tion of universally quanti�ed literals,

8(L

1

_ ::: _ L

n

);

where ea
h literal L

i

is either an atomi
 proposition, A, (
alled a positive literal),

or the negation of an atomi
 proposition, :A (
alled a negative literal).

A Horn
lause is a
lause having at most one positive literal.

2.2 Mathemati
al Stru
tures

A pre-interpretation of a �rst-order language is a mathemati
al stru
ture
omposed

of an interpretation domain D, given with a semanti
 fun
tion [℄, that asso
iates to

ea
h
onstant
 2 S

F

some element [
℄ 2 D, and to ea
h fun
tion symbol f 2 S

F

with arity n � 1, some operator [f ℄ : D

n

! D.

A valuation of the variables is a fun
tion � : V ! D. The valuation of the

terms, denoted by [℄ : T ! D, indu
ed by a valuation � of the variables and a

pre-interpretation < D; [℄ > is de�ned (by stru
tural indu
tion) by :

2.2. MATHEMATICAL STRUCTURES 9

i) [x℄

�

= �(x) if x 2 V ,

ii) [
℄

�

= [
℄ if
 2 S

F

with arity 0, and [
℄ 2 D is the element assigned to
 by

the pre-interpretation,

iii) [f(M

1

; :::;M

n

)℄

�

= [f ℄([M

1

℄

�

; :::; [M

n

℄

�

) if f 2 S

F

with n � 1, [f ℄ is the

operator over D assigned to f by the pre-interpretation, and [M

i

℄

�

2 D is the

element of D assigned re
ursively to the subterm M

i

.

An interpretation I =< D; [℄ > asso
iates in addition to ea
h predi
ate symbol

p 2 S

P

with arity n, a relation [p℄ : D

n

! f0; 1g.

The truth value of an atomi
 proposition p(M

1

; :::;M

n

) in an interpretation I =<

D; [℄ > and a valuation � is the boolean value [p℄([M

1

℄

�

; :::; [M

n

℄

�

).

The truth value of a logi
al formula � in an interpretation I and a valuation � is

determined a

ording to the truth value of the propositions by applying the truth

tables of the logi
al
onne
tors, and the following rules for the quanti�ers :

8x� is true in I and �, if for every substitution of x by an arbitrary element of

the domain d 2 D, �[d=x℄ is true in I and �.

9x� is true in I if there exists an element d 2 D su
h that �[d=x℄ is true in I

and �.

Note that the truth value of a
losed formula is determined solely by the inter-

pretation and doesn't depend on the valuation.

De�nition 2.6 An interpretation I is a model of a
losed formula � if � is true

in I, whi
h is denoted by I j= �.

A
losed formula �

0

is a logi
al
onsequen
e of �
losed, whi
h is denoted by

� j= �

0

, if every model of � is a model of �

0

.

De�nition 2.7 A (non-
losed) formula � is satis�able in an interpretation I if

I j= 9(�), valid in I if I j= 8(I).

A formula � is satis�able if 9(�) has a model, valid if every interpretation is a

model of 8(�), whi
h is denoted by j= �.

Proposition 2.8 Let � and �

0

be two
losed �rst-order formulas. � j= �

0

if and

only if j= � � �

0

.

Proof: Let us suppose � j= �

0

. For every interpretation I , if I j= � then I j= �

0

thus I j= � � �

0

, otherwise I 6j= � and we have again I j= � � �

0

, therefore

j= � � �

0

.

Conversely if I j= � then as j= � � �

0

, we have I j= �

0

, thus � j= �

0

. �

De�nition 2.9 An interpretation I is a model of a set of
losed formulas S os I

is a model of ea
h formula in S.

We say that a set of
losed formulas S is satis�able if S has a model, valid if

every interpretation is a model of S.

The logi
al formulas of the predi
ate
al
ulus are interpreted in arbitrary stru
-

tures formed with a domain, operators and relations. A formula is valid if it is true

in all the interpretations on all
on
eivable mathemati
al stru
tures. The interest

in
lausal forms is that it is possible for these formulas to restri
t the sear
h of a

model to only one \synta
ti
" stru
ture: the Herbrand's universe.

De�nition 2.10 The Herbrand's universe, denoted by H, of a �rst-order language

is the set of
losed terms formed on the fun
tion and
onstant symbols T (S

F

).

TheHerbrand's pre-interpretation is the algebra of
losed terms, whose domain is

the Herbrand's universe, the symbols of
onstant are interpreted by these
onstants

themselves and the symbols of fun
tion are interpreted as term
onstru
tors:

10 CHAPTER 2. LOGICAL THEORIES

i) [
℄ =

ii) [f(M

1

; :::;M

n

)℄ = f([M

1

℄; :::; [M

n

℄)

The Herbrand's base B

H

is the set of
losed atomi
 propositions formed on S

F

and S

P

. A Herbrand's interpretation asso
iates a truth value to every element of

the Herbrand's base. We thus identify a Herbrand's interpretation to a subset of

B

H

, the subset of true atomi
 propositions.

Proposition 2.11 Let S be a set of
lauses. S is insatis�able if and only if S has

no Herbrand's model.

Proof: If S admits a Herbrand's model then S is satis�able,
onversely let I be

an interpretation, and let I

0

be the Herbrand's interpretation de�ned by

I

0

= fP (M

1

; :::;M

n

) 2 B

H

j I j= P (M

1

; :::;M

n

)g:

If I is a model of S, then for every valuation of the variables and for every

lause C 2 S, there exists a positive literal A (resp. negative literal :A) in C su
h

that I j= A (resp. I 6j= A). In parti
ular for every valuation of the variables by

elements of the domain asso
iated to terms of the Herbrand's universe, thus for

every Herbrand's valuation, there exists a literal A (resp. :A) su
h that I

0

j= A

(resp. I

0

6j= A). Therefore I

0

is a Herbrand's model of S. �

The study of the satis�ability of a set of
lauses
an thus be restri
ted to the

only \synta
ti
" interpretations that are Herbrand's interpretations. It is worth

noting that this property is
ase for more general logi
al formulas, in parti
ular

for the existentially quanti�ed formulas. For instan
e p(a) ^ 9x:p(x) is satis�able

but has no Herbrand's model if a is the only
onstant symbol. It doesn't suÆ
e

either to
onsider an in�nite set of
onstants for extending the property to formulas

ontaining arbitrary alternate sequen
es of quanti�ers.

It is however possible to asso
iate to every formula � a
lausal formula �

s

,
alled

the Skolem normal form of �, whi
h is satis�able if and only if � is satis�able. The

�rst transformation
onsists in putting the formula in prenex
onjun
tive normal

form, that is under the form

�x

1

:::�x

k

((L

1

1

_ ::: _ L

1

k

1

) ^ ::: ^ (L

n

1

_ ::: _ L

n

k

n

))

where the L

i

's are literals and ea
h � is a universal or existential quanti�er. This

transformation needs to rename the variables whi
h are quanti�ed several times.

The formula in prenex form is equivalent to the initial formula.

The se
ond transformation,
alled Skolemisation, allows to eliminate the exis-

tential quanti�ers. It
onsists in repla
ing an existentially quanti�ed variable x by

terms of the form f(x

1

; :::; x

n

) where f is a new fun
tion symbol and the x

i

's are the

universally quanti�ed variables whi
h pre
ede the quanti�
ation of x. The formula

obtained in this way is
alled the Skolem's normal form.

Example 2.12 For instan
e the Skolem's normal form of 8x9y8z p(x; y; z) is the

formula 8x8z p(x; f(x); z) where f is a new fun
tion symbol.

The Skolemisation preserves the satis�ability but not ne
essarily the validity (be-

ause the Skolemisation doesn't
ommute with the negation). For instan
e , the for-

mula 8x9y p(x) � p(y) is valid, but its Skolem's normal form, 8x p(x) � p(f(x))

is of
ourse satis�able but not valid.

Proposition 2.13 (Skolem's proposition) Any formula � is satis�able if and

only if its Skolem's normal form �

s

is satis�able.

2.3. PROOFS 11

Proof: If M j= � then one
an
hoose an interpretation of the Skolem's fun
tion

symbols in �

s

a

ording to the M -valuation of the existential variables of � su
h

that M j= �

s

. Conversely, if M j= �

s

, the interpretation of the Skolem's fun
tions

in �

s

gives a valuation of the existential variables in � whi
h shows that M j= �. �

2.3 Proofs

In this se
tion we study the relation of dedu
tion, denoted by `, whi
h allows to

build proofs of logi
al formulas. The fondamental problem of mathemati
al logi
 is

the study of the two relations ` and j=. These relations play
omplementary roles.

In general the de�nition of the semanti
s j= doesn't provide a de
ision pro
edure. It

is the
ase in propositional logi
 with the method of truth tables, but this method

doesn't generalize. The study of the relation of dedu
tion then respond to this

aim. Conversely, the study of the semanti
s of a theory de�ned by the relation of

dedu
tion, allows to prove that the theory is not
ontradi
tory, simply by exhibiting

a model.

A logi
al theory T is a formal system
onstituted by:

i) a �rst-order language formed on a alphabet V; S

F

; S

P

; S

L

,

ii) logi
al axioms:

:A _A (ex
luded middle),

A[x B℄ � 9x A (axiom of substitution),

iii) a set of
losed formulas
alled the non-logi
al axioms, and denoted by T (as

the logi
al
omponents are invariant),

iv) logi
al inferen
e rules:

A

B _ A

(Weakening),

A _ A

A

(Contra
tion),

A _ (B _ C)

(A _B) _ C

(Asso
iativity),

A _ B :A _ C

B _ C

(Cut),

A � B x 62 V (B)

9xA � B

(Existential introdu
tion).

We note T ` � the derivation of the formula � in this formal system, i.e. by the

appli
ation of the inferen
e rules and of the logi
al and non logi
al axioms in T .

A theory T is
ontradi
tory (or in
onsistent) if T ` f ,
onsistent otherwise.

Theorem 2.14 (Dedu
tion theorem) Let T be a �rst-order logi
al theory. For

all formulas �; 2 P we have T ` � � i� T [f�g j= .

Proof: In the dire
tion of the impli
ation ()) the result is immediat by the
ut

rule. Conversely the proof is by indu
tion on the derivation of the formula . �

Theorem 2.15 (Validity) Let T be a �rst-order logi
al theory, and � a formula.

If T ` � then T j= �.

12 CHAPTER 2. LOGICAL THEORIES

Proof: By indu
tion on the length of the dedu
tion of �. �

Corollary 2.16 If T has a model then T is
onsistent

Proof: We show the
ontrapositive: if T is
ontradi
tory, then T ` f , thus

T j= f , i.e. T has no model. �

Theorem 2.17 (G�odel Completeness Theorem (�rst form)) A theory is
on-

sistent i� it has a model.

Proof: The idea is to
onstru
t a Herbrand's model of the theory supposed to

be
onsistent, by interpreting by true the
losed atoms whi
h are theorems of T ,

and by false the
losed atoms whose negation is a theorem of T . If the theory is

not
omplete, this doesn't provide a model, we thus
omplete the theory by adding

axioms in su
h a way as to obtain a
omplete
onsistent theory. For this it is

ne
essary also to extend the alphabet in order to obtain a saturated theory, that

is a theory su
h that if T ` 9xA then there exists a term M of the Herbrand's

universe su
h that T ` A[M=x℄. See for instan
e [44℄. �

Theorem 2.18 (G�odel's Completeness Theorem (se
ond form)) Let T be a

logi
al theory �rst-order, and � be a formula,

T j= � , T ` �:

Proof: If T j= � then T [f:�g has no model, thus by the
ompleteness theorem

in �rst form, T [f:�g ` f , hen
e by the dedu
tion theorem T ` ::�, and thus by

the
ut rule with the axiom of ex
luded middle (plus weakening and
ontra
tion)

we get T ` �. The
onverse is the theorem of validity. �

G�odel's
ompleteness theorem expresses the adequation between the semanti

notion of validity of a formula in all the models of the theory, and the synta
ti

notion of dedu
tion. The following se
tion shows the use of this theorem to de
ide

the validity of a formula in a theory.

2.4 Completeness of theories and de
idability of

stru
tures

De�nition 2.19 A theory T is axiomati
 if the set of non logi
al axioms is re
ur-

sive (i.e. membership to this set
an be de
ided by an algorithm).

For instan
e the theories
ontaining a �nite number of non logi
al axioms are

trivially axiomati
. G�odel's
ompleteness theorem shows that in an axiomati
 the-

ory, the truth in all the models of the theory is re
ursively enumerable. The validity

of a formula
an indeed be veri�ed in �nite time by sear
hing for all possible proofs

(still the satis�able not valid formulas are not re
ursively enumerables). This is

what shall be done in logi
 programming with a very simple proof system whi
h is

well suited to a ma
hine implementation, and whi
h is
omplete for the Horn
lause

formulas.

De�nition 2.20 A theory is
omplete if for every
losed formula �, either T ` �

or T ` :�.

A stru
ture S is axiomatizable if there exists a
omplete axiomati
 theory T

su
h that S is a model of T .

2.4. COMPLETENESSOF THEORIES AND DECIDABILITYOF STRUCTURES13

In a
omplete axiomati
 theory, we
an de
ide whether an arbitrary formula is

satis�able or not. This will be the expe
ted situation for the language of
onstraints.

The question is then to know whether there exist
omplete axiomati
 theories for the

stru
tures of interest, and how these
omplete theories
an be turned into eÆ
ient

algorithms.

The
ompa
tness theorem of the �rst-order logi
 provides a powerful tool to

study stru
tures and theories.

Theorem 2.21 (Compa
tness theorem) Let T be a logi
al �rst-order theory,

and � be a formula. T j= � i� T

0

j= � for some �nite part T

0

of T .

Proof: By the
ompleteness theorem, T j= � i� T ` �. As the proofs are �nite,

they use only a �nite part of the non logi
al axioms of T . Therefore T j= � i�

T

0

j= � for some �nite part T

0

of T . �

Corollary 2.22 A theory T has a model i� every �nite part of T has a model.

Proof: T has no model i� T j= f , i� for some �nite part T

0

of T T

0

j= f , i�

some �nite part of T has no model. �

For instan
e we
an use this theorem to show that there doesn't exist a logi
al

(�rst-order) theory of �nite �elds. Indeed let us suppose the opposite, let T be su
h

a theory whose only models are �nite �elds. Let us
onsider the axioms A

n

whi
h

state that there exist at least n distin
t elements, for instan
e A

3

is the formula

9x9y9z x 6= y ^ y 6= z ^ z 6= x. Let T

0

be the theory formed of T and of all the

A

n

's. Then by hypothesis, T

0

has no model, thus there exists a �nite part T

00

of T

0

whi
h has no model. However let n

0

be an index greater than all the n's su
h that

A

n

2 T

00

, and let C be a �nite �eld of more than n

0

elements, then C is a model of

T

00

, a
ontradi
tion.

The
ompa
tness theorem
an also be used to
onstru
t models. This will be

done in the last
hapter to obtain some
ompleteness results w.r.t. the prin
ipe of

resolution for
onstraint logi
 programmming (
f. 5.19, 5.28).

Another
lassi
 use of the
ompa
tness theorem is to generalize to in�nite graphs

the results obtained for the �nite graphs.

Solved Exer
ise 2.23 In 1976 Appel and Haken proved the famous four-
olors

onje
ture: any map
an be
olored with four
olors (i.e. the verti
es of any �nite

planar graph
an be
olored with four
olors in su
h a way as two adja
ent ver-

ti
es have di�erent
olors). Extend the result to in�nite planar graphs by using the

ompa
tness theorem of �rst-order logi
.

Solution: Let G be an in�nite planar graph. We asso
iate to ea
h vertex of G a

symbol of
onstant, and we
onsider the �rst-order language formed on this in�nite

set of
onstants plus four unary predi
ates,

1

;

2

;

3

;

4

. Let T be the (possibly

in�nite) set of logi
al �rst-order formulas:

i) 8x

W

4

i=1

i

(x),

ii) 8x

V

1�i<j�4

:(

i

(x) ^

j

(x)),

iii)

V

4

i=1

:(

i

(a) ^

i

(b)) for every pair of
onstants fa; bg whi
h denote adja
ent

verti
es in G.

Clearly any
oloring of G with 4
olors gives a model of T , and
onversely if T has

a model then G
an be
olored with four
olors as it is suÆ
ient to
hoose for ea
h

vertex a the
olor

i

(a) whi
h is true in that model.

14 CHAPTER 2. LOGICAL THEORIES

Let T

0

be any �nite part of T , and let G

0

be the (�nite) subgraph of G
ontaining

the verti
es whi
h appear in T

0

. As G

0

is �nite and planar it
an be
olored with 4

olors, thus T

0

has a model.

Now as every �nite part of T is satis�able, we dedu
e from the
ompa
tness

theorem that T is satis�able. Therefore every in�nite planar graph
an be
olored

with four
olors.

The stru
ture of natural numbers, N with 0, s (su

essor), + and =, that is the

linear fragment of integer arithmeti
,
an be shown to be de
idable. Presburger's

arithmeti
 (N; 0; s;+;=)
an be presented with a
omplete axiomati
 theory, formed

with the standard equality axioms:

E

1

: 8x x = x,

E

2

: 8x8y x = y ! s(x) = s(y),

E

3

: 8x8y8z x = y ^ z = v ! (x = z ! y = v),

plus the stronger equality axioms:

E

4

;�

1

: 8x8y s(x) = s(y)! x = y,

E

5

;�

2

: 8x 0 6= s(x),

the de�nition of +:

�

3

: 8x x+ 0 = x,

�

4

: 8x x+ s(y) = s(x+ y).

and the indu
tion prin
iple:

�

5

: �[x 0℄ ^ (8x �! �[x s(x)℄)! 8x� for every formula �.

Note that the following strong equality axioms

E

6

: 8x x 6= s(x),

E

7

: 8x x = 0 _ 9y x = s(y),

are provable by indu
tion. The indu
tion prin
iple
annot be repla
ed by E

6

and E

7

but there does exist presentation of Presburger's arithmeti
 without the indu
tion

s
hema.

Peano's arithmeti

ontains moreover two axioms for �:

�

6

: 8x x� 0 = 0,

�

7

: 8x8y x� s(y) = x� y + x,

This is not suÆ
ient however for obtaining a
omplete theory, and su
h a
omplete

annot exist for the integers with multipli
ation:

Theorem 2.24 (G�odel's in
ompleteness theorem) Any
onsistent axiomati

extension of Peano's arithmeti
 is in
omplete.

Proof: See for instan
e [44℄. The keystone of this very beautiful proof is the

liar paradox of Epimenides (600 b
) whi
h says: \I lie",
ombined with Cantor's

diagonal argument (
f . se
tion 4.17). The idea of the proof is to
onstru
t in

the language of Peano's arithmeti
 � a formula � whi
h is true in the stru
ture

of natural numbers N if and only if � is not provable in �. As N is a model of

�, � is ne
essarily true in N and not provable in �, hen
e � is in
omplete. The

2.4. COMPLETENESSOF THEORIES AND DECIDABILITYOF STRUCTURES15

onstru
tion of su
h a formula � uses an arithmetization of the syntax in whi
h

every formula is asso
iated with an integer,
alled its G�odel number. One then

onstru
ts a unary relation on N indi
ating whether its argument is the G�odel

number of a provable formula in �, and one exhibits a formula expressing its own

negation (a similar
onstru
tion of a Prolog program is given in se
tion 5.4, for

showing the inde
idability of the least Herbrand's model of a logi
 program). This

shows that Peano's arithmeti
 is in
omplete. The
onstru
tion doesn't depend so

mu
h however on the axioms of Peano than on the expressive power of the language

of arithmeti
, and the proof holds in fa
t for any
onsistent extension of Peano's

arithmeti
. �

Corollary 2.25 The stru
ture (N ; 0; 1;+; �) is not axiomatizable.

G�odel's in
ompleteness theorem refutes the existen
e of (even in�nite)
omplete

axiomati
 theories for stru
tures of interest su
h as the natural numbers. Fixing the

domain of dis
ourse in
onstraint programming is thus not harmless, as this time,

G�odel's in
ompleteness theorem
an apply. It will be possible for some stru
tures

only, or for non axiomatizable stru
tures by restri
ting the language of
onstraints

to a de
idable fragment. Of
ourse the theoreti
al de
idability doesn't suÆ
e ei-

ther, we will be espe
ially interested by de
idable fragments with a low algorithmi

omplexity, for whi
h moreover in
remental algorithms
an be designed.

16 CHAPTER 2. LOGICAL THEORIES

Chapter 3

Constraint logi
 programs

The basi
 idea of
onstraint logi
 programmming, introdu
ed by J. Ja�ar and J.L.

Lassez, is to �x a stru
ture of interpretation S representing the \domain of dis-

ourse", and to distinguish in a logi
 program the language of
onstraints on S

supposed to be de
idable, from the language of predi
ates de�ned by logi
al formu-

las. The logi
al formulas allowed for the de�nition of predi
ates are restri
ted to be

Horn
lauses of the form:

A

1

; :::;

m

jA

1

; :::A

n

where the

i

are
onstraints and the A

j

are atoms. These
lauses have both a

de
larative logi
al meaning: A is true if

1

; :::;

m

; A

1

; :::A

n

are true, and a very

simple pro
edural interpretation: to show A it is suÆ
ient to satisfy

1

; :::;

m

and

to show A

1

; :::; A

n

. In this way one de�nes a
lass of programming languages,

denoted by CLP (S), parametrized by the stru
ture S.

3.1 Constraints

We
onsider a �rst-order language de�ned by

i) a set S

F

of symbols of
onstants and of fun
tions,

ii) a set S

C

of predi
ate symbols supposed to
ontain true and =,

iii) a
ountable set V of variables.

An atomi

onstraint is an atomi
 proposition of this language. We assume a set

of basi

onstraints, supposed to be
losed by variable renaming, and to
ontain all

atomi

onstraints. The language of
onstraints is the
losure by
onjon
tion and

existential quanti�
ation of the set of basi

onstraints. Constraints will be denoted

by
; d; :::

Intuitively the basi

onstraints are the formulas that the
onstraint solver
an

deal with, they de�ne the de
idable fragment we are interested in, this fragment

an authorize restri
ted forms of negation or of universal quanti�
ation, without

ontaining ne
essarily all �rst-order formulas.

The
losure by
onjon
tion of the
onstraint language is essential to the prin
iple

of resolution. The
losure by existential quanti�
ation has not the same status, it

serves only to
he
k the satis�ability of the proje
tion of a
omputed
onstraint on

the variables of interest (
f. 3.5).

The interpretation of
onstraints is supposed to be �xed by the
hoi
e of some

mathemati
al stru
ture S = (D; E;O;R) formed with:

17

18 CHAPTER 3. CONSTRAINT LOGIC PROGRAMS

i) a domain D,

ii) a set E � D of distinguished elements asso
iated to ea
h
onstant, denoted

by [
℄ for every
 2 S

F

with arity 0,

iii) a set O of operators on D asso
iated to ea
h fun
tion symbol, denoted by

[f ℄ : D

n

! D for every f 2 S

F

with arity n,

iv) a set R of relations on D asso
iated to ea
h
onstraint predi
ate symbol,

denoted by [p℄ : D

n

! f0; 1g for every p 2 S

C

with arity n.

An S-valuation is a fun
tion � : V ! D that extends to terms by morphism. If

S j=
� we say that
 is satis�able and that � is a solution of
, otherwise we have

S j= :
�.

We shall assume that in the stru
ture S, the
onstraint satis�ability problem is

de
idable. We shall thus suppose without loss of generality that S is presented by

an axiomati
 theory T de�ned on the alphabet S

C

, S

F

, satisfying:

1. (soundness) S j= T

2. (
ompleteness for
onstraint satisfa
tion) for every
onstraint
, either T `

9(
), or T ` :9(
).

Under these assumptions we have that S j= 9(
) i� T ` 9(
). We do not

demand however that T is a
omplete theory be
ause we are merely interested by

the existential
onjun
tive fragment of the language of
onstraints. If the
onstraints

an be arbitrary �rst-order formulas, then
ondition 2) does express that T is a

omplete theory.

3.2 CLP(S) Programs

We
onsider also a set of predi
ate symbols S

P

disjoint from S

C

, representing re-

lations de�ned by program. In the following we
all atom an atomi
 proposition

formed on S

P

, S

F

and V ex
lusively.

De�nition 3.1 A
onstraint logi
 program
lause is a
lause with exa
tly one pos-

itive literal 8(A _ :

1

_ ::::

n

_ :A

1

_ ::: _ :A

n

) where m � 0, n � 0, the

i

's are

atomi

onstraints and the A

j

's are atoms. A
lause of program is denoted by

A

1

; :::;

m

jA

1

; :::A

n

or

A
j�

where
 =

1

^ ::: ^

m

, and where � denotes the sequen
e of atoms A

1

; :::; A

n

. A

is
alled the head of the
lause, and
j� the body. The lo
al variables of the
lause

are the variables whi
h appear uniquely in the body of the
lause.

A
onstraint logi
 program is a �nite set of program
lauses.

De�nition 3.2 A goal
lause is a
lause without positive literal

8(:

1

_ ::::

n

_ :A

1

_ ::: _ :A

n

)

A goal, denoted by

1

; :::;

k

jA

1

; :::; A

n

or a

ording to the previous notations by

j�

stands for the formula

1

^ ::: ^

k

^ A

1

^ ::: ^ A

n

.

3.2. CLP(S) PROGRAMS 19

The reason for di�erentiating the logi
al formula asso
iated to a goal from the

one asso
iated to a goal
lause is that from the point of view of theorem proving,

a refutation expresses that the set of program
lauses P with the goal
lause G,

P [G, is unsatis�able, whereas from the point of view of programming, a su

essful

derivation expresses that the goal G is satis�able, P j= 9(G), both viewpoints are

obviously equivalent as P j= 9(G) if and only if P [:9(G) is unsatis�able, and the

negation of the logi
al formula 9G asso
iated to a goal G is indeed a goal
lause

:9G. In the following we shall be mainly
on
erned with the programming language

point of view, hen
e we shall manipulate goals, rather than goal
lauses.

In order to simplify the proofs, we shall
onsider programs and goals in normal

form, in whi
h the atoms
ontain no fun
tion symbol. There is obviously no loss of

generality as every program or goal
an be transformed under this form by intro-

du
ing new variables and equality
onstraints between these variables and the terms

inside the atoms. For instan
e the normal form of the
lause p(x+1) p(x� 1) is

p(y) y = x+ 1 ^ z = x� 1 j p(z).

The CLP programs are parametrized by the stru
ture S whi
h �xes the interpre-

tation of the
onstraint language. An S-interpretation of the language augmented

with predi
ate symbols in S

P

asso
iates in addition to every p 2 S

P

with arity n, a

relation [p℄ : D

n

! f0; 1g. An S-model of a program P is an S-interpretation model

of P . The S-base, denoted by B

S

, is the set of atoms valued in S:

B

S

= fp(x

1

; :::; x

n

)� j p 2 S

P

of arity n and � is an S-valuation g:

An S-interpretation
an thus be identi�ed to a subset of B

S

formed with the

atoms whi
h are true in the interpretation. Clearly B

S

is a model of every
onstraint

logi
 program on S. In the following (
f. 5.4) we shall show the existen
e of a least

S-model, denoted by M

S

P

.

The logi
al meaning of a CLP program allows to de�ne several de
larative se-

manti
s a

ording to the observation we are interested in, for instan
e:

� only the satis�ability of a goal, 9(G), (i.e. theorem proving point of view),

� or the
onstraints whi
h imply a goal,
 � G, (i.e. programming language

point of view),

Furthermore we
an
onsider:

i) the logi
al
onsequen
es of the program and of the theory of the stru
ture

(proper logi
al semanti
s),

(1) P; T j= 9(G) (4) P; T j=
 � G;

ii) the logi
al
onsequen
es of the program in all the S-models of the program

(logi
al semanti
s with a �xed pre-interpretation),

(2) P j=

S

9(G) (5) P j=

S

 � G;

iii) the truth in the least S-model of the program (algebrai
 semanti
s),

(3) M

S

P

j= 9(G) (6) M

S

P

j=
 � G:

In the following we shall show the equivalen
es (1) , (2) , (3) and (4))

(5) , (6). Only (4) leads to a notion of
orre
t answer weaker than (5) and (6).

In a �rst approximation we shall retain the notion of
orre
t answer to a goal given

by the logi
al semanti
s in a �xed stru
ture S (5).

20 CHAPTER 3. CONSTRAINT LOGIC PROGRAMS

De�nition 3.3 Let P be a CLP(S) program. Let G be a goal. A
onstraint
 is a

semi-
orre
t answer if:

P j=

S

8(
 � G)

 is a
orre
t answer if furthermore
 is S-satis�able:

P j=

S

9(
)

The notion of semi-
orre
t answer is introdu
ed to modelize the
ase where the

onstraint solver e�e
tively used in a CLP(S) system is not
omplete (e.g. 4.18,

4.6). The satis�ability of
omputed
onstraints is partially
he
ked in su
h sys-

tems, the
omputed answers are thus semi-
orre
t answers in general. For sake of

simpli
ity however, the prin
iple of resolution is de�ned in the next se
tion with a

omplete
he
k of satis�ability.

3.3 Pro
edural interpretation

The pra
ti
al justi�
ation for restri
ting the de�nition of predi
ates to Horn
lause

formulas, is that it is possible to asso
iate to su
h formulas an extremely simple

proof system, redu
ed to a single inferen
e rule,
alled CSLD resolution. We present

this inferen
e rule by a rewriting relation on goals.

De�nition 3.4 Let P be a
onstraint logi
 program on S. The rewriting relation

�! on goals is de�ned as the least relation satisfying the following prin
iple of

CSLD resolution

1

:

(p(N

1

; :::; N

k

)

0

jA

1

; :::; A

n

)� 2 P S j= 9(
 ^M

1

= N

1

^ ::: ^M

k

= N

k

^

0

)

(
j�; p(M

1

; :::;M

k

); �

0

) �! (
;M

1

= N

1

; :::;M

n

= N

n

;

0

j �;A

1

; :::; A

n

; �

0

)

where � is a renaming substitution of the program
lause with new variables.

The atom p(M

1

; :::;M

n

) in the goal to redu
e is
alled the sele
ted atom. Note

that there is no rewriting if the resulting
onstraint is not S-satis�able. We write

G �!

C

G

0

for a step of resolution with the
lause C 2 P , and we note �!

�

the

re
exive transitive
losure of �!.

A CSLD derivation for a goal G is a �nite or in�nite sequen
e of goals (G

j

)

j�0

,

and of variants of program
lauses C

j

, su
h that G

0

= G and G

j

�!

C

j

G

j+1

for

every j � 0.

A su

essful derivation (or CSLD refutation) is a �nite CSLD derivation whi
h

terminates with a goal
ontaining
onstraints only.

De�nition 3.5 Let P be a program CLP(S). A
omputed answer for a goal G is

a
onstraint
 obtained by a CSLD refutation from G:

G �!

�

j�

The proje
ted
omputed answer is the
onstraint 9x

1

:::9x

k

 where fx

1

; :::; x

k

g =

V (
) n V (G).

Example 3.6 Consider the following CLP(N) program:

p(0)

p(x+ 1) p(x)

The goal p(y) has the following su

essful derivations:

p(y) �! y = 0j�

p(y) �! y = y

1

+ 1jp(y

1

) �! y = y

1

+ 1 ^ y

1

= 0j�

et
.

The proje
ted
omputed
onstraints are y = 0, y = 1, et
.

1

CSLD stands for Linear resolution for De�nite programs with Constraints and Sele
ted atom.

3.3. PROCEDURAL INTERPRETATION 21

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

... ...

p(y)

y=0j�

y=y1+1jp(y1)

y1=0,y=y1+1j�

y1=y2+1,y=y1+1jp(y2)

y2=0,y1=y2+1,y=y1+1j�

y2=y3+1,y1=y2+1,y=y1+1jp(y3)

Figure 3.1: In�nite CSLD tree of the example 3.6.

Lemma 3.7 (^-
ompositionality)
 is a
omputed answer for the goal (djA

1

; :::; A

n

),

if and only if there exist
omputed answers

1

; :::;

n

for the goals truejA

1

; :::; truejA

n

,

su
h that
 = d ^

V

n

i=1

i

is satis�able.

Proof: By indu
tion on the length of the derivation. �

Corollary 3.8 Independan
e of the sele
tion strategy Let R be a sele
tion strategy

for the atom to sele
t at ea
h resolution step. If
 is a
omputed answer with the

strategy R for the goal G, then for every strategy R

0

, there exists a
omputed answer

0

with the strategy R

0

for the goal G su
h that S j=
$

0

.

The independan
e of the sele
tion strategy shows that for the observation of

su

esses, it is possible to restri
t the sear
h for derivations from a goal G by �xing

an arbitrary sele
tion strategy.

De�nition 3.9 A CSLD derivation tree for a goal G is the tree of all CSLD deriva-

tions obtained from G by �xing a sele
ted atom in ea
h node.

To enumerate all the su

eses to a goal G, the independan
e of the sele
tion

strategy thus shows that it is suÆ
ient to sear
h in an arbitrary CSLD derivation

tree for G.

22 CHAPTER 3. CONSTRAINT LOGIC PROGRAMS

Chapter 4

Examples

4.1 CLP(H) and Prolog

In the
lass of programming languages CLP(H), the interpretation stru
ture is the

algebra of �rst-order terms, the Herbrand's domain H.

The programming language Prolog is an implementation of CLP(H) in whi
h:

i) the
onstraints are only equalities between terms, they are solved by a uni�-

ation algorithm (some implementations of Prolog treat also disequality
on-

straints by a me
hanism of
oroutines,
f. predi
ate dif(X,Y)),

ii) the sele
tion strategy
onsists in solving the atoms from left to right a

ording

to their order in the goal, the atoms to solve are thus implemented with a

sta
k (some implementations have a me
hanism of
oroutines whi
h modi�es

the sele
tion strategy by delaying the sele
tion of some atoms as long as a

variable is not instan
iated, e.g. predi
ate freeze(X,G)),

iii) the sear
h strategy
onsists in sear
hing the derivation tree depth-�rst by

ba
ktra
king.

In Prolog the syntax of the program
lauses is

A :- B1,...,Bn.,

A.

the syntax of the goals is

?- A1,...,Year..

The interpreter enumerates the
omputed answers to a goal by typing ; after

the prompt.

Program 4.1 The dedu
tive data bases give a �rst example of Prolog programs on

an alphabet of
onstants without fun
tion symbols:

gdfather(X,Y):-father(X,Z),parent(Z,Y).

gdmother(X,Y):-mother(X,Z),parent(Z,Y).

parent(X,Y):-father(X,Y).

parent(X,Y):-mother(X,Y).

father(alphonse,
hantal).

mother(emilie,
hantal).

mother(
hantal,julien).

23

24 CHAPTER 4. EXAMPLES

father(julien,simon).

| ?- gdfather(X,Y).

X = alphonse, Y = julien ? ;

no

| ?- gdmother(X,Y).

X = emilie, Y = julien ? ;

X =
hantal, Y = simon ? ;

no

Program 4.2 The introdu
tion of a binary fun
tion symbol allows to represent the

list stru
ture, the usual relations on lists
an be de�ned by simple programs:

member(X,
ons(X,L)).

member(X,
ons(Y,L)):-member(X,L).

append(nil,L,L).

append(
ons(X,L),M,
ons(X,N)):-append(L,M,N).

| ?- member(X,
ons(a,
ons(b,
ons(
,nil)))).

X = a ? ;

X = b ? ;

X =
 ? ;

no

| ?- member(X,Y).

Y =
ons(X,_A) ? ;

Y =
ons(_B,
ons(X,_A)) ? ;

Y =
ons(_C,
ons(_B,
ons(X,_A))) ? ;

Y =
ons(_D,
ons(_C,
ons(_B,
ons(X,_A)))) ? ;

Y =
ons(_E,
ons(_D,
ons(_C,
ons(_B,
ons(X,_A))))) ?

yes

| ?- append(
ons(a,
ons(b,nil)),
ons(
,
ons(d,nil)),L).

L =
ons(a,
ons(b,
ons(
,
ons(d,nil)))) ? ;

no

4.1. CLP(H) AND PROLOG 25

Program 4.3 Lists have a spe
ial syntax in Prolog: [X|L℄ stands for
ons(X,L)

and [℄ for nil. The naive program for reversing a list has a quadrati
 time
omplex-

ity, a standard te
hnique for obtaining a reverse program of linear time
omplexity

is to use a third argument as an a

umulator.

append([℄,L,L).

append([X|L℄,L2,[X|L3℄):-append(L,L2,L3).

reverse([℄,[℄).

reverse([X|L℄,R):-reverse(L,K),append(K,[X℄,R).

| ?- reverse([a,b,
,d℄,M).

M = [d,
,b,a℄ ? ;

no

| ?- reverse(M,[a,b,
,d℄).

M = [d,
,b,a℄ ?

rev(L,R):-rev_lin(L,[℄,R).

rev_lin([℄,R,R).

rev_lin([X|L℄,K,R):-rev_lin(L,[X|K℄,R).

| ?- reverse(X,Y).

X = [℄, Y = [℄ ? ;

X = [_A℄, Y = [_A℄ ? ;

...

Program 4.4 The implementation of the various algorithms for sorting is straight-

forward, prede�ned predi
ates
an be used for
omparing integers.

qui
ksort([℄,[℄).

qui
ksort([X|L℄,R):-

partition(L,Linf,X,Lsup),

qui
ksort(Linf,L1),

qui
ksort(Lsup,L2),

append(L1,[X|L2℄,R).

partition([℄,[℄,_,[℄).

partition([Y|L℄,[Y|Linf℄,X,Lsup):-

Y=<X,

partition(L,Linf,X,Lsup).

partition([Y|L℄,Linf,X,[Y|Lsup℄):-

Y>X,

partition(L,Linf,X,Lsup).

Program 4.5 A (non-deterministi
)
ontext-free grammar
an be dire
tly trans-

lated in a Prolog program. The �rst Prolog interpreter was designed in 1972 by A.

Colmerauer for this purpose. For example the grammar:

senten
e :: nounphrase, verbphrase;

nounphrase :: determiner, noun j noun;

verbphrase :: verb | verb, nounphrase;

verb :: [eats℄;

determiner :: [the℄;

26 CHAPTER 4. EXAMPLES

noun :: [monkey℄ j [banana℄;

an be systemati
ally translated in the following Prolog program for parsing and

synthesis:

senten
e(L):-nounphrase(L1), verbphrase(L2), append(L1,L2,L).

nounphrase(L):- determiner(L1), noun(L2), append(L1,L2,L).

nounphrase(L):- noun(L).

verbphrase(L):- verb(L).

verbphrase(L):- verb(L1), nounphrase(L2), append(L1,L2,L).

verb([eats℄).

determiner([the℄).

noun([monkey℄).

noun([banana℄).

| ?- senten
e([the,monkey,eats℄).

yes

| ?- senten
e([the,eats℄).

no

| ?- senten
e(L).

L = [the,monkey,eats℄ ? ;

L = [the,monkey,eats,the,monkey℄ ? ;

L = [the,monkey,eats,the,banana℄ ? ;

L = [the,monkey,eats,monkey℄ ?

yes

The basi
 operation of a Prolog interpreter is thus the solving of equality
on-

straints over �rst-order terms, with an unbounded signature, i.e. a signature
on-

taining an in�nite set of fun
tion symbols for ea
h arity. The equality in H
an

be
ompletely axiomatized by adding few axioms to the standard equality axioms.

From su
h a
omplete axiomatization one
an derive a simple uni�
ation algorithm

for solving equality
onstraints between terms.

De�nition 4.6 The Clark's equational theory CET [8℄ is the theory formed with

the standard axioms for equality:

E

1

: 8x x = x,

E

2

8x

1

; :::; x

n

; y

1

; :::; y

n

x

1

= y

1

^ ::: ^ x

n

= y

n

! f(x

1

; :::; x

n

) = f(y

1

; :::; y

n

) for

every n and every fun
tion symbol f 2 S

F

with arity n,

E

3

8x

1

; :::; x

n

; y

1

; :::; y

n

x

1

= y

1

^ ::: ^ x

n

= y

n

! p(x

1

; :::; x

n

)! p(y

1

; :::; y

n

) for

every n and every predi
ate symbol p 2 S

P

with arity n.

4.1. CLP(H) AND PROLOG 27

plus the axioms:

E

4

: 8x

1

; :::; x

n

; y

1

; :::; y

n

f(x

1

; :::; x

n

) = f(y

1

; :::; y

n

)! x

1

= y

1

^ ::: ^ x

n

= y

n

for

every fun
tion symbol f 2 S

F

with arity n,

E

5

: 8x

1

; :::; x

m

; y

1

; :::; y

n

f(x

1

; :::; x

m

) 6= g(y

1

; :::; y

n

) for di�erent fun
tion symbols

f; g 2 S

F

with arity m and n respe
tively,

E

6

: 8x M [x℄ 6= x for every term M stri
tly
ontaining x.

One
an noti
e that Presburger's arithmeti

ontains the axioms E

1

� E

6

for

0 and s, while E

7

simply disappears here as we have an in�nite set of fun
tion

symbols.

Proposition 4.7 H is a model of CET.

Exer
ise 4.8 Give a model of E

1

; E

2

; E

3

; E

4

; E

5

not satisfying E

6

(hint: imagine

a stru
ture of in�nite terms).

Give a non standard model of CET, i.e. a model of CET not isomorphi
 to H

(hint: restri
t the stru
ture of in�nite terms to those terms whi
h satisfy E

6

).

The theory CET is an axiomati
 theory whi
h is
omplete for the satisfa
tion of

equality
onstraints between terms in H. This
an be shown simply by orientating

the axioms of CET so as to derive an algorithm for solving equality
onstraints. The

algorithm we obtain in this way was proposed by Herbrand in his thesis in 1930

[22℄, and was later redis
overed by Robinson in his seminal work on automated

dedu
tion [42℄.

De�nition 4.9 A system of equations � is either the symbol false ?, or a
onjon
-

tion of equations between terms M

1

= N

1

^ ::: ^M

n

= N

n

(true if n = 0).

A system of equations is in solved form if it is of the form

x

1

=M

1

^ ::: ^ x

n

=M

n

with n � 0 and fx

1

; :::; x

n

g \ (V (M

1

) [::: [V (M

n

)) = ;.

Clearly if � is a solved form then CET j= 9(�). The Herbrand's uni�
ation

algorithm de
ides the satis�ability of a system � by
omputing a solved form.

De�nition 4.10 The uni�
ation algorithm of Herbrand simpli�es a system of equa-

tions by applying the following rules:

De
 : f(M

1

; :::;M

n

) = f(N

1

; :::; N

n

) ^ � �!M

1

= N

1

^ ::: ^M

n

= N

n

^ �,

De
? : f(M

1

; :::;M

n

) = g(N

1

; :::; N

m

) ^ � �! ? if f 6= g,

Triv : x = x ^ � �! �,

Var : x =M ^ � �! x =M ^ �� if x 62 V (M), x 2 V (�), � = fx Mg,

Var? : x =M ^ � �! ? if x 2 V (M) and x 6=M .

Lemma 4.11 (Validity) If � �!

�

�

0

then CET j= �$ �

0

.

Lemma 4.12 (Termination) There are no in�nite sequen
e of simpli�
ations.

Proposition 4.13 (De
idability of uni�
ation) CET j= 9(�) i� the irredu
ible

form of � is a solved form.

Corollary 4.14 (Completeness of CET) For any equation system �, either CET `

9(�), or CET ` :9(�).

Corollary 4.15 H ` 9(�) i� CET ` 9(�).

28 CHAPTER 4. EXAMPLES

Robinson's uni�
ation algorithm represents the unsolved part of the system as

a sta
k and traverses the terms depth-�rst in left-right order. It
omputes further-

more, if the terms are uni�able, a substitution � whi
h represents the solution set.

Although there exist other uni�
ation algorithms with better (linear) theoreti
al

omplexity, the Herbrand-Robinson's uni�
ation algorithm has a good pra
ti
al ef-

�
ien
y. It is used in the implementation of Prolog, in parti
ular in the Warren's

abstra
t ma
hine, with the optional ommission of the o

ur
he
k (rule V ar?) for

eÆ
ien
y reasons.

Remark 4.16 The de
idability of uni�
ation and the validity lemma show that

the theory CET is
omplete for the existential
onjun
tive fragment of equality

onstraints. If we enri
h the language of
onstraints by authorizing for instan
e

disequality
onstraints (8Y X 6= f(Y)), or arbitrary �rst-order formulas, then the

situation depends on the alphabet.

If the alphabet
ontains an in�nite set of
onstant symbols and fun
tion symbols,

then CET is a
omplete theory [33℄ [38℄, the stru
ture H is thus de
idable.

If the alphabet is �nite, formed of fun
tion symbols f

1

; :::; f

n

with arity n

1

; :::; n

k

,

then it is ne
essary to
onsider the theory CET augmented with the domain-
losure

axiom (DCA):

DCA: 8x9y

1

:::9y

n

x = f

1

(y

1

; :::; y

n

1

) _ ::: _ x = f(y

1

; :::; y

n

k

)

In the
ase of a �nite alphabet the theory CET+DCA is a
omplete theory [38℄.

Therefore in all
ases the stru
ture H is de
idable. The
lass CLP(H)
an thus

be de�ned with more or less powerful
onstraint languages.

4.2 CLP(RT)

The absen
e of o

ur
he
k in Prolog is not justi�ed uniquely by (histori
al) rea-

sons of pra
ti
al eÆ
ien
y but also by the need of programming with
ir
ular data

stru
ture, for representing
ross-referen
es for instan
e.

We
an thus
onsider as
omputation domain the algebra of �nite and in�nite

terms [11℄ or more pre
isely the algebra RT of rational terms, whi
h are �nite or

in�nite terms having a �nite number of distin
t subterms, and whi
h
an thus be

represented by �nite graphs.

If we repla
e in the theory CET the axiom of o

ur
he
k (E

6

) by a new axiom

stating the existen
e of solutions to equation of the form x = f(x), we obtain a

omplete theory of both the algebra RT and the algebra of �nite and in�nite terms

[38℄, these stru
tures are thus elementarily equivalent.

The uni�
ation algorithm of Huet [25℄ is a
omplete uni�
ation algorithm inRT .

The language Prolog II introdu
ed by A. Colmerauer in 1982 in
luded that uni�
a-

tion algorithm together with a treatment of disequality
onstraints by a me
hanism

of
oroutines. Today we
an see Prolog II as an instan
e of CLP(RT). Histori
ally,

it is the theoreti
al study of Prolog II whi
h lead J. Ja�ar and J.L. Lassez in 1986

to the general
on
ept of the
lass CLP.

4.3 CLP(H=E)

By still
onsidering term algebras, we
an de�ne the
lass CLP(H=E) presented by

an equational theory E , that is a theory formed with a re
ursive set of identities

between terms. Birkho�'s theorem shows the
ompleteness of equational reasoning

for semi-de
iding equality in E : E j= M = N i� M =

E

N , i.e. i� M and N are

ongruent modulo E . It is also possible to semi-de
ide the satis�ability of equality

onstraints, E j= 9(M = N), In general however the problem of E-equality in an

equational theory is unde
idable.

4.4. CLP(�) 29

The notion of uni�
ation in H
an be generalized to a notion of uni�
ation with

omplete sets of uni�ers in H=E . However these sets
an be in�nite, for instan
e

the equation f(x; a) = f(a; x) where f is an asso
iative operator has an in�nite

base of uni�ers, �

0

= fx ag; �

1

= fx f(a; a)g; �

2

= fx f(a; f(a; a))g; :::.

It
an also be the
ase that there doesn't exist bases of uni�ers in some equational

theories admitting de
reasing
hains of more and more general uni�ers.

The equational theories of interest are those in whi
h the satis�ability of equality

onstraints is de
idable. It is the
ase for instan
e in theories
ontaining an asso-

iative fun
tion symbol and
onstants, in theories on an arbitrary alphabet with

asso
iative-
ommutative fun
tion symbols (in these theories there exists further-

more an a uni�
ation algorithm whi
h
omputes a �nite base of uni�ers), in some

disjoint unions of equational theories, et
. See [29℄ for a survey.

The equational uni�
ation algorithms, when they exist, do not always pro-

vide eÆ
ient algorithms for solving equality
onstraints. For instan
e asso
iative-

ommutative uni�ability is an NP-
omplete problem whereas the
omputation of

a base of asso
iative-
ommutative unifers is
omplete for the double exponential

omplexity
lass [30℄.

4.4 CLP(�)

In CLP(�) we
onsider the terms of the simply typed �-
al
ul, they are de�ned by

the following grammar of types t and typed expressions e : t:

t ::= v j t

1

! t

2

e : t ::= x : t j (�x : t

1

:e : t

2

) : t

1

! t

2

j (e

1

: t

1

! t

2

(e

2

: t

1

)) : t

2

The symbol � represents the operation of formation of a fun
tion by abstra
tion

of a variable in an expression. The other operation is the appli
ation of a fun
tion

to an expression of the right type. The theory of fun
tionality is de�ned by two

axioms for variable renaming � and appli
ation �:

�x:e

1

=

�

�y:e

1

[y=x℄ if y 62 V (e

1

),

(�x:e

1

)e

2

!

�

e

1

[e

2

=x℄

The type system insures the termination of �-redu
tions modulo �-
onversion.

The property of termination
ombined with the property of
on
uen
e of the �-

al
ulus, allows us to de
ide equality in this theory by simple rewriting:

e

1

=

�;�

e

2

i� #

�

e

1

=

�

#

�

e

2

:

However rewriting doesn't suÆ
e to de
ide the satis�ability of equality
on-

straints. For instan
e to solve the equation FX = GY where F and G are fun
-

tional variables, we
an impose F = G, X = Y , or F = �x:GY , or again F = �x:H ,

G = �y:I with HX = IY whi
h leads ba
k to the previous problem. Uni�
ation in

higher-order languages is an unde
idable problem [24℄, already at order 2 [19℄. It is

worth noting however that as the equality of typed �-expressions is de
idable, the

set of uni�ers of two typed �-expressions is re
ursively enumerable.

Su
h a generalization of Prolog to higher-order logi
 has an extraordinary (ex-

essive!) expressive power. As an illustration of this phenomenon, Cantor's theorem

an be shown in two steps of SLD resolution where the
omputed substitution rep-

resents Cantor's diagonal argument!

Theorem 4.17 (Cantor's Theorem) N

N

is not
ountable.

Proof: (adapted from [24℄).

Let us suppose the opposite 9h : N! (N! N) 8f : N! N 9n : N h(n) =

f After Skolemisation, the formula to refute be
omes 8F h(n(F)) = F whi
h is

equivalent to the goal
lause 8F :h(n(F)) 6= F .

30 CHAPTER 4. EXAMPLES

A refutation of the goal h(n(F) 6= F
an be obtained by two steps of CSLD reso-

lution with two simple properties of the natural numbers expressed by the following

program:

F 6= G F (N) 6= G(N):

N 6= s(N):

The �rst program
lause is used to form the �rst resolvant:

h(n F) 6= F �!

�

1

(h(n F))(I) 6= F (I)

The se
ond
lause gives the refutation

(h(n F))(I) 6= F (I) �!

�

2

[℄

with the sequential substitution

�

2

= fJ h I Ig:fI = n(F)g:fF = �i:s(h i i)g

One veri�es that (h(n F))(I)�

2

= J�

2

and F (I)�

2

= s(J)�

2

. The uni�er �

2

of

the last step of resolution, whi
h generates the
ontradi
tion,
ontains \the diagonal

argument" of Cantor: we
onsider the diagonal (Hii) of H whi
h indi
ates the value

taken by the fun
tion number i at value i, and we
onstru
t the fun
tion f whi
h

asso
iates to i the su

essor of (Hii); then we
onsider the value of f at n = Nf ,

that is at the number of f ; the
ontradi
tion
omes from the fa
t that on the one

hand, by de�nition of H , fn = (Hnn), and on the other hand, by
onstru
tion of

f , fn = S(Hnn). Hen
e su
h a fun
tion h
annot exist. �

It is worth noting that the uni�
ation algorithm on �rst-order terms
ould a

ept

variables in position of fun
tion. However the uni�
ation of these expressions would

be done in the �rst-order model of terms, and not in a theory of fun
tionality.

This generalization of �rst-order uni�
ation is thus not suÆ
ient for �nding the

substitution of f in the previous example, but it allows to �nd the simple
ases of

higher-order uni�
ation, as in the �rst step of resolution.

In fa
t the implemented CLP(�) systems su
h as �-Prolog [39℄
onsider weak

theories of fun
tionality whi
h
orrespond to simple
ases of higher-order uni�
ation.

The interesting features of these programming languages lies in parti
ular in their

type system inherited from the �-
al
ulus, and in the natural generalisation in this

ontext of Horn
lauses to imbri
ated impli
ations, whi
h is the basis of an original

system of modules and of powerful methods for meta-programming.

4.5 CLP(R)

The de
idability of real arithmeti
 (R; 0; 1;+; �;=; <) was shown by Tarski by show-

ing the
ompleteness of the axiomati
 theory of real
losed �elds:

C

1

: (x+ y) + z = x+ (y + z),

C

2

: x+ 0 = x,

C

3

: x+ (�1 � x) = 0,

C

4

: x+ y = y + x,

C

5

: (x � y) � z = x � (y � z),

C

6

: x � 1 = x,

C

7

: x 6= 0! 9y x � y = 1,

4.5. CLP(R) 31

C

8

: x � y = y � x,

C

9

: x � (y + z) = (x � y) + (x � z),

C

10

: 0 6= 1,

O

1

: :(x < x),

O

2

: x < y ! (y < z ! x < z),

O

3

: x < y _ x = y _ y < x,

O

4

: x < y ! x+ z < y + z,

O

5

: 0 < x! (0 < y ! 0 < x � y),

R

1

: 0 < x! 9y y � y = x,

R

2

: y

n

6= 0! 9x y

n

� x

n

+ y

n�1

� x

n�1

+ :::+ y

0

= 0 for every odd integer n.

The result of
ompleteness of this theory shows the de
idability of elementary

geometry, the proof is based on a method for quanti�er elimination [44℄. In prin
i-

ple this method allows us to de
ide the satis�ability of arbitrary �rst-order logi
al

formulas on the reals, with however a tower of exponentials as algorithmi

om-

plexity... CLP(R) systems with that degree of generality have been realized, see

for instan
e [23℄. These prototype systems
ompute answers with of
ourse widely

unstable and unpredi
tible performan
es.

If we limit the
onstraint language to the linear existential fragment, the sat-

isfa
tion problem be
omes polynomial and the algorithms of linear programming

provide powerful de
ision methods [7℄. The Simplex algorithm, for example, has

a quasi-linear pra
ti
al
omplexity in the number of variables. This algorithm
an

moreover handle the in
remental addition and deletion of
onstraints. For these

reasons the Simplex algorithm is still the algorithm of
hoi
e for solving linear
on-

straints in CLP(R) systems, while non-linear
onstraints are simply delayed until

they be
ome linear (e.g. with the freeze predi
ate). Several CLP(R) systems have

been implemented sin
e the mid 80's [26℄ [41℄, and have been su

esfully used in

a wide variety of appli
ations ranging from de
ision support in �nan
ial domains,

veri�
ation and synthesis of analogi
al
ir
uits,
ombinatorial optimization, et
.

[28℄.

The following CLP(R) program expresses the formula for
omputing mortgage.

In the predi
ate mortgage(P; T; I; B;M), P is the total amount, T the duration in

months, I the monthly rate, B the balan
e, andM the monthly reimbursement. The

program
omputes instan
iated answers for di�erent
ombinations of the inputs. It

omputes also linear
onstraints as answers. The last query of the example shows a

ase where the answer is a non-linear
onstraint, the satis�ability of this
onstraint

is not
he
ked by the system (semi-
orre
t answer in general,
f. 3.3).

Program 4.18 [27℄ Example of a CLP(R) program for
omputing mortgage.

mortgage(P,T,I,B,M):- T > 0, T <= 1, B + M = P * (1 + I).

mortgage(P,T,I,B,M):- T > 1, mortgage(P * (1 + I) - M, T - 1, I, B, M).

| ?- mortgage(120000,120,0.01,0,M).

M = 1721.651381 ?

yes

32 CHAPTER 4. EXAMPLES

| ?- mortgage(P,120,0.01,0,1721.651381).

P = 120000 ?

yes

| ?- mortgage(P,120,0.01,B,M).

P = 0.302995*B + 69.700522*M ?

yes

| ?- mortgage(999, 3, Int, 0, 400).

400 = (-400 + (599 + 999*Int) * (1 + Int)) * (1 + Int) ?

yes

The need for
omputing with
omplex data stru
ture obviously remains in

CLP(R). The stru
ture of interest is thus not exa
tly R but more pre
isely the

algebra H(R) of �rst-order terms formed on an alphabet of
onstant and fun
tion

symbols, possibly
ontaining arithmeti
 expressions in their leaves. It has been

shown that under some general
onditions the
ompleteness of a theory for a stru
-

ture S remains for the stru
ture H(S) [46℄. The following example illustrates the

use of lists in CLP(R).

Program 4.19 [26℄ Example of a CLP(R) program for
omputing the tempera-

ture on a dis
rete surfa
e, or more generally for solving the Diri
hlet problem for

Lapla
e's equation by the �nite di�eren
e method. The program spe
i�es that the

temperature in ea
h interior point is the mean of its four neighbors. If the data are

suÆ
iently instan
iated, for instan
e the temperature on the edges is known, the

answers are numeri
al values, otherwise they are linear
onstraints.

lapla
e([H1,H2,H3|T℄):-

lapla
e_ve
(H1,H2,H3), lapla
e([H2,H3|T℄). lapla
e([_,_℄).

lapla
e_ve
([TL,T,TR|T1℄,[ML,M,MR|T2℄,[BL,B,BR|T3℄):-

B + T + ML + MR - 4 * M = 0,

lapla
e_ve
([T,TR|T1℄,[M,MR|T2℄,[B,BR|T3℄).

lapla
e_ve
([_,_℄,[_,_℄,[_,_℄).

| ?- X = [

[0,0,0,0,0,0,0,0,0,0,0℄,

[100,_,_,_,_,_,_,_,_,_,100℄,

[100,_,_,_,_,_,_,_,_,_,100℄,

[100,_,_,_,_,_,_,_,_,_,100℄,

[100,_,_,_,_,_,_,_,_,_,100℄,

[100,_,_,_,_,_,_,_,_,_,100℄,

[100,_,_,_,_,_,_,_,_,_,100℄,

[100,_,_,_,_,_,_,_,_,_,100℄,

[100,_,_,_,_,_,_,_,_,_,100℄,

[100,_,_,_,_,_,_,_,_,_,100℄,

[100,100,100,100,100,100,100,100,100,100,100℄

℄, lapla
e(X).

4.6. CLP(FD) AND CLP(N) 33

X=[[0,0,0,0,0,0,0,0,0,0,0℄,

[100,51.11,32.52,24.56,21.11,20.12,21.11,24.56,32.52,51.11,100℄,

[100,71.91,54.41,44.63,39.74,38.26,39.74,44.63,54.41,71.91,100℄,

[100,82.12,68.59,59.80,54.97,53.44,54.97,59.80,68.59,82.12,100℄,

[100,87.97,78.03,71.00,66.90,65.56,66.90,71.00,78.03,87.97,100℄,

[100,91.71,84.58,79.28,76.07,75.00,76.07,79.28,84.58,91.71,100℄,

[100,94.30,89.29,85.47,83.10,82.30,83.10,85.47,89.29,94.30,100℄,

[100,96.20,92.82,90.20,88.56,88.00,88.56,90.20,92.82,96.20,100℄,

[100,97.67,95.59,93.96,92.93,92.58,92.93,93.96,95.59,97.67,100℄,

[100,98.89,97.90,97.12,96.63,96.46,96.63,97.12,97.90,98.89,100℄,

[100,100,100,100,100,100,100,100,100,100,100℄℄ ?

yes | ?- lapla
e([

[B11, B12, B13, B14℄,

[B21, M22, M23, B24℄,

[B31, M32, M33, B34℄,

[B44, B42, B43, B44℄

℄).

B12 = -B21 - 4*B31 + 16*M32 - 8*M33 + B34 - 4*B42 + B43,

B13 = -B24 + B31 - 8*M32 + 16*M33 - 4*B34 + B42 - 4*B43,

M22 = -B31 + 4*M32 - M33 - B42,

M23 = -M32 + 4*M33 - B34 - B43 ?

yes

4.6 CLP(FD) and CLP(N)

G�odel's in
ompleteness theorem gives fundamental limits on integer arithmeti

on-

straints. In order to obtain a de
idable
onstraint language we
an either
onsider

the linear fragment, (N; 0; 1;+;=), whi
h is
ompletely axiomatized by Presburger's

arithmeti
, or restri
t the
onstraint language on N given with all its operators.

The later approa
h is generally undertaken in the implementations of CLP(FD)

on \�nite domains" where the variables are assumed to take their value in �nite

intervals of the integers. The system CHIP [48℄ was the �rst CLP(FD) system devel-

oped in the mid 80's, following the pioneering work of J.L. Lauriere [34℄. CLP(FD)

systems in
lude in addition to usual arithmeti
 predi
ates,

symboli

onstraints, e.g.

element(I,[x1,...,xk℄,V) true if x

I

= V where I and V are unknowns,

set
ardinality
onstraints, e.g.

ard(N,[X1,...,Xk℄,V) true if there are exa
tly N values equal to V in the

list of unknowns X

1

; :::; X

k

,

higher-order
ardinality
onstraints, e.g.

ard(N,[C1,...,Ck℄) true if there are exa
tly N
onstraints true in the list

C

1

; :::; C

k

.

These
onstraints greatly enhan
e the expressive power of the
onstraint lan-

guage for modeling
ombinatorial optimization problems[48℄.

Program 4.20 One of the simplest example of CLP(FD) program is the N-queens

program. The problem, introdu
ed by Gauss in the early days of
ombinatori
s, is

to pla
e N queens on an N�N
hess board su
h that no two queens are pla
ed on

a same row,
olumn or diagonal. The CLP(FD) program modelizes the problem

with a list of N unknowns whi
h give the line number of ea
h queen in ea
h
olumn

(domain(L,[1,N℄)). The program pla
es �rst the inequality
onstraints between the

variables (X.=/=Y+d), and then enumerates the possible values (labeling), with

34 CHAPTER 4. EXAMPLES

some heuristi
s for
hoosing �rst the queen with the least domain of possible values

((�rst-fail heuristi
s ff) and trying �rst the (lines) values in the middle. Solving

the 200-queens problem is untra
table by pure ba
ktra
king, but takes a few se
onds

with this CLP(FD) program.

queens(N, L) :- list(N, L), domain(L,[1,N℄),

safe(L), labeling(L,ff,middle).

safe([℄).

safe([X| Y℄) :- noatta
k(X, Y), safe(Y).

noatta
k(X, Xs) :- noatta
k(X, Xs, 1).

noatta
k(X, [℄, Nb) :- !.

noatta
k(X, [Y | Ys℄, Nb) :- X.=/=Y, X.=/=Y+Nb, X.=/=Y-Nb,

Nb1 is Nb+1, noatta
k(X, Ys, Nb1).

list(0, [℄):- !.

list(N, [_| L℄) :- M is N-1, list(M, L).

| ?- queens(4,L).

L = [2,4,1,3℄ ? ;

L = [3,1,4,2℄ ? ;

no

Program 4.21 [20℄ The organizers of a
ongress have 3 rooms and 2 days for

eleven half-day sessions (A,B,C,...,K).

The sessions sets

AJ, JI, IE, CF, FG, DH, BD, KE, BIHG, AGE, BHK, ABCH, DFJ

an't be simultaneous (there exists at least one parti
ipant in all the sessions of

these sets). Moreover session E has to be given before session J , and the sessions

D and F before K.

The organizers have to determine a time-tabling. The problem
an be expressed

with a simple CLP(FD) query.

| ?- domain([A,B,C,D,E,F,G,H,I,J,K℄,[1,4℄),

alldifferent([A,J℄),alldifferent([J,I℄),alldifferent([I,E℄),

alldifferent([E,C℄),alldifferent([C,F℄),alldifferent([F,G℄),

alldifferent([D,H℄),alldifferent([B,D℄),alldifferent([K,E℄),

alldifferent([B,I,H,G℄),alldifferent([A,G,E℄),

alldifferent([B,H,K℄),alldifferent([A,B,C,H℄),

alldifferent([D,F,J℄),

J.>E, K.>D, K.>F,

atmost(3,[A,B,C,D,E,F,G,H,I,J,K℄,1),

atmost(3,[A,B,C,D,E,F,G,H,I,J,K℄,2),

atmost(3,[A,B,C,D,E,F,G,H,I,J,K℄,3),

atmost(3,[A,B,C,D,E,F,G,H,I,J,K℄,4),

labeling([A,B,C,D,E,F,G,H,I,J,K℄).

A = 1, B = 2, C = 4, D = 1, E = 2, F = 2, G = 4, H = 3, I = 1, J = 3, K = 4 ?

yes

4.6. CLP(FD) AND CLP(N) 35

For pra
ti
al eÆ
ien
y reasons, the algorithms for
he
king the satis�ability of

CLP(FD)
onstraints are generally not
omplete (the satis�ability of the store of

onstraints is partially
he
ked only), a
omplete
he
k of satis�ability requires

enumeration. The
omputed answers in CLP(FD) systems are thus semi-
orre
t in

general 3.3.

The
onstrained propagation algorithms that are used have for e�e
t to restri
t

the domain of variables by propagating the
onstraints at ea
h resolution step,

often by a simple reasoning on the bounds of the domain of the variables. The

unsatis�ability of the
onstraints is dete
ted when the domain of a variable be
omes

empty. The
onstraints are used to prune the sear
h spa
e
on
urrently to the

logi
al resolution pro
ess. The
onstraint propagation algorithms used in CLP (FD)

originate from Arti�
ial Intelligen
e, they
he
k the
onsisten
y of ea
h
onstraint

separately a

ording to the domain of the variables (ar
-
onsisten
y).

The
onstraint propagation algorithms used in CLP(FD)
an be de
ribed as

parti
ular implementations of a generi
 algorithm based on few prin
iples. For this

purpose let us denote basi

onstraints by
; d::: and
onstraint systems by �;�

0

; ::::

A variable x will be written with its domain x

d

. By abuse of notation, a variable

with a singleton domain x

fvg

denotes the value v 2 FD of the domain. As terms,

v and x

fvg

are not distinguished.

The set of solutions of a
onstraint system � over FD is the set of substitutions

Sol(�;FD) = f� j � = fx

d

 v j x

d

2 V (�); v 2 dg; FD j= ��g

The redu
ed domain of a variable x

d

w.r.t. a basi

onstraint
 is the domain

DR(x

d

;
) = fv 2 d j FD j= 9(
[v=x

d

℄)g

of values v for whi
h the
onstraint
[v=x℄ is satis�able. A
onstraint system � is

ar
-
onsistent if

8
 2 � 8x

d

2 V (
) DR(x

d

;
) = d

De�nition 4.22 The generi

onstraint propgation algorithm simpli�es a system

� of
onstraints over FD with the following rules asso
iated to basi

onstraints:

\forward
he
king" (FC), \looking-ahead" (LA), \partial looking-ahead" (PLA)

and elimination (EL)

Fail:
 ^ � �! ?

if x

d

2 V (
) and DR(x

d

;
) = ;.

FC:
 ^ � �! ��

if V (
) = fx

d

g, d

0

= DR(x

d

;
), d

0

6= ;, and � = fx

d

 y

d

0

g where y 62 V (�).

LA:
 ^ � �!
� ^ ��

if jV (
)j > 1, x

d

2 V (
), d

0

= DR(x

d

;
), d

0

6= ;, d

0

6= d, � = fx

d

 y

d

0

g.

PLA:
 ^ � �!
� ^ ��

if jV (
)j > 1, x

d

2 V (
), DR(x

d

;
) � d

0

� d, d

0

6= ;, � = fx

d

 y

d

0

g.

EL:
 ^ � �! � if FD j=
� for every valuation � of the variables in
 by values

of their domain.

Lemma 4.23 (Validity) If � �!

�

�

�

0

then Sol(�;FD) = f�� j � 2 Sol(�

0

;FD)g.

36 CHAPTER 4. EXAMPLES

For instan
e, disequality
ontraints X.=n=Y) are propagated with the FC rule,

symboli

onstraints as element(I,L,V) are propagated with the LA rule, linear

equalities are propagated with the LA rule using a simple reasoning on the bounds

of the domain: for a
onstraint
 of the form

aX

[k;l℄

� bY

[m;n℄

+ d; a; b > 0; d � 0

we have

DR(X

[k;l℄

;
) = [max(k; k

0

); l℄

DR(Y

[m;n℄

;
) = [m;min(n; n

0

)℄

where k

0

= d

bm+d

a

e and n

0

= b

an�d

b

. The redu
ed domain
an thus be
omputed

in
onstant time in this
ase.

Program 4.24 Resolution of the puzzle SEND+MORE=MONEY by a CLP(FD)

program whi
h requires the exploration of at most two
hoi
e points (or less a

ording

to the
hoi
e of the variable to enumerate �rst).

send(L):-send
(L), labeling(L).

send
([S,E,N,D,M,O,R,Y℄) :-

domain([S,E,N,D,M,O,R,Y℄,[0,9℄),

alldifferent([S,E,N,D,M,O,R,Y℄),

S.=\=0,

M.=\=0,

1000*S+100*E+10*N+D

+ 1000*M+100*O+10*R+E

.= 10000*M+1000*O+100*N+10*E+Y.

| ?- send(L).

L = [9,5,6,7,1,0,8,2℄ ? ;

no

| ?- send
([S,E,N,D,M,O,R,Y℄).

M = 1, O = 0, S = 9,

Y+90*N.=10*R+D+91*E,

alldifferent([E,N,D,R,Y℄),

domain(E,[4,7℄),

domain(N,[5,8℄),

domain(D,[2,8℄),

domain(R,[2,8℄),

domain(Y,[2,8℄) ?

yes

| ?- send
([S,E,N,D,M,O,R,Y℄),indomain(E).

D = 7, E = 5, M = 1, N = 6,

O = 0, R = 8, S = 9, Y = 2 ? ;

no

| ?- send
([S,E,N,D,M,O,R,Y℄),indomain(R).

M = 1, O = 0, R = 8, S = 9,

4.6. CLP(FD) AND CLP(N) 37

Y+90*N.=D+91*E+80,

alldifferent([E,N,D,Y℄),

domain(E,[5,6℄),

domain(N,[6,7℄),

domain(D,[2,7℄),

domain(Y,[2,7℄) ? ;

no

Constraint propagation is a
omplete method for some
onstraints, i.e. it pro-

vides a de
ision pro
edure. It is the
ase for instan
e for systems of inequalities

of the form aX � bY +
 where a; b;
 � 0 [48℄. In this
ase the prin
iple LA is

omplete and gives a simple de
ision pro
edure.

Proposition 4.25 (Completeness of LA) Let � be a
onstraint system of the

form

aX � bY + d; a; b > 0; d � 0:

Let � �!

�

�

�

0

6�!. Then � is satis�able if and only if �

0

6= ?, in whi
h
ase

fx

[k;l℄

 k j x 2 V (�

0

)g is a solution.

Proof: If �

0

= ? then by the validity lemma � is insatis�able. If �

0

6= ? is

irredu
tible, then for every
onstraint
 2 �

0

, and every variable x

d

2 V (
) we have

d = DR(x

d

;
). Let � = fx

[k;l℄

 k j x 2 V (�

0

)g, we
an easily
he
k that ea
h

onstraint in �

0

is satis�ed by �. Indeed let aX

k;l℄

� bY

[m;n℄

+ d be a
onstraint in

�

0

, by de�nition of the redu
ed domain, the
onstraint a:k � Y

[m;n℄

+d is satis�able,

thus a:k � b:m+ d that is � is a solution. Therefore FD j= �

0

�, and by the validity

lemma we get that � is satis�able. �

This
lass of
onstraints is important for s
heduling problems, as they express

pre
eden
e
onstraints, as well as mutual ex
lusion
onstraints with a disjon
tion.

Program 4.26 Solving by simple CLP(FD) queries of a PERT s
heduling problem

with �ve tasks A,B,C,D,E, and of a disjun
tive s
heduling problem where the mutual

ex
lusion
onstraints between the tasks C and D are treated as Prolog
hoi
e point

;.

The higher-order predi
ate minimize(Goal,Cost)
omputes the optimal solu-

tions to the goal Goal w.r.t. the obje
tive fun
tion Cost by bran
h and bound.

?- X.>=Y+2.

domain(Y,[0,4294967290℄),

domain(X,[2,4294967292℄),

X.>=Y+2, t ?

yes | ?- minimize((B.>=A+5,C.>=B+2,D.>=B+3,E.>=C+5,E.>=D+5) , E).

Solution with
ost 13

A = 0, B = 5, D = 8,

E = 13,

domain(C,[7,8℄),

C.>=5+2 ? ;

no | ?- minimize((B.>=A+5,C.>=B+2,D.>=B+3,E.>=C+5,E.>=D+5,

(C.>=D+5 ; D.>=C+5)) , E).

38 CHAPTER 4. EXAMPLES

Solution with
ost 18

Solution with
ost 17

A = 0, B = 5, C = 7, D = 12, E = 17 ? ;

no

Although simple in their prin
iple,
onstraint propagation algorithms have in-

teresting performan
es for solving large systems of
onstraints. Furthermore they

an be applied to
omplex global
onstraints for whi
h the redu
ed domains
an be

omputed or approximated by powerful algorithms from Operations Resear
h and

graph theory. The CLP(FD) programs whi
h have been developed for disjun
tive

s
heduling problems
ompete today with the best solutions from Operations Re-

sear
h [6℄. The reason for this su

ess is the
apability of the language to express

(and experiment qui
kly) both
omplex propagation s
hemes for global
onstraints

and
omplex sear
h strategies.

Chapter 5

Formal semanti
s

The �rst role of the formal semanti
s of a programming language is to de�ne math-

emati
ally what a program
omputes. But of
ourse the notion of
omputation is

relative to the
hoi
e of the properties of the exe
ution that we wish to observe.

We
an be interested for instan
e in the tra
e of the exe
ution, or in the
omputed

answers (the ordered list of answers or the multi-set or the set), or just in the

termination, et
.

A set of observable properties (or observations) of the exe
ution de�nes an equiv-

alen
e relation on the programs: P � P

0

i� for every input, P and P

0

are obser-

vationally undistinguishable. A formal semanti
s S(P) is
orre
t w.r.t. an equiv-

alen
e relation on programs �, if S(P) = S(P

0

)) P � P

0

, fully abstra
t if

S(P) = S(P

0

), P � P

0

.

The formal semanti
s
an be used for analyzing programs or verifying the sound-

ness of program transformations (for optimizing exe
ution for example). The dif-

ferent ways of de�ning the formal semanti
s provide us with di�erent tools for

analyzing programs.

In the following se
tion we study the operational semanti
s of CLP languages,

whi
h are based on the de�nition of the program behavior by an abstra
t ma
hine

(the CSLD resolution rule), then we study for ea
h notion of observable, their related

logi
al, algebrai
 and �xed point semanti
s.

5.1 Operational Semanti
s

For CLP programs, a natural
hoi
e of observation from the point of view of

theorem proving, is the observation of su

esses, that is the existen
e of a CSLD

refutation for a goal. We thus de�ne a �rst equivalen
e relation P �

1

P

0

i� for

every goal G, G has a CSLD refutation in P i� G has one in P

0

.

From the point of view of a programming language, we are of
ourse more

interested by the set of
omputed answers to a goal. We
an thus de�ne a �ner

equivalen
e relation, P �

2

P

0

i� for every goal G, a
onstraint
 is a
omputed

answer a G in P if and only if
 is a
omputed answer to G in P

0

.

We
ould de�ne the operational semanti
s of a program CLP, as respe
tively

the set of goals whi
h admit a CSLD refutation, and the set of pairs of goals and

onstraints, <
;G >, su
h that
 is a
omputed answer for G. The lemma of ^-

ompositionality 3.7 shows however that the
omputed answers to a
ompound goal

(
jA

1

; :::; A

n

), are a simple
ombination of answers to the atomi
 goals (truejA

i

),

1 � i � n. The operational behavior of a CLP program w.r.t. the set of
omputed

answers
an thus be entirely
ara
terized by the set of
omputed answers to atomi

goals only. We
an thus de�ne formally the operational semanti
s of CLP programs

39

40 CHAPTER 5. FORMAL SEMANTICS

for the observation of
omputed answers by the set of
onstrained atoms:

O

2

(P) = f
jA j truejA �!

�

j�g

Clearly we have P �

2

P

0

i� O

2

(P) = O

2

(P

0

).

For the observation of su

eses we
an de�ne the operational semanti
s of the

program simply as a subset of the S-base:

O

1

(P) = fA� 2 B

S

j truejA �!

�

j�; S j=
�g

We have P �

1

P

0

i� O

1

(P) = O

1

(P

0

).

5.2 Observation of Su

esses

In this se
tion we de�ne the �xed point semanti
s and the logi
al semanti
s of

CLP programs for the observation of su

esses, and we show the equivalen
e with

the operational semanti
s O

1

.

De�nition 5.1 Let P be a CLP(S) program. The immediate
onsequen
e operator

T

S

P

: 2

B

S

! 2

B

S

is de�ned as:

T

S

P

(I) = fA� 2 B

S

j there exists a renamed
lause in normal form

(A
jA

1

; :::; A

n

) 2 P; and a valuation � s.t.

S j=
� and fA

1

�; :::; A

n

�g � Igg

Proposition 5.2 Let P be a CLP(S) program, and I be an S-interpretation. I is

a S-model of P if and only if I is a post-�xed point of T

S

P

, T

S

P

(I) � I. Furthermore

I is a supported S-model of P if and only if I is a �xed point of T

S

P

, T

S

P

(I) = I.

Proof: I is a S-model of P ,

i� for ea
h
lause A
jA

1

; :::; A

n

2 P and for ea
h S-valuation �, if S j=
�

and fA

1

�; :::; A

n

�g � I then A� 2 I ,

i� T

S

P

(I) � I .

I is a �xed point of T

S

P

,

i� T

S

P

(I) = I ,

i� I = fA� 2 I j(A
jA

1

; :::; A

n

) 2 P; S j=
�; fA

1

�; :::; A

n

�g � Ig

i� I is a supported S-model of P . �

Proposition 5.3 T

S

P

is a
ontinuous operator on the latti
e of S-interpretations.

Proof: Let X be a
hain of S-interpretations.

A� 2 T

S

P

(sup(X)),

i� (A
jA

1

; :::; A

n

) 2 P , S j=
� and fA

1

�; :::; A

n

�g � sup(X),

i� (A
jA

1

; :::; A

n

) 2 P , S j=
� and fA

1

�; :::; A

n

�g � I , for some I 2 X ,

i� A 2 T

S

P

(I) for some I 2 X ,

i� A 2 sup(T

S

P

(X)). . �

By the theorem of Knaster-Tarski, the operator T

S

P

has a least �xed point, equal

to T

S

P

" !, also equal to its least post-�xed point. We
an thus de�ne the �xed

point semanti
s of a program CLP(S) as the least �xed point of this operator:

F

1

(P) = lfp(T

S

P

) = T

S

P

" !

Theorem 5.4 (Least S-model) [26℄ Let P a
onstraint logi
 program on S. P

has a least S-model, denoted by M

S

P

satisfying:

M

S

P

= F

1

(P)

5.3. OBSERVATION OF COMPUTED CONSTRAINTS 41

Proof: F

1

(P) = lfp(T

S

P

) is also the least post-�xed point of T

S

P

, thus by 5.2,

lfp(T

S

P

) is the least S-model of P . �

Theorem 5.5 [26℄ F

1

(P) = O

1

(P).

Proof: This result is a
orollary of the more general theorem 5.13, given in the

following se
tion on the observation of
omputed
onstraints. �

5.3 Observation of Computed Constraints

The
omputed answers of a program CLP(S)
an also be
hara
terized by a �xed

point semanti
s. The idea is to de�ne an immediate
onsequen
e operator on the

latti
e of
onstrained atoms. There is a
omplete adequa
y between the
omputed

onstraints by CSLD resolution and the
onstraints asso
iated to atoms in the

least �xed point of this operator. This will be used to show a
ompleteness result

w.r.t.
orre
t answers of the logi
al semanti
s.

Let P a
onstraint logi
 program on a stru
ture S presented by a theory T . A

onstrained atom is a pair
jA
omposed of a S-satis�able
onstraint
 and of an

atom A
ontaining no fun
tion symbol. The set of
losed instan
es of a
onstrained

atom is de�ned as:

[
jA℄

S

= fA� j S j=
�g

The set of
onstrained atoms forms a
omplete latti
e
alled the T -base and denoted

by B

T

. A
onstrained interpretation I is a subset of the T -base. We note [I ℄

S

=

fA� j
jA 2 I; S j=
�g the S-interpretation asso
iated to I .

De�nition 5.6 The immediate
onsequen
e operator S

S

P

: 2

B

T

! 2

B

T

is de�ned

as:

S

S

P

(I) = f
jA 2 B

T

j there exists a renamed
lause in normal form

(A djA

1

; :::; A

n

) 2 P; and
onstrained atoms f

1

jA

1

; :::;

n

jA

n

g � I,

s.t.
 = d ^

V

n

i=1

i

is S-satis�ableg.

Exer
ise 5.7 Show that S

S

P

is a
ontinuous operator on the latti
e of
onstrained

interpretations.

De�nition 5.8 The �xed point semanti
s of a program CLP(S) is de�ned as the

least �xed point of S

S

P

,

F

2

(P) = lfp(S

S

P

) = S

S

P

" !:

Example 5.9 Consider the CLP(H) append program

append(A,B,C):- A=[℄, B=C.

append(A,B,C):- A=[X|L℄, C=[X|R℄, append(L,B,R).

The iteration of the non-ground immediate
onsequen
e operator from the empty

onstrained interpretation enumerates the CSLD answer
onstraints to the goal

append(A,B,C):

S

H

P

" 0 = ;

S

H

P

" 1 = fA = [℄; B = Cjappend(A;B;C)g

S

H

P

" 2 = S

H

P

" 1[

fA = [X jL℄; C = [X jR℄; L = [℄; B = Rjappend(A;B;C)g

= S

H

P

" 1 [fA = [X ℄; C = [X jB℄jappend(A;B;C)g

S

H

P

" 3 = S

H

P

" 2 [fA = [X;Y ℄; C = [X;Y jB℄jappend(A;B;C)g

S

H

P

" 4 = S

H

P

" 3 [fA = [X;Y; Z℄; C = [X;Y; ZjB℄jappend(A;B;C)g

::: = :::

42 CHAPTER 5. FORMAL SEMANTICS

Lemma 5.10 For every
onstrained interpretation I, [S

S

P

(I)℄

S

= T

S

P

([I ℄

S

).

Proof: We prove the two in
lusions separately.

Let
jA 2 S

S

P

(I) and � be a valuation solution of
. By de�nition of S

S

P

there

exists a renamed
lause in normal form (A djA

1

; :::; A

n

) 2 P and
onstrained

atoms f

1

jA

1

; :::;

n

jA

n

g � I , su
h that
 = d ^

V

n

i=1

i

. Thus � is also a solution

of

1

; :::;

n

. Therefore fA

1

�; :::; A

n

�g � [I ℄

S

and by de�nition of T

S

P

, we have

A� 2 T

S

P

.

In the other dire
tion, let A� 2 T

S

P

([I ℄

S

). By de�nition of T

S

P

, there exists a

lause (A djA

1

; :::; A

n

) 2 P su
h that A

1

�; :::; A

n

�g � [I ℄

S

and � is solution of d.

By de�nition of [I ℄

S

, there exist
onstrained atoms f

1

jA

1

; :::;

n

jA

n

g � I renamed

in su
h a way as � is a solution of

1

; :::;

n

. Let
 = d ^

V

n

i=1

i

, � is a solution of

, thus
 is S-satis�able and by de�nition of S

S

P

, we have
jA 2 S

S

P

(I). Therefore

A� 2 [S

S

P

(I)℄

S

. �

Theorem 5.11 [26℄ For every ordinal �, T

S

P

" � = [S

S

P

" �℄

S

.

Proof: The proof is by trans�nite indu
tion on �.

The base
ase � = 0 is trivial.

For a su

essor ordinal, we have

[S

S

P

" �℄ = [S

S

P

(S

S

P

" �� 1)℄

S

,

= T

S

P

([S

S

P

" �� 1℄

S

) by lemma 5.10,

= T

S

P

(T

S

P

" �� 1) by indu
tion,

= T

S

P

" �.

For a limit ordinal, we have

[S

S

P

" �℄

S

= [

S

�<�

S

S

P

" �℄

S

=

S

�<�

[S

S

P

" �℄

S

,

=

S

�<�

T

S

P

" � by indu
tion,

= T

S

P

" �. �

Corollary 5.12 For every integer n � 0, T

S

P

" n has a �nite presentation.

Proof: For every integer n, S

S

P

" n is �nite and [S

S

P

" n℄

S

= T

S

P

" n. �

Theorem 5.13 (Full abstra
tion) [18℄ O

2

(P) = F

2

(P).

Proof: If
 is a
omputed answer for the goal truejA, we show that
jA 2 S

S

P

" !

by indu
tion on the length of the derivation m.

The base
ase m = 1
orresponds to the resolution of the goal by a fa
t of the

form A
: We have
jA 2 S

S

P

" 1.

For the indu
tion step, the derivation is of the form:

(truejA) �! (djA

1

; :::; A

n

) �!

�

(
j�):

By the ^-
ompositionality lemma there exist
omputed answers

1

; :::;

n

for the

goals A

1

; :::; A

n

, su
h that
 = d ^

V

n

i=1

i

. By the indu
tion hypothesis there exist

1

jA

1

; :::;

n

jA

n

2 S

S

P

" !. Thus by de�nition of S

S

P

we obtain
jA 2 S

S

P

" ! + 1 =

S

S

P

" !.

In the other dire
tion, if
jA 2 S

S

P

" n, we show by indu
tion on n that
 is

a
omputed answer for the goal truejA. The base
ase n = 1 is equivalent to the

previous base
ase.

For the indu
tion step, by de�nition of S

S

P

, there exists a renamed
lause in

normal form (A djA

1

; :::; A

n

) 2 P and f

1

jA

1

; :::;

n

jA

n

g � S

S

P

" n� 1 su
h that

 = d ^

V

n

i=1

is S-satis�able.

5.3. OBSERVATION OF COMPUTED CONSTRAINTS 43

We thus have the �rst step of resolution:

(truejA) �! (djA

1

; :::; A

n

)

and by indu
tion, for every i, 1 � i � n:

(truejA

i

) �!

�

(

i

j�):

As
 is satis�able then by lemma 3.7, we dedu
e that

(truejA) �!

�

(
j�):

�

Corollary 5.14
 is a
omputed answer for the goal djA

1

; :::; A

n

if and only if there

exists f

1

jA

1

; :::;

n

jA

n

g � S

S

P

" ! su
h that
 = d ^

V

n

i=1

i

.

Proof: By the ^-
ompositionality lemma 3.7. �

S

S

P

" !
aptures the set of
omputed answer
onstraints with program P , never-

theless this set may be in�nite and it may
ontain too mu
h information for proving

some properties of the program. Abstra
t interpretation [5℄ is a method for prov-

ing properties of programs without handling irrelevant information. The idea is

to repla
e the real
omputation domain by an abstra
t
omputation domain whi
h

retains suÆ
ient information w.r.t. the property to prove.

Example 5.15 (Groundness analysis by abstra
t interpretation) Let us
on-

sider the CLP(H) append program in 5.9, and let us infer information about the

groundness of the arguments of append after a su

ess. More pre
isely let us ask

the following question: what is the groundness relation between arguments after a

su

ess in append?

The term stru
ture
an be abstra
ted by a boolean stru
ture whi
h expresses the

groundness of the arguments. We thus asso
iate a CLP(Bool) abstra
t program

by abstra
ting equality
onstraints over Herbrand variables by boolean
onstraints

representing the groundness of the variables:

append(A,B,C):- A=true, B=C.

append(A,B,C):- A=X/\L, C=X/\R, append(L,B,R).

The least �xed point of the immediate
onsequen
e operator,
omputed in at

most 2

3

steps, expresses the groundness relation between arguments of the
on
rete

program.

S

Bool

P

" 0 = ;

S

Bool

P

" 1 = fA = true;B = Cjappend(A;B;C)g

S

Bool

P

" 2 = S

Bool

P

" 1[

fA = X ^ L;C = X ^ R;L = true;B = Rjappend(A;B;C)g

= S

Bool

P

" 1 [fC = A ^ Bjappend(A;B;C)g

S

Bool

P

" 3 = S

Bool

P

" 2[

fA = X ^ L;C = X ^ R;R = X ^ Bjappend(A;B;C)g

= S

Bool

P

" 2 [fC = A ^ Bjappend(A;B;C)g

= S

Bool

P

" 2 = S

Bool

P

" !

In a su

ess of append(A;B;C) C is ground if and only if A and B are ground.

Example 5.16 (Groundness analysis of reverse) Con
rete CLP(H) program:

rev(A,B) :- A=[℄, B=[℄.

rev(A,B) :- A=[X|L℄, rev(L,K), append(K,[X℄,B).

44 CHAPTER 5. FORMAL SEMANTICS

Abstra
t CLP(Bool) program:

rev(A,B) :- A=true, B=true.

rev(A,B) :- A=X/\L, rev(L,K), append(K,X,B).

S

Bool

P

" 0 = ;

S

Bool

P

" 1 = fA = true;B = truejrev(A;B)g

S

Bool

P

" 2 = S

Bool

P

" 1[fA = X;B = X jrev(A;B)g

= S

Bool

P

" 1 [fA = Bjrev(A;B)g

S

Bool

P

" 3 = S

Bool

P

" 2[fA = X ^ L;L = K;B = K ^X jrev(A;B)g

= S

Bool

P

" 2 [fA = Bjrev(A;B)g= S

Bool

P

" 2 = S

Bool

P

" !

The �xpoint semanti
s is also useful to link the operational semanti
s of CLP

programs to their logi
al semanti
s.

Theorem 5.17 (Soundness of CSLD resolution) [26℄ Let P be a CLP (S) pro-

gram. If
 is a
omputed answer for the goal G then
 is a
orre
t answer.

Proof: If G = (djA

1

; :::; A

n

), we dedu
e from the ^-
ompositionality lemma

3.7,that there exist
omputed answers

1

; :::;

n

for the goals A

1

; :::; A

n

su
h that

 = d ^

V

n

i=1

i

is satis�able. For every i, 1 � i � n we have

i

jA

i

2 S

S

P

" !, by 5.13,

[

i

jA

i

℄

S

�M

S

P

, by 5.11, and 5.2,

P j=

S

8(

i

� A

i

) as M

S

P

is the least S-model of P ,

P j=

S

8(
 � A

i

) as S j= 8(
 �

i

).

Therefore we have P j=

S

8(
 � (d ^ A

1

^ ::: ^A

n

)). �

Theorem 5.18 (Completeness of CSLD resolution) [36℄ Let P be a CLP (S)

program. If
 is a
orre
t answer for the goal G then there exists a (possibly in�nite)

set f

i

g

i�0

of
omputed answers for G, su
h that:

S j= 8(
 �

_

i�0

9Y

i

i

):

Proof: A

ording to the ^-
ompositionality lemma 3.7, it is suÆ
ient to prove

the theorem for an atomi
 goal A. Let
 be a
orre
t answer for the goal A. For

every solution � of
,

A� is true in all the S-models of P ,

i� A� is true in the least S-model of P ,

i� A� 2 T

S

P

" !, by 5.5,

i� A� 2 [S

S

P

" !℄

S

, by 5.10,

i�

�

jA 2 S

S

P

" !, for some
onstraint

�

s.t. � is solution of 9Y

�

�

, where

Y

�

= V (

�

) n V (A),

i�

�

is a
omputed answer for A (by 5.13).

By taking the
olle
tion of all these
onstraints

�

we obtain:

S j= 8(
 �

_

�

9Y

�

�

)

�

The fa
t that a possibly in�nite set of
omputed answers has to be
onsidered

to insure the
ompleteness w.r.t.
orre
t answers in the stru
ture S, is the same as

for logi
 programs without
onstraints, when the Herbrand's domain, H, is formed

on a �nite alphabet. For instan
e if S

F

= f0; sg, then with the program

P = fp(0); p(s(X)) p(X)g

5.4. OBSERVATION OF FINITE FAILURES 45

the goal p(X) has an in�nite set of su

essful derivations with set of
omputed

substitutions

fX s

i

(0) j i � 0g:

We have P;H j= 8Xp(X), but the identity substitution is not a
omputed answer.

If we take for the notion of
orre
t answers, not the truth in the stru
ture S,

but the truth w.r.t. the logi
al
onsequen
es of the theory T of presentation of S,

the number of
omputed answers to
onsider is �nite.

Theorem 5.19 (Completeness w.r.t. the theory of the stru
ture) [36℄ Let

P be a
onstraint logi
 program on a stru
ture S presented by a theory T . If

P; T j= 8(
 � G) ^ 9(
)

then there exists a �nite set f

1

; :::;

n

g of
omputed answers to G, su
h that:

T j= 8(
 � 9Y

1

1

_ ::: _ 9Y

n

n

):

Proof: If P; T j=
 � G then for every model S of T , for every S-solution � of
,

there exists a
omputed
onstraint

S;�

for G s.t. S j=

S;�

�. Let f

i

g

i�0

be the set

of these
omputed answers.

Then for every model S and for every S-valuation �, S j=
 � _

i�1

9Y

i

i

,

therefore T j=
 � _

i�1

9Y

i

i

, hen
e by applying the
ompa
tness theorem of �rst-

order logi
, there exists a �nite part, let f

i

g

1�i�n

, su
h that T j=
 � _

n

i=1

9Y

i

i

.

�

5.4 Observation of Finite Failures

De�nition 5.20 Let P a program CLP(S). A derivation CSLD is fair if every

atom whi
h appears in a goal of the derivation is sele
ted after a �nite number of

resolution steps.

A fair CSLD tree for a goal G is a CSLD derivation tree for G in whi
h all

derivations are fair.

A goal G i �nitely failed if G has a fair CSLD derivation tree to G, whi
h is

�nite and whi
h
ontains no su

ess.

Finite failure is another observable property of logi
 programs that it is worth

onsidering in addition to
omputed answers. Finite failure
orresponds to a notion

of negative answer to a goal. However the logi
al semanti
s based on the logi
al

onsequen
es of the program where ea
h rule is viewed as an impli
ation doesn't

allow us to infere negative logi
al
onsequen
es, just be
ause the Herbrand's base

onstitute a model of the program in whi
h all the atoms are true.

On the other hand, the de
larative semanti
s based on the least S-model of the

program is unde
idable. This is easy to see on the Herbrand's domain with a Prolog

program. Indeed, let us suppose the opposite, as Prolog is a language universal,

there thus exists a Prolog program for de�ning the following predi
ates:

su

ess(P,B) whi
h is true if M

P

j= 9B (i.e. if the goal B has a su

essful

SLD derivation with the program P), false otherwise (i.e. M

P

j= :9B),

fail(P,B) the negation of su

ess(P,B).

We obtain a
ontradi
tion by
onsidering the following program and goal:

46 CHAPTER 5. FORMAL SEMANTICS

loop:- loop.

ontr(P):- su

ess(P,P), loop.

ontr(P):- fail(P,P).

?-
ontr(
ontr).

If
ontr(
ontr) has an SLD refutation, then it is also the
ase for the goal

su

ess(
ontr,
ontr) whi
h is true, hen
e fail(
ontr,
ontr) fails, thus by

de�nition of the predi
ate
ontr, the goal
ontr(
ontr) doesn't admit an SLD

refutation: a
ontradi
tion.

If
ontr(
ontr) admits a su

essful derivation, then the goal fail(
ontr,
ontr)

is true, thus the goal has an SLD refutation: a
ontradi
tion.

Hen
e we
on
lude that the programs su

ess and fail
an not exist.

In order to give a de
larative semanti
s to �nite failures, it is thus ne
essary

to review the logi
al interpretation of the program, and to read the rules of the

program, as de�nitions of the predi
ates by equivalen
es, and instead of by impli-

ations.

De�nition 5.21 Let P be a CLP program on a stru
ture S, presented by a theory

T . The Clark's
ompletion of P is the set of formulas formed of T and of P

�

de�ned as the set of formulas of the form

8Xp(X)$ (9Y

1

1

^ A

1

1

^ ::: ^ A

1

n

1

) _ ::: _ (9Y

k

k

^ A

k

1

^ ::: ^ A

k

n

k

)

obtained for ea
h predi
ate symbol p 2 P by
olle
ting the rules whi
h de�ne p in

P , p(X)

i

jA

i

1

; :::; A

i

n

i

with lo
al variables Y

i

,

or of the form

8X:p(X)

if p is not de�ned in P .

Example 5.22 Let P be the program CLP (H) de�ned by the only rule

p(s(X) p(X)

i.e. p(X) X = s(Y)jp(Y). The Clark's
ompletion of P is the equality theory

CET augmented with

P

�

= f8x p(x)$ 9y x = s(y) ^ p(y):

The goal p(0) is �nitely failed, we verify easily that P

�

; CET j= :p(0). On

the other hand the goal p(X) has an in�nite fair derivation, it is thus not �nitely

failed, hen
e P

�

; CET 6j= :9xp(x). The
ause of this situation is the existen
e of

non-standard models of CET (
f. 4.8), on the other hand in the standard model

P

�

;H j= :9xp(x).

We shall show that the logi
al
onsequen
es of the program's
ompletion does

hara
terize �nite failures. Before that we show that the Clark's
ompletion doesn't

hange the logi
al semanti
s of
orre
t answers.

Proposition 5.23 Let P be a
onstraint logi
 program on a stru
ture S and I be

an S-interpretation on P . The following propositions are equivalent:

i) I is a supported S-model of P ,

5.4. OBSERVATION OF FINITE FAILURES 47

ii) I is a S-model of P

�

.

iii) I is a �xed point of T

S

P

Proof: I is a S-model of P

i� I is a S-model of 8X p(X) �

1

_ ::: _ �

k

for every formula 8X p(X) $

�

1

_ ::: _ �

k

in P

�

,

i� I is a post-�xed point of T

S

P

, i.e. :T

S

P

(I) � I .

I is a supported S-interpretation of P ,

i� I is a S-model of 8X p(X) ! �

1

_ ::: _ �

k

for every formula 8X p(X) $

�

1

_ ::: _ �

k

in P

�

,

i� I is a pre-�xed point of T

S

P

, i.e. I � T

S

P

(I).

We dedu
e that I is a supported S-model of P ,

i� I is a S-model of P

�

,

i� I is a �xed point of T

S

P

. �

Theorem 5.24 Let P be a
onstraint logi
 program on a stru
ture S.

i) P

�

has the same least S-model than P , M

S

P

=M

S

P

�

,

ii) P j=

S

! A i� P

�

j=

S

! A, for every
onstraint
 and every atom A,

iii) P; T j=
! A i� P

�

; T j=
! A.

Proof: i) follows immediately from 5.5 and 5.23.

For iii) we
learly have (P; T j=
 ! A)) (P

�

; T j=
 ! A). We show the

ontrapositive of the opposite, (P; T 6j=
! A)) (P

�

; T 6j=
! A).

Let I be a model of P and T , based on a stru
ture S, let � be a valuation su
h

that I j= :A� and S j=
�.

We have M

S

P

j= :A�, thus M

S

P

�

j= :A�, and as T j=
�, we
on
lude that

P

�

; T 6j=
! A.

The proof of ii) is identi
al, the stru
ture S being �xed. �

Remark 5.25 As shown by the
ompleteness theorems 5.18, and 5.19, P j=

S

!

A doesn't imply P; T j=
! A. The previous theorem shows that the repla
ement of

P by P

�

exa
tly preserves these di�eren
es for the logi
al
onsequen
es of the form

! A.

Theorem 5.26 (Soundness of the negation by �nite failure) Let P be a logi

program with
onstraint on a stru
ture S presented by a theory T . If G is �nitely

failed then P

�

; T j= :G.

Proof: By indu
tion on the height h of the tree in �nite failure for G =
jA;�

where A is the sele
ted atom at the root of the tree.

In the base
ase h = 1, the
onstrained atom
jA has no CSLD transition, we

an dedu
e that P

�

; T j= :(
 ^ A) hen
e that P

�

; T j= :G.

For the indu
tion step, let us suppose h > 1. Let G

1

; :::; G

n

be the sons of

the root and Y

1

; :::; Y

n

be the respe
tive sets of introdu
ed variables. We have

P

�

; T j= G $ 9Y

1

G

1

_ ::: _ 9

n

G

n

. By indu
tion hypothesis, P

�

; T j= :G

i

for

every 1 � i � n, therefore P

�

; T j= :G. �

Lemma 5.27 If (
jA) �! (djA

1

; :::; A

n

) then [djA℄

S

� T

S

P

([fdjA

1

; :::; djA

n

g℄

S

).

Theorem 5.28 (Completeness of �nite failure) [26℄ Let P be a
onstraint logi

program on a stru
ture S presented by a theory T . If P

�

; T j= :G then G is �nitely

failed.

48 CHAPTER 5. FORMAL SEMANTICS

Proof: We show that if G has a fair CSLD tree whi
h is not �nitely failed then

P

�

; T ; 9(G) is satis�able.

If G has a su

esful derivation then by the soundness theorem (5.17), P

�

; T j=

9G. Otherwise G has a fair in�nite CSLD-derivation

G =

0

jG

0

�!

1

jG1 �!

2

jG2 �! :::

For every i � 0,

i

is T -satis�able, thus by the
ompa
tness theorem of �rst-order

logi
,

!

=

S

i�0

i

is T -satis�able.

Let S be a model of T s.t. S j= 9(

!

). Let I

0

= fA� j A 2 G

i

for some i � 0

and let S j=

!

�g. As the derivation is fair, every atom A in I

0

is sele
ted in a step

of resolution, thus

!

jA �!

!

jA

1

; :::; A

n

with [

!

jA℄

S

[::: [[

!

jA

n

℄

S

� I

0

. Of the

lemma 5.27 we dedu
e that I

0

� T

S

P

(I

0

) hen
e I

0

� T

S

P

(I

0

).

By the theorem of Knaster-Tarski, the iterated appli
ation up to ordinal ! of

the operator T

S

P

from I

0

leads to a �xed point I s.t. I

0

� I , thus [

!

jG

0

℄

S

2 I . We

dedu
e that P

�

; 9(G) is S-satis�able, thus that P

�

; T ; 9(G) is satis�able. �

Introdu
ing the
onne
tive of negation in logi
 programs, suppresses the restri
-

tion to Horn
lause formulas, and generalizes the approa
h to the whole �rst-order

logi
. The Clark's
ompletion of logi
 programs with negation
an be in
onsistent

however, e.g. p :p:. One solution to restore the
onsisten
y of su
h programs

is to skip to Kleene's three-valued logi
 [17℄, [33℄. The prin
iple of negation by

�nite failure is
orre
t but in
omplete w.r.t. the three-valued logi
 semanti
s of

logi
 programs with negation. Another prin
iple
alled of
onstru
tive negation is

proved
omplete for CLP programs with negation in [46℄. In [13℄ we de�ne a prin
i-

ple of
onstru
tive negation by pruning, where negation is handled by a
on
urrent

me
hanism of pruning between standard CSLD derivation trees, and whose
om-

puted answers are
hara
terized by a simple �xed point semanti
s. These results

make it possible to investigate the implementation of CLP systems not limited to

Horn
lausal formulas, in whi
h for instan
e the implementation of the optimization

predi
ates (
f. 4.26)
an be derived [13℄.

Bibliography

[1℄ K.R. Apt, Logi
 Programming, Handbook of Theoreti
al Computer S
ien
e,

J. van Leeuwen ed., Elsevier, pp.493-574 (1990).

[2℄ K.R. Apt, H.A. Blair, A. Walker, Towards a theory of de
larative knowledge,

in Foundations of dedu
tive databases and logi
 programming, Minker, J.

(ed.), Morgan Kaufmann, Los Altos (1987).

[3℄ K.R. Apt, M.H. van Emden, Contributions to the theory of logi
 program-

ming, JACM, 29(3), pp.841-862 (1982).

[4℄ M. Carlsson et al., Si
stus-Prolog referen
e manual V3, Te
hni
al report,

Swedish Institute in Computer S
ien
e, (1996).

[5℄ P. Cousot, R. Cousot, Abstra
t interpretation and appli
ation to logi
 pro-

grams, Journal of Logi
 Programming, 13(2 et 3), pp.103-179 (1992).

[6℄ Y. Caseau, F. Laburthe, Improved CLP s
heduling with tasks intervals, Pro
.

International Conferen
e on Logi
 Programming, ICLP'94, Santa Margharita

Ligure, MIT Press (1994).

[7℄ V. Chvatal, Linear programming, W. H. Freeman and Co, 478pp. (1983)

[8℄ K.L. Clark, Negation as Failure, in Logi
 and Databases, Ed. H. Gallaire and

J. Minker, Plenum Pub. (1978).

[9℄ A. Colmerauer, Prolog II: Referen
e manual and theoreti
al model, Rapport

GIA, Univ. Marseille. (1982).

[10℄ A. Colmerauer : "Opening the Prolog-III universe", Byte, August 1987.

[11℄ B. Cour
elle, Fundamentals properties of in�nite trees, Theoreti
al Computer

S
ien
e, 25(2), pp.95-169, (1983).

[12℄ M. Din
bas, H. Simonis and P. Van Hentenry
k : "Solving large
ombinatorial

problems in Logi
 Programming", ECRC te
hni
al report TR-LP-21, 1987,

and Journal of Logi
 Programming, 8(1-2), pp.74-94, (1990).

[13℄ F. Fages, Constru
tive negation by pruning, Journal of Logi
 Programming,

32(2), pp.85-118, August 1997.

[14℄ F. Fages, Programmation logique par
ontraintes, Ellipses, Paris, 192p., 1996.

[15℄ F. Fages, P. Ruet, S. Soliman, Linear
on
urrent
onstraint programming: op-

erational and phase semanti
s, Information and Computation, 165(1), Febru-

ary 2001.

[16℄ M. Falas
hi, G. Levi, M. Martelli, C. Palamidessi, A model-theoreti
 re
on-

stru
tion of the operational semanti
s of logi
 programs, Information and

Control 103, pp.86-113 (1993).

49

50 BIBLIOGRAPHY

[17℄ M. Fitting, A Kripke/Kleene semanti
s for logi
 programs, Journal of Logi

Programming, 2(4), pp.295-312 (1985)

[18℄ M. Gabbrielli, G. Levi, Modeling answer
onstraints in
onstraint logi
 pro-

grams, Pro
. International Symposium on Logi
 Programming ICLP'91, Paris,

MIT Press pp.238-252, (1991).

[19℄ W.D. Goldfarb, The unde
idability of the se
ond-order uni�
ation problem,

Theoreti
al Computer S
ien
e, Vol. 13, pp. 225-230 (1981).

[20℄ M. Gondran, M. Minoux, Graphes et algorithmes, Colle
tion de la Dire
tion

des

�

Etudes et Re
her
hes D'

�

Ele
tri
it�e de Fran
e, 37, (1995).

[21℄ Gotha, Les probl�emes d'ordonnan
ement, Re
her
he

Op�erationnelle/Operations Resear
h, 27(1), pp.77-150 (1993).

[22℄ J. Herbrand, Re
her
hes sur la th�eorie de la d�emonstration, Th�ese de do
torat

(1930), in E
rits logiques, PUF (1968).

[23℄ H. Hong, RISC-CLP(Real): logi
 programming with non-linear
onstraints

over the Reals, in \Constraint logi
 programming : sele
ted resear
h", Ed. F.

Benhamou and A. Colmerauer ed., MIT Press, 1993.

[24℄ G.P. Huet, Constrained resolution: a
omplete method for higher order logi
,

Ph. D. thesis, Case Western Reserve Univ (1972).

[25℄ G. Huet, R�esolution d'�equation dans les langages d'ordre 1, 2, ... omega, Th�ese

d'�etat, Univ. d'Orsay (1976).

[26℄ J. Ja�ar and J-L. Lassez, Constraint Logi
 Programming, Resear
h Report,

University of Melbourne, 1986. Also in the pro
eedings of POPL'87 (1987).

[27℄ J. Ja�ar and S. Mi
haylov, Methodology and implementation of a CLP sys-

tem, in Pro
. 4th Internation Conferen
e on Logi
 Programming, pp.196-218,

Cambridge, MIT Press, (1987).

[28℄ J. Ja�ar and M. Maher, Constraint Logi
 Programming: a survey, Journal of

Logi
 Programming, 19-20, (1994).

[29℄ J.P. Jouannaud, C. Kir
hner, Solving equations in abstra
t algebras: a rule-

based survey of uni�
ation, in Computational logi
, J.L. Lassez and G. Plotkin

ed., MIT Press (1991).

[30℄ D. Kapur, P. Narendran, Complexity of uni�
ation problems with asso
iative-

ommutative operators, Journal of Automated Reasoning, 9, pp. 261-288

(1992).

[31℄ R. Kowalski, Predi
ate Logi
 as Programming Language, Information Pro-

essing 74, pp.569-574, (1974).

[32℄ R. Kowalski, Logi
 for Problem Solving, North Holland (1979).

[33℄ K. Kunen, Negation in logi
 programming, Journal of Logi
 Programming,

4(3), pp.289-308, (1987).

[34℄ J.L. Lauriere, A language and a program for stating and solving
ombinatorial

problems, Arti�
ial Intelligen
e 10, pp.29-127, (1978).

[35℄ J.W. Lloyd, Foundations of Logi
 Programming, Springer Verlag (1987).

BIBLIOGRAPHY 51

[36℄ M. Maher, Logi
 semanti
s for a
lass of
omitted
hoi
e languages, Pro
. 4th

ICLP, MIT Press, pp.858-876 (1987).

[37℄ M. Maher, Equivalen
es of logi
 programs, in Foundations of Dedu
tive

Databases and Logi
 Programming, Morgan Kaufman, pp.627-658, (1988).

[38℄ M. Maher, Complete axiomatizations of the algebras of �nite, rational and

in�nite trees, Pro
 3rd Symp. on Logi
 in Computer S
ien
e, Edinburgh,

pp.348-357, (1988).

[39℄ D. Miller, A logi
 programming language with �-abstra
tion, fun
tion vari-

ables and simple uni�
ation, Journal of Logi
 and Computation, 1(4), pp.497-

536 (1991).

[40℄ R. Mohr and T.C. Henderson, \Ar
 and path
onsisten
y revisited", Arti�
ial

Intelligen
e, 28:225-233, 1986.

[41℄ W. Older, A. Vellino, Constraint arithmeti
 on real intervals, in \Constraint

logi
 programming : sele
ted resear
h", Ed. F. Benhamou and A. Colmerauer

ed., MIT Press, 1993.

[42℄ J.A. Robinson, A ma
hine-oriented logi
 based on the resolution prin
iple,

JACM 12, 1, pp.23-41 (1965).

[43℄ V.J. Saraswat : "Con
urrent Constraint Programming Languages", MIT

Press series in Logi
 Programming, (1993).

[44℄ J.R. Shoen�eld, Mathemati
al logi
, Addison-Wesley Pub., 1967.

[45℄ L. Sterling, E. Shapiro, The Art of Prolog, MIT Press (1986).

[46℄ P. Stu
key, Constru
tive negation for
onstraint logi
 programming, Pro
.

LICS'91 ACM, (1991).

[47℄ M.H. van Emden, R.H. Kowalski, The semanti
s of predi
ate logique as a

programming language, JACM, 23(4), pp.733-742 (1976).

[48℄ P. Van Hentenry
k : "Constraint Satisfa
tion in Logi
 Programming", MIT

Press 1989.

[49℄ P. Van Hentenry
k and Y. Deville : "EÆ
ient Ar
 Consisten
y Algorithm for

a
lass of CSP Problems", pro
. IJCAI 91, Sidney, 1991.

[50℄ P. Van Hentenry
k, V. Saraswat, Y. Deville, Design, implementation and

evaluation of the
onstraint language CC(FD), in Constraint Programming:

basi
s and trends, A. Podelski Ed., Châtillon-sur-Seine, Springer-Verlag LNCS

910, pp.68-90, (1995).

