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Chapter 1

Introduction

There exist several fundamental connections between logic and computation, that
allow to design programming languages for which the problems of program specifi-
cation and program validation have a precise meaning inside the logical formalism.
Logic programming in a broad sense relies on the following identifications :
Programs = Theories
Computation = Proof search

The basic idea is to identify a program to a theory, and the program’s execution
to proof search in that theory. In this paradigm, programming is first of all a
modeling task.

In the pioneering work of A. Colmerauer and R. Kowalski in the 70’s, one con-
sidered only logical clauses interpreted procedurally by a principle of automated
deduction [31] [42]. The programming language Prolog was an incarnation of these
ideas. D. Warren showed that Prolog could be compiled very efficiently on standard
machines, but Prolog suffered from two main drawbacks: on the one hand the lack
of data structures other than the logical terms, hence the unmanageable necessity
of axiomatizing “the domain of discourse” in the logic, on the other hand the lack of
control structures, hence the loss of declarativity for obtaining executable programs.

The emergence of constraint logic programming (CLP) as defined by J. Jaffar
and J.L. Lassez in the mid 80’s, contributed to correct these defects in a fundamental
way [26]. The discovery was that both the theory and the technology of logic
programming could be generalized to arbitrary mathematical structures given with
a decidable constraint language, representing “the domain of discourse”. Beside
the Prolog computation structure of first-order terms with equality constraints (the
Herbrand’s domain), one can thus consider for instance, disequality constraints
over finite or infinite terms [9], real arithmetic with linear constraints [26], integer
arithmetic, finite domains [48], theories of functionality, etc. One then distinguihes
in the theory, the axiomatization of the structures of interest, from the modeling of
the problem to be solved. Proof search then combines hybrid techniques for logical
resolution, and for constraint solving in specific structures. Constraints are solved
concurrently to the logical deduction process, by numerical or symbolic algorithmic
means, executed with coroutines.

CLP is a concept of programming in which the problem at hand is modeled by
a set of mathematical variables and by a set of relations defined by:

i) primitive constraints, e.g. U = R * I,
ii) predicate symbols defined by expressions of the language, e.g.

VaVy path(z,y) <= edge(z,y)V Iz(edge(x, z) A path(z,y)).
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The resulting programming style is the one of relational model-based computing.
In that paradigm a model is identified to a relation defined on the interface variables
R(z,y). The composition of relational models is the logical conjunction of the
relations,
R|R2(x,y,2) = Ri(x,y) A Ra(x, 2).

The set of solutions of a composite model is the intersection of the solutions of the
composing models. This way of structuring data and programs into composable en-
tities is somewhat similar to the one of object-oriented languages. A fundamental
difference is that contrarily to the paradigm of message passing, which is directional,
relational CLP programs are reversible: the relation on the interface variables are
defined whatever are the unknowns, the computation involves partial information
structures, the distinction between input and output occurs at execution-time, ac-
cording to the nature of the arguments, that is according to the use of the model.

The choice of the language for defining new relations is crucial for the mathe-
matical analysis of the software, as well as for its efficient compilation into machine
code. The concept of constraint logic programming doesn’t exclude that this lan-
guage comprises programming concepts coming from concurrent, object-oriented or
imperative programming. A natural choice however from the mathematical point
of view is to take the predicate calculus as the kernel language for defining new
relations.

By limiting ourselves to Horn clausal theories, one defines in this way a class,
denoted by CLP(S), of constraint logic programming languages parametrized by
the interpretation structure S [26]. The class of concurrent constraint languages
CC(S) [43] introduces in addition some primitives for concurrency (communication,
synchronisation) based on constraint entailment. CC programs introduce a form
of dynamic control with data-driven computation, which can be used to program
constraint solvers by a set of concurrent agents, or to program complex resolution
strategies, this opens the way to a new field of applications necessiting reactive
systems instead of transformational systems. CC programs gan be given a sound
and complete logical semantics in the logic programming paradigm, yet with a shift
to linear logic in order to model accurately concurrency in CC [15].

The success of commercial products for constraint programming, as for instance
CHIP (Cosytec), Prolog III, IV (PrologIA), ILOG-Solver (ILOG), has shown the
ability of this approach of computer programming to solve declaratively industrial
problems of combinatorial optimization and complex system modeling. However
these successes show also that the current state of the art cannot be improved
without some fundamental extensions of :

i) the languages (e.g. negation, quantifiers, optimization predicates, higher-order,
static typing, object-orientation...),

ii) the constraint solvers (e.g. global constraints, explicit control, quantified con-
straints, combination of solvers, functional domains,...),

iii) the execution models (e.g. concurrency, reactivity, parallelism, distribution,...).

In these notes we present the class of languages CLP, by studying its mathemat-
ical properties, its principles of implementation, and some examples of applications.



Chapter 2

Logical Theories

In this chapter we recall the basic results of first-order logic which are relevant
to constraint programming. In order to be self-contained we present the first-order
languages, the mathematical structures which give their semantics, and their related
proof systems. For a more complete treatment of these subjects, see e.g. [44].

2.1 First-Order Languages

Definition 2.1 Let Sg be a countable set of function symbols, denoted by f,g, ...,
given with their arity « (i.e. their number of arguments). Constants are function
symbols with arity 0. Let V be an infinite countable set of variables (with arity 0),
denoted by x,y.... The set T of first-order terms, denoted by M, N, ..., is defined
inductively as the least set satisfying :

i)vcr
it) if f € Sp,a(f) =n, My,...,M, € T then f(My,...M,) €T

The set of variables occurring in a term M is denoted by V(M). A term M
containing a variable z will be sometimes written M|z].

The size of a term, denoted by |M]|, is the number of occurrences of functions,
constants and variables symbols in M :

) |z =1ifzx eV,
i) i |f(My, ..., My)| = | M| + .. + | Ma].

Remark 2.2 Zero-order languages contain no variables. Second-order languages
contain second-order terms representing functions, and allow the presence of vari-
ables in place of functions inside first-order terms (second-order terms can be substi-
tuted for second-order variables). Third-order languages contain third-order terms
representing functionals and allow the presence of variables in place of function-
als inside second-order terms. Omega-order languages contain terms of all finite
orders.

Definition 2.3 Let Sp be a set of predicate symbols, denoted by p, q, ..., given with
their arity . The set P, of (first-order) atomic propositions is the set

P, ={p(My,....Mp)|lp € Sp, a(p) =n, My,...,M, € T}.

Definition 2.4 Let Sy, = {—,V, 3} be the set of logical symbols not, or, there exists
(existencial quantifier). The set P of (first-order) logical formula denoted by ¢, 1, ...
is defined inductively as the least set satisfying :

7
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i) P, CP

ii) € P=>—-¢p€P

iii) ¢, e P=>dV eP
w) zreV, pe P=IzpeP

The other logical symbols {true, D, A,=} are defined as abbreviations :

DY = PV

true = ¢D¢

PAY = =(¢ D)
p=v = (pDYV)A([D9)

the universal quantifier, V, is defined as an abbreviation for :
Vg = —Jz-¢

Quantifiers are logical symbols that define the (universal or existential) nature
of a variable in a proposition. The variables of a proposition ¢ which are not bound
by a quantifier are said to be free in ¢. In a term all variable are free. The set of
free variables of a formula ¢, denoted by V(¢), is defined inductively by:

i) V(z) = {z}

i) V(f(Mi,..., Myn)) = Uiz, V(M;)
i) V(p(My, ..., Mn)) = Uiy V(M)
iv) V(=¢) =V(¢)

v) V(e Vi) =VI(e) UV (¢)
vi) V(Vzg) =V (3zg) = V(¢) — {x}

A formula ¢ is closed if V(¢) = 0.
We write V(@) (resp. 3(¢)) for the closed formula Vz;..Vz,¢ (resp. 3z1..32,0)
where {z1,...,2,} = V().

Definition 2.5 A clause is a disjunction of universally quantified literals,
V(L1 V...V Ly),

where each literal L; is either an atomic proposition, A, (called a positive literal ),
or the negation of an atomic proposition, —=A (called a negative literal ).
A Horn clause is a clause having at most one positive literal.

2.2 Mathematical Structures

A pre-interpretation of a first-order language is a mathematical structure composed
of an interpretation domain D, given with a semantic function [], that associates to
each constant ¢ € Sp some element [¢] € D, and to each function symbol f € Sp
with arity n > 1, some operator [f] : D" — D.

A waluation of the variables is a function p : V' — D. The valuation of the
terms, denoted by [ ] : T — D, induced by a valuation p of the variables and a
pre-interpretation < D, [] > is defined (by structural induction) by :
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i) [z], =pz)ifz eV,

ii) [¢], =[] if ¢ € Sp with arity 0, and [¢] € D is the element assigned to ¢ by
the pre-interpretation,

i) [f(Ma,....,.Mpn)], = [fI([Mil,,....,[My],) if f € Sp with n > 1, [f] is the
operator over D assigned to f by the pre-interpretation, and [M;], € D is the
element of D assigned recursively to the subterm M;.

An interpretation I =< D,[] > associates in addition to each predicate symbol
p € Sp with arity n, a relation [p] : D™ — {0,1}.

The truth value of an atomic proposition p(Mj, ..., M,,) in an interpretation [ =<
D,[] > and a valuation p is the boolean value [p]([Mi],, ..., [My],).

The truth value of a logical formula ¢ in an interpretation I and a valuation p is
determined according to the truth value of the propositions by applying the truth
tables of the logical connectors, and the following rules for the quantifiers :

VYz¢ is true in I and p, if for every substitution of x by an arbitrary element of
the domain d € D, ¢[d/z] is true in I and p.

Jz¢ is true in I if there exists an element d € D such that ¢[d/x] is true in I
and p.

Note that the truth value of a closed formula is determined solely by the inter-
pretation and doesn’t depend on the valuation.

Definition 2.6 An interpretation I is a model of a closed formula ¢ if ¢ is true
in I, which is denoted by I = ¢.

A closed formula ¢’ is a logical consequence of ¢ closed, which is denoted by
¢ = @', if every model of ¢ is a model of ¢'.

Definition 2.7 A (non-closed) formula ¢ is satisfiable in an interpretation I if
I'E=3(¢), valid in I if T EV(I).

A formula ¢ is satisfiable if (p) has a model, valid if every interpretation is a
model of ¥(¢), which is denoted by = ¢.

Proposition 2.8 Let ¢ and ¢' be two closed first-order formulas. ¢ = ¢' if and
onlyif E¢ D ¢.

PROOF: Let us suppose ¢ |= ¢'. For every interpretation I, if I |= ¢ then I = ¢’
thus I = ¢ D ¢', otherwise I £ ¢ and we have again I = ¢ D ¢', therefore
FéDg.

Conversely if I = ¢ then as = ¢ D ¢', we have I |= ¢/, thus ¢ = ¢'. O

Definition 2.9 An interpretation I is a model of a set of closed formulas S os I
is a model of each formula in S.

We say that a set of closed formulas S is satisfiable if S has a model, valid if
every interpretation is a model of S.

The logical formulas of the predicate calculus are interpreted in arbitrary struc-
tures formed with a domain, operators and relations. A formula is valid if it is true
in all the interpretations on all conceivable mathematical structures. The interest
in clausal forms is that it is possible for these formulas to restrict the search of a
model to only one “syntactic” structure: the Herbrand’s universe.

Definition 2.10 The Herbrand’s universe, denoted by H, of a first-order language
is the set of closed terms formed on the function and constant symbols T(SF).
TheHerbrand’s pre-interpretation is the algebra of closed terms, whose domain is
the Herbrand’s universe, the symbols of constant are interpreted by these constants
themselves and the symbols of function are interpreted as term constructors:
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i) [c]=c
i) [f(My,...; Mp)] = f([Mi], ... [My])

The Herbrand’s base By is the set of closed atomic propositions formed on Sg
and Sp. A Herbrand’s interpretation associates a truth value to every element of
the Herbrand’s base. We thus identify a Herbrand’s interpretation to a subset of
By, the subset of true atomic propositions.

Proposition 2.11 Let S be a set of clauses. S is insatisfiable if and only if S has
no Herbrand’s model.

Proor: If S admits a Herbrand’s model then S is satisfiable, conversely let I be
an interpretation, and let I’ be the Herbrand’s interpretation defined by

II = {P(MlaaMn) € BH | I ': P(MlaaMn)}

If I is a model of S, then for every valuation of the variables and for every
clause C' € S, there exists a positive literal A (resp. negative literal =A) in C such
that I = A (resp. I [£ A). In particular for every valuation of the variables by
elements of the domain associated to terms of the Herbrand’s universe, thus for
every Herbrand’s valuation, there exists a literal A (resp. —A) such that I' = A
(vesp. I' £ A). Therefore I' is a Herbrand’s model of S. O

The study of the satisfiability of a set of clauses can thus be restricted to the
only “syntactic” interpretations that are Herbrand’s interpretations. It is worth
noting that this property is flase for more general logical formulas, in particular
for the existentially quantified formulas. For instance p(a) A 3z—p(z) is satisfiable
but has no Herbrand’s model if a is the only constant symbol. It doesn’t suffice
either to consider an infinite set of constants for extending the property to formulas
containing arbitrary alternate sequences of quantifiers.

It is however possible to associate to every formula ¢ a clausal formula ¢°, called
the Skolem normal form of ¢, which is satisfiable if and only if ¢ is satisfiable. The
first transformation consists in putting the formula in prenex comjunctive normal
form, that is under the form

Az Az, (LY V...V L) A ALYV . VL))

where the L;’s are literals and each A is a universal or existential quantifier. This
transformation needs to rename the variables which are quantified several times.
The formula in prenex form is equivalent to the initial formula.

The second transformation, called Skolemisation, allows to eliminate the exis-
tential quantifiers. It consists in replacing an existentially quantified variable = by
terms of the form f(z1,...,z,) where f is a new function symbol and the z;’s are the
universally quantified variables which precede the quantification of z. The formula
obtained in this way is called the Skolem’s normal form.

Example 2.12 For instance the Skolem’s normal form of Yx3yVz p(x,y,z) is the
formula Ya2Vz p(z, f(z),z) where f is a new function symbol.

The Skolemisation preserves the satisfiability but not necessarily the validity (be-
cause the Skolemisation doesn’t commute with the negation). For instance , the for-
mula Y3y p(x) D p(y) is valid, but its Skolem’s normal form, Yz p(x) D p(f(z))
is of course satisfiable but not valid.

Proposition 2.13 (Skolem’s proposition) Any formula ¢ is satisfiable if and
only if its Skolem’s normal form ¢° is satisfiable.



2.3. PROOFS 11

Proor: If M |= ¢ then one can choose an interpretation of the Skolem’s function
symbols in ¢* according to the M-valuation of the existential variables of ¢ such
that M |= ¢°. Conversely, if M = ¢°, the interpretation of the Skolem’s functions
in ¢° gives a valuation of the existential variables in ¢ which shows that M = ¢. O

2.3 Proofs

In this section we study the relation of deduction, denoted by F, which allows to
build proofs of logical formulas. The fondamental problem of mathematical logic is
the study of the two relations - and |=. These relations play complementary roles.
In general the definition of the semantics |= doesn’t provide a decision procedure. It
is the case in propositional logic with the method of truth tables, but this method
doesn’t generalize. The study of the relation of deduction then respond to this
aim. Conversely, the study of the semantics of a theory defined by the relation of
deduction, allows to prove that the theory is not contradictory, simply by exhibiting
a model.
A logical theory T is a formal system constituted by:

i) a first-order language formed on a alphabet V, Sg, Sp, Si,
ii) logical axioms:

-AV A (excluded middle),

Alx + B] D 3z A (axiom of substitution),

iii) a set of closed formulas called the non-logical axioms, and denoted by T (as
the logical components are invariant),

iv) logical inference rules:

BV (Weakening),

AV A
A
AV (BV(O)
(AvB)vVC
AVB =AvC
Bv(C
ADB =z¢V(B)
dzAD B

(Contraction),

(Associativity),

(Cut),

(Existential introduction).

We note T F ¢ the derivation of the formula ¢ in this formal system, i.e. by the
application of the inference rules and of the logical and non logical axioms in 7.
A theory T is contradictory (or inconsistent) if T & f, consistent otherwise.

Theorem 2.14 (Deduction theorem) Let T be a first-order logical theory. For
all formulas ¢,v € P we have T F ¢ D iff T U {o} = .

ProOF: In the direction of the implication (=) the result is immediat by the cut
rule. Conversely the proof is by induction on the derivation of the formula ¢». O

Theorem 2.15 (Validity) Let T be a first-order logical theory, and ¢ a formula.
If T+ ¢ then T |= ¢.
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ProoOF: By induction on the length of the deduction of ¢. O

Corollary 2.16 If T has a model then T is consistent

ProoF: We show the contrapositive: if 7 is contradictory, then 7 + f, thus
T = f, i.e. T has no model. -

Theorem 2.17 (Go6del Completeness Theorem (first form)) A theory is con-
sistent iff it has a model.

PROOF: The idea is to construct a Herbrand’s model of the theory supposed to
be consistent, by interpreting by true the closed atoms which are theorems of T,
and by false the closed atoms whose negation is a theorem of 7. If the theory is
not complete, this doesn’t provide a model, we thus complete the theory by adding
axioms in such a way as to obtain a complete consistent theory. For this it is
necessary also to extend the alphabet in order to obtain a saturated theory, that
is a theory such that if 7 F JzA then there exists a term M of the Herbrand’s
universe such that 7 F A[M/z]. See for instance [44]. O

Theorem 2.18 (Go6del’s Completeness Theorem (second form)) Let T be a
logical theory first-order, and ¢ be a formula,

TE¢ & TtEo.

Proor: If T | ¢ then T U{—¢} has no model, thus by the completeness theorem
in first form, 7 U {=¢} - f, hence by the deduction theorem 7 F ——¢, and thus by
the cut rule with the axiom of excluded middle (plus weakening and contraction)
we get 7 F ¢. The converse is the theorem of validity. O

Godel’s completeness theorem expresses the adequation between the semantic
notion of validity of a formula in all the models of the theory, and the syntactic
notion of deduction. The following section shows the use of this theorem to decide
the validity of a formula in a theory.

2.4 Completeness of theories and decidability of
structures

Definition 2.19 A theory T is axiomatic if the set of non logical axioms is recur-
siwe (i.e. membership to this set can be decided by an algorithm,).

For instance the theories containing a finite number of non logical axioms are
trivially axiomatic. Go6del’s completeness theorem shows that in an axiomatic the-
ory, the truth in all the models of the theory is recursively enumerable. The validity
of a formula can indeed be verified in finite time by searching for all possible proofs
(still the satisfiable not valid formulas are not recursively enumerables). This is
what shall be done in logic programming with a very simple proof system which is
well suited to a machine implementation, and which is complete for the Horn clause
formulas.

Definition 2.20 A theory is complete if for every closed formula ¢, either T + ¢
or T+ —¢.

A structure S is axiomatizable if there exists a complete axiomatic theory T
such that S is a model of T.
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In a complete axiomatic theory, we can decide whether an arbitrary formula is
satisfiable or not. This will be the expected situation for the language of constraints.
The question is then to know whether there exist complete axiomatic theories for the
structures of interest, and how these complete theories can be turned into efficient
algorithms.

The compactness theorem of the first-order logic provides a powerful tool to
study structures and theories.

Theorem 2.21 (Compactness theorem) Let T be a logical first-order theory,
and ¢ be a formula. T = ¢ iff T' |E ¢ for some finite part T' of T.

PROOF: By the completeness theorem, 7 |= ¢ iff T F ¢. As the proofs are finite,
they use only a finite part of the non logical axioms of 7. Therefore T | ¢ iff
T' |= ¢ for some finite part 7' of T. ad

Corollary 2.22 A theory T has a model iff every finite part of T has a model.

PRrROOF: T has no model iff 7 | f, iff for some finite part 7' of T 7' E f, iff
some finite part of 7 has no model. O

For instance we can use this theorem to show that there doesn’t exist a logical
(first-order) theory of finite fields. Indeed let us suppose the opposite, let 7 be such
a theory whose only models are finite fields. Let us consider the axioms A, which
state that there exist at least n distinct elements, for instance Az is the formula
Jrdydz x #FyAy # 2z Az # x. Let T' be the theory formed of 7 and of all the
Ay’s. Then by hypothesis, 7’ has no model, thus there exists a finite part 7" of 7'
which has no model. However let ny be an index greater than all the n’s such that
A, € T", and let C be a finite field of more than ng elements, then C is a model of
T", a contradiction.

The compactness theorem can also be used to construct models. This will be
done in the last chapter to obtain some completeness results w.r.t. the principe of
resolution for constraint logic programmming (cf. 5.19, 5.28).

Another classic use of the compactness theorem is to generalize to infinite graphs
the results obtained for the finite graphs.

Solved Exercise 2.23 In 1976 Appel and Haken proved the famous four-colors
conjecture: any map can be colored with four colors (i.e. the vertices of any finite
planar graph can be colored with four colors in such a way as two adjacent ver-
tices have different colors). Extend the result to infinite planar graphs by using the
compactness theorem of first-order logic.

Solution: Let G be an infinite planar graph. We associate to each vertex of G a
symbol of constant, and we consider the first-order language formed on this infinite
set of constants plus four unary predicates, ci,c2,c3,c4. Let T be the (possibly
infinite) set of logical first-order formulas:

i) Vo V?=1 ci(z),
Zl) Vo A1§i<j§4 _'(Ci(x) A Cj(x))’

iii) /\:‘1:1 =(ci(a) A c;(b)) for every pair of constants {a,b} which denote adjacent
vertices in G.

Clearly any coloring of G with 4 colors gives a model of T, and conversely if T has
a model then G can be colored with four colors as it is sufficient to choose for each
vertex a the color c;(a) which is true in that model.
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Let T' be any finite part of T, and let G' be the (finite) subgraph of G containing
the vertices which appear in T'. As G' is finite and planar it can be colored with /
colors, thus T' has a model.

Now as every finite part of T is satisfiable, we deduce from the compactness
theorem that T is satisfiable. Therefore every infinite planar graph can be colored
with four colors.

The structure of natural numbers, N with 0, s (successor), + and =, that is the
linear fragment of integer arithmetic, can be shown to be decidable. Presburger’s
arithmetic (N, 0, s, +, =) can be presented with a complete axiomatic theory, formed
with the standard equality axioms:

Ey:Vxzx=ux,
Es : VaVy z =y — s(z) = s(y),
Es:VaVyVzex =yAz=v— (z =2 >y =v),
plus the stronger equality axioms:
By, s VaVy s(z) = s(y) = z =y,
E5,T: Vo 0 # s(z),
the definition of +:
I3: Vex+0=uz,
Iy: Vzz+s(y) =s(z+y).
and the induction principle:
II;: o[z < O] A (Vo ¢ — @z + s(x)]) — Yz for every formula ¢.
Note that the following strong equality axioms
Es: Vz z # s(x),
E;: Yxxz=0V3Iyz=s(y),

are provable by induction. The induction principle cannot be replaced by Eg and Er
but there does exist presentation of Presburger’s arithmetic without the induction
schema.

Peano’s arithmetic contains moreover two axioms for x:

Ilg: Vxxx0=0,
IM;: VaVyz xs(y) =z xy+x,

This is not sufficient however for obtaining a complete theory, and such a complete
cannot exist for the integers with multiplication:

Theorem 2.24 (Go6del’s incompleteness theorem ) Any consistent aziomatic
extension of Peano’s arithmetic is incomplete.

PrROOF: See for instance [44]. The keystone of this very beautiful proof is the
liar paradox of Epimenides (600 bc) which says: “I lie”, combined with Cantor’s
diagonal argument (cf . section 4.17). The idea of the proof is to construct in
the language of Peano’s arithmetic II a formula ¢ which is true in the structure
of natural numbers N if and only if ¢ is not provable in II. As N is a model of
IT, ¢ is necessarily true in N and not provable in II, hence II is incomplete. The
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construction of such a formula ¢ uses an arithmetization of the syntax in which
every formula is associated with an integer, called its Godel number. One then
constructs a unary relation on N indicating whether its argument is the Godel
number of a provable formula in II, and one exhibits a formula expressing its own
negation (a similar construction of a Prolog program is given in section 5.4, for
showing the indecidability of the least Herbrand’s model of a logic program). This
shows that Peano’s arithmetic is incomplete. The construction doesn’t depend so
much however on the axioms of Peano than on the expressive power of the language
of arithmetic, and the proof holds in fact for any consistent extension of Peano’s
arithmetic. O

Corollary 2.25 The structure (N,0,1,+,*) is not aziomatizable.

Godel’s incompleteness theorem refutes the existence of (even infinite) complete
axiomatic theories for structures of interest such as the natural numbers. Fixing the
domain of discourse in constraint programming is thus not harmless, as this time,
Godel’s incompleteness theorem can apply. It will be possible for some structures
only, or for non axiomatizable structures by restricting the language of constraints
to a decidable fragment. Of course the theoretical decidability doesn’t suffice ei-
ther, we will be especially interested by decidable fragments with a low algorithmic
complexity, for which moreover incremental algorithms can be designed.
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Chapter 3

Constraint logic programs

The basic idea of constraint logic programmming, introduced by J. Jaffar and J.L.
Lassez, is to fix a structure of interpretation S representing the “domain of dis-
course”, and to distinguish in a logic program the language of constraints on S
supposed to be decidable, from the language of predicates defined by logical formu-
las. The logical formulas allowed for the definition of predicates are restricted to be
Horn clauses of the form:

A+ Cly.uny Cm|A1, An

where the ¢; are constraints and the A; are atoms. These clauses have both a
declarative logical meaning: A is true if ¢y, ..., ¢, A1, ...A, are true, and a very
simple procedural interpretation: to show A it is sufficient to satisfy ¢y, ..., ¢;, and
to show Aq,...,A,. In this way one defines a class of programming languages,
denoted by CLP(S), parametrized by the structure S.

3.1 Constraints

We consider a first-order language defined by
i) a set SF of symbols of constants and of functions,
ii) a set S of predicate symbols supposed to contain true and =,
iii) a countable set V' of variables.

An atomic constraint is an atomic proposition of this language. We assume a set
of basic constraints, supposed to be closed by variable renaming, and to contain all
atomic constraints. The language of constraints is the closure by conjonction and
existential quantification of the set of basic constraints. Constraints will be denoted
by ¢, d, ...

Intuitively the basic constraints are the formulas that the constraint solver can
deal with, they define the decidable fragment we are interested in, this fragment
can authorize restricted forms of negation or of universal quantification, without
containing necessarily all first-order formulas.

The closure by conjonction of the constraint language is essential to the principle
of resolution. The closure by existential quantification has not the same status, it
serves only to check the satisfiability of the projection of a computed constraint on
the variables of interest (cf. 3.5).

The interpretation of constraints is supposed to be fixed by the choice of some
mathematical structure S = (D, E, O, R) formed with:

17
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i) a domain D,

ii) a set E C D of distinguished elements associated to each constant, denoted
by [¢c] for every ¢ € Sp with arity 0,

iii) a set O of operators on D associated to each function symbol, denoted by
[f]: D™ — D for every f € Sp with arity n,

iv) a set R of relations on D associated to each constraint predicate symbol,
denoted by [p] : D™ — {0,1} for every p € S¢ with arity n.

An S-valuation is a function p : V' — D that extends to terms by morphism. If
S [ ¢p we say that ¢ is satisfiable and that p is a solution of ¢, otherwise we have
S E —ep.

We shall assume that in the structure S, the constraint satisfiability problem is
decidable. We shall thus suppose without loss of generality that S is presented by
an axiomatic theory 7 defined on the alphabet S¢, SF, satisfying:

1. (soundness) S =T

2. (completeness for constraint satisfaction) for every constraint ¢, either T
A(c), or T F =3(c).

Under these assumptions we have that S &= 3(c) iff T F I(c). We do not
demand however that 7 is a complete theory because we are merely interested by
the existential conjunctive fragment of the language of constraints. If the constraints
can be arbitrary first-order formulas, then condition 2) does express that T is a
complete theory.

3.2 CLP(S) Programs

We consider also a set of predicate symbols Sp disjoint from S, representing re-
lations defined by program. In the following we call atom an atomic proposition
formed on Sp, SF and V' exclusively.

Definition 3.1 A constraint logic program clause is a clause with exactly one pos-
itive literal V(AV —¢1 V ...me V—AL VLV =Ay) where m >0, n > 0, the ¢;’s are
atomic constraints and the A;’s are atoms. A clause of program is denoted by

A+~ Cly.nny Cm|A1, An

or
A+ cla

where ¢ = ¢1 A ... \ ¢, and where « denotes the sequence of atoms Ay, ..., A,. A
is called the head of the clause, and c|a the body. The local variables of the clause
are the variables which appear uniquely in the body of the clause.

A constraint logic program is a finite set of program clauses.

Definition 3.2 A goal clause is a clause without positive literal
Y(=er V.ome, VA VLV —AY)

A goal, denoted by
Cl,...,Ck|A1,...,An

or according to the previous notations by
cla

stands for the formula cy A ... Ncpy NAL N ... NA,.
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The reason for differentiating the logical formula associated to a goal from the
one associated to a goal clause is that from the point of view of theorem proving,
a refutation expresses that the set of program clauses P with the goal clause G,
P UG, is unsatisfiable, whereas from the point of view of programming, a successful
derivation expresses that the goal G is satisfiable, P = 3(G), both viewpoints are
obviously equivalent as P |= 3(G) if and only if PU—-3(G) is unsatisfiable, and the
negation of the logical formula 3G associated to a goal G is indeed a goal clause
=3G. In the following we shall be mainly concerned with the programming language
point of view, hence we shall manipulate goals, rather than goal clauses.

In order to simplify the proofs, we shall consider programs and goals in normal
form, in which the atoms contain no function symbol. There is obviously no loss of
generality as every program or goal can be transformed under this form by intro-
ducing new variables and equality constraints between these variables and the terms
inside the atoms. For instance the normal form of the clause p(x + 1) < p(z — 1) is
ply) —y=z+1Az=2—1]p(2).

The CLP programs are parametrized by the structure S which fixes the interpre-
tation of the constraint language. An S-interpretation of the language augmented
with predicate symbols in Sp associates in addition to every p € Sp with arity n, a
relation [p] : D™ — {0,1}. An S-model of a program P is an S-interpretation model
of P. The S-base, denoted by Bgs, is the set of atoms valued in S:

Bs = {p(z1,...,xn)p | p € Sp of arity n and p is an S-valuation }.

An S-interpretation can thus be identified to a subset of Bg formed with the
atoms which are true in the interpretation. Clearly Bg is a model of every constraint
logic program on S. In the following (cf. 5.4) we shall show the existence of a least
S-model, denoted by M.

The logical meaning of a CLP program allows to define several declarative se-
mantics according to the observation we are interested in, for instance:

e only the satisfiability of a goal, 3(G), (i.e. theorem proving point of view),

e or the constraints which imply a goal, ¢ D G, (i.e. programming language
point of view),

Furthermore we can consider:

i) the logical consequences of the program and of the theory of the structure
(proper logical semantics),

(1) P,T E3G) (4) P,TEc¢DG,

ii) the logical consequences of the program in all the S-models of the program
(logical semantics with a fixed pre-interpretation),

2) PEs3(G) (5 PREscDG,

iii) the truth in the least S-model of the program (algebraic semantics),

(3) MEE3G) (6) MEcoG.

In the following we shall show the equivalences (1) & (2) & (3) and (4) =
(5) & (6). Only (4) leads to a notion of correct answer weaker than (5) and (6).
In a first approximation we shall retain the notion of correct answer to a goal given
by the logical semantics in a fixed structure S (5).
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Definition 3.3 Let P be a CLP(S) program. Let G be a goal. A constraint c is a
semi-correct answer if:
P '25 V(C D G)

c is a correct answer if furthermore c is S-satisfiable:
P =5 3(c)

The notion of semi-correct answer is introduced to modelize the case where the
constraint solver effectively used in a CLP(S) system is not complete (e.g. 4.18,
4.6). The satisfiability of computed constraints is partially checked in such sys-
tems, the computed answers are thus semi-correct answers in general. For sake of
simplicity however, the principle of resolution is defined in the next section with a
complete check of satisfiability.

3.3 Procedural interpretation

The practical justification for restricting the definition of predicates to Horn clause
formulas, is that it is possible to associate to such formulas an extremely simple
proof system, reduced to a single inference rule, called CSLD resolution. We present
this inference rule by a rewriting relation on goals.

Definition 3.4 Let P be a constraint logic program on S. The rewriting relation
— on goals is defined as the least relation satisfying the following principle of
CSLD resolution' :
(p(N1, ..., Ny) CI|A1, LA eprP S '= IHcAM; =Ny A... AMp =N A
(C|aap(Mla ) Mk)a al) — (C, Ml = Nla ) Mn = Nnacl | aaAla "'7Ana al)

where 0 is a renaming substitution of the program clause with new variables.

The atom p(Mj, ..., M,,) in the goal to reduce is called the selected atom. Note
that there is no rewriting if the resulting constraint is not S-satisfiable. We write
G —¢ G for a step of resolution with the clause C € P, and we note —* the
reflexive transitive closure of —.

A CSLD derivation for a goal G is a finite or infinite sequence of goals (G;);>0,
and of variants of program clauses Cj, such that Go = G and G; —¢; Gj41 for
every j > 0.

A successful derivation (or CSLD refutation) is a finite CSLD derivation which
terminates with a goal containing constraints only.

Definition 3.5 Let P be a program CLP(S). A computed answer for a goal G is
a constraint ¢ obtained by a CSLD refutation from G:

G —" |0

The projected computed answer is the constraint 3z, ...3zy c where {xy, ...,z } =
Vie) \V(G).

Example 3.6 Consider the following CLP(N) program:
p(0)
p(z +1) « p(z)
The goal p(y) has the following successful derivations:
p(y) — y =00
p(y) —y=y1+1py1) — y=y1 + 1Ay =00
etc.
The projected computed constraints are y =0, y = 1, etc.

LCSLD stands for Linear resolution for Definite programs with Constraints and Selected atom.
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p(y)

e y=yl+1|p(y1)
y:

yl=y2+1,y=y1+1|p(y2)
yI1=0,y=y1+1|O

y2=y3+1,yl=y2+1,y=yl+1|p(y3)
y2=0,y1=y2+1,y=y1+1|0 ... ...

Figure 3.1: Infinite CSLD tree of the example 3.6.

Lemma 3.7 (A-compositionality) c is a computed answer for the goal (d|Aq, ..., Ay),
if and only if there exist computed answers ci, ..., ¢y, for the goals true| A, ..., true|A,,
such that ¢ = d A \}_, ¢; is satisfiable.

PRrROOF: By induction on the length of the derivation. O

Corollary 3.8 Independance of the selection strategy Let R be a selection strategy
for the atom to select at each resolution step. If ¢ is a computed answer with the
strategy R for the goal G, then for every strategy R', there exists a computed answer
¢ with the strategy R' for the goal G such that S = c + .

The independance of the selection strategy shows that for the observation of
successes, it is possible to restrict the search for derivations from a goal G by fixing
an arbitrary selection strategy.

Definition 3.9 A CSLD derivation tree for a goal G is the tree of all CSLD deriva-
tions obtained from G by fizing a selected atom in each node.

To enumerate all the succeses to a goal G, the independance of the selection
strategy thus shows that it is sufficient to search in an arbitrary CSLD derivation
tree for G.
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Chapter 4

Examples

4.1 CLP(H) and Prolog

In the class of programming languages CLP (), the interpretation structure is the
algebra of first-order terms, the Herbrand’s domain .
The programming language Prolog is an implementation of CLP(#) in which:

i) the constraints are only equalities between terms, they are solved by a unifi-
cation algorithm (some implementations of Prolog treat also disequality con-
straints by a mechanism of coroutines, cf. predicate dif (X,Y)),

ii) the selection strategy consists in solving the atoms from left to right according
to their order in the goal, the atoms to solve are thus implemented with a
stack (some implementations have a mechanism of coroutines which modifies
the selection strategy by delaying the selection of some atoms as long as a
variable is not instanciated, e.g. predicate freeze(X,G)),

iii) the search strategy consists in searching the derivation tree depth-first by
backtracking.

In Prolog the syntax of the program clauses is
A :-B1,...,Bn.,

A.
the syntax of the goals is
7- Al,...,Year..

The interpreter enumerates the computed answers to a goal by typing ; after
the prompt.

Program 4.1 The deductive data bases give a first example of Prolog programs on
an alphabet of constants without function symbols:

gdfather(X,Y):-father(X,Z) ,parent(Z,Y).
gdmother(X,Y) : -mother (X,Z) ,parent (Z,Y).

parent (X,Y) :-father(X,Y).
parent (X,Y) :-mother(X,Y).

father (alphonse,chantal).

mother (emilie,chantal).
mother (chantal, julien).

23
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father(julien,simon).

| 7- gdfather(X,Y).

X = alphonse, Y = julien 7 ;
no

| ?- gdmother(X,Y).

X = emilie, Y = julien 7 ;
X = chantal, Y = simon 7 ;
no

Program 4.2 The introduction of a binary function symbol allows to represent the
list structure, the usual relations on lists can be defined by simple programs:

member (X, cons (X,L)).
member (X, cons(Y,L)) : -member (X,L) .

append(nil,L,L).
append (cons(X,L) ,M,cons(X,N)) : —-append (L,M,N) .

| ?- member(X,cons(a,cons(b,cons(c,nil)))).

X=a?;
X=b7?;
X=c¢c7?;

no

| ?- member(X,Y).
Y = cons(X,_A) 7 ;

Y = cons(_B,cons(X,_A)) 7 ;

Y = cons(_C,cons(_B,cons(X,_A))) ? ;

Y = cons(_D,cons(_C,cons(_B,cons(X,_A)))) 7 ;

Y = cons(_E,cons(_D,cons(_C,cons(_B,cons(X,_A))))) 7
yes

| 7- append(cons(a,cons(b,nil)),cons(c,cons(d,nil)),L).
L = cons(a,cons(b,cons(c,cons(d,nil)))) 7 ;

no
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Program 4.3 Lists have a special syntazx in Prolog: [X|L] stands for cons(X,L)
and []1 fornil. The naive program for reversing a list has a quadratic time complez-
ity, a standard technique for obtaining a reverse program of linear time complexity
is to use a third argument as an accumulator.

append([]1,L,L).
append ([X|L],L2,[X|L3]) :-append(L,L2,L3).

reverse([1,[]).
reverse([X|L],R):-reverse(L,K) ,append (X, [X],R) .

| ?- reverse([a,b,c,d],M).
M= [d,c,b,a]l 7 ;
no

| ?- reverse(M,[a,b,c,d]).
M = [d,C,b,a] 7

rev(L,R):-rev_1lin(L,[]1,R).

rev_1lin([],R,R).
rev_1lin([X|L],K,R) :-rev_lin(L, [X|K],R).

| ?7- reverse(X,Y).
X=10,y=107;
X=[_Al, Y=[_A] ?7;

Program 4.4 The implementation of the various algorithms for sorting is straight-
forward, predefined predicates can be used for comparing integers.

quicksort([],[]).

quicksort ([X|L],R):-
partition(L,Linf,X,Lsup),
quicksort(Linf,L1),
quicksort(Lsup,L2),
append (L1, [X|L2],R).

partition([1,[1,_,[1).
partition([Y|L],[YILinf] ,X,Lsup):-
Y=<X,
partition(L,Linf,X,Lsup).
partition([Y|L],Linf,X, [Y|Lsup]l):-
Y>X,
partition(L,Linf,X,Lsup).

Program 4.5 A (non-deterministic) context-free grammar can be directly trans-
lated in a Prolog program. The first Prolog interpreter was designed in 1972 by A.
Colmerauer for this purpose. For example the grammar:

sentence :: nounphrase, verbphrase;

nounphrase :: determiner, noun | noun;

verbphrase :: verb — wverb, nounphrase;

verb :: [eats];

determiner :: [the];
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noun :: [monkey] | [banana/;
can be systematically translated in the following Prolog program for parsing and
synthesis:

sentence (L) : -nounphrase(L1), verbphrase(L2), append(L1,L2,L).

nounphrase(L) : - determiner(L1), noun(L2), append(L1,L2,L).
nounphrase(L) : - noun(L).

verbphrase(L) : - verb(L).
verbphrase(L) : - verb(L1), nounphrase(L2), append(L1,L2,L).

verb([eats]).
determiner([thel).

noun ( [monkey]) .
noun( [bananal) .

| ?- sentence([the,monkey,eats]).
yes

| ?7- sentence([the,eats]).

no

| ?- sentence(L).

L = [the,monkey,eats] 7 ;

L = [the,monkey,eats,the,monkey] 7 ;
L = [the,monkey,eats,the,banana] 7 ;
L = [the,monkey,eats,monkey] 7

yes

The basic operation of a Prolog interpreter is thus the solving of equality con-
straints over first-order terms, with an unbounded signature, i.e. a signature con-
taining an infinite set of function symbols for each arity. The equality in H can
be completely axiomatized by adding few axioms to the standard equality axioms.
From such a complete axiomatization one can derive a simple unification algorithm
for solving equality constraints between terms.

Definition 4.6 The Clark’s equational theory CET [8] is the theory formed with
the standard azioms for equality:

E :Vxzx=rz,

E2 v$1, o Tns Y1y Yn Tt = Y1 AN Ney = Yn — f(xla 7xn) = f(yla 7yn) fOT‘
every n and every function symbol f € Sg with arity n,

E3 v$1, o Tns Y1y Yn T = Y1 AN Nzy = Yn — p(xla 7xn) - p(yla 7yn) fOT‘
every n and every predicate symbol p € Sp with arity n.
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plus the axioms:

Ey: Va1, oy Yty s Yn [(@1, s @n) = fW1, 0 Yn) = 1 = y1 A oo Ay = yp, for
every function symbol f € Sp with arity n,

Es: Vo1, ey Ty Yty s Un [(@1, s ) £ 9y, -, yn) for different function symbols
f,g € Sg with arity m and n respectively,

Eg: Vx M[x] # x for every term M strictly containing x.

One can notice that Presburger’s arithmetic contains the axioms E; — Fg for
0 and s, while E; simply disappears here as we have an infinite set of function
symbols.

Proposition 4.7 H is a model of CET.

Exercise 4.8 Give a model of Ey, E>, E5, E4, E5 not satisfying Eg (hint: imagine
a structure of infinite terms).

Give a non standard model of CET, i.e. a model of CET not isomorphic to H
(hint: restrict the structure of infinite terms to those terms which satisfy Eg ).

The theory CET is an axiomatic theory which is complete for the satisfaction of
equality constraints between terms in H. This can be shown simply by orientating
the axioms of CET so as to derive an algorithm for solving equality constraints. The
algorithm we obtain in this way was proposed by Herbrand in his thesis in 1930
[22], and was later rediscovered by Robinson in his seminal work on automated
deduction [42].

Definition 4.9 A system of equations I is either the symbol false 1, or a conjonc-
tion of equations between terms My = Ny A ... A My, = N, (true if n =0).
A system of equations is in solved form if it is of the form

Iy :Ml/\/\fn :Mn
withn > 0 and {z1,....,2,} N (V(M)U...UV(My)) = 0.

Clearly if T is a solved form then CET |= 3(T'). The Herbrand’s unification
algorithm decides the satisfiability of a system I' by computing a solved form.

Definition 4.10 The unification algorithm of Herbrand simplifies a system of equa-
tions by applying the following rules:
Dec : f(M;,...Mp) = f(Ni,..,Ny) AT — My = Ny A ... A M, = N, AT,
Decl : f(My,...,M,)=g(Ni,...,Nu) AT — L if f #g,
Triv : x =2 Al — T,
Var : 1 =MAT —2=MATo ifx ¢V (M), 2 € V(['), 0 ={x + M},
Varl : x=MATl — Life e V(M) and x # M.

Lemma 4.11 (Validity) If T —* TV then CET ET + T".
Lemma 4.12 (Termination) There are no infinite sequence of simplifications.

Proposition 4.13 (Decidability of unification) CET = 3(T") iff the irreducible
form of T is a solved form.

Corollary 4.14 (Completeness of CET) For any equation system ', either CET +
A1), or CET F —-3(T).

Corollary 4.15 H + 3(T") iff CET + 3(I).
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Robinson’s unification algorithm represents the unsolved part of the system as
a stack and traverses the terms depth-first in left-right order. It computes further-
more, if the terms are unifiable, a substitution ¢ which represents the solution set.
Although there exist other unification algorithms with better (linear) theoretical
complexity, the Herbrand-Robinson’s unification algorithm has a good practical ef-
ficiency. It is used in the implementation of Prolog, in particular in the Warren’s
abstract machine, with the optional ommission of the occur check (rule Varl) for
efficiency reasons.

Remark 4.16 The decidability of unification and the wvalidity lemma show that
the theory CET is complete for the existential conjunctive fragment of equality
constraints. If we enrich the language of constraints by authorizing for instance
disequality constraints (VY X # f(Y)), or arbitrary first-order formulas, then the
situation depends on the alphabet.

If the alphabet contains an infinite set of constant symbols and function symbols,
then CET is a complete theory [33] [38], the structure H is thus decidable.

If the alphabet is finite, formed of function symbols fi, ..., fn with arity n, ..., ng,
then it is mecessary to consider the theory CET augmented with the domain-closure
aziom (DCA):

DCA: vxaylaynx = fl(yla "'7yn1) V..Vzr= f(yh 7ynk)

In the case of a finite alphabet the theory CET+DCA is a complete theory [38].

Therefore in all cases the structure H is decidable. The class CLP(H) can thus
be defined with more or less powerful constraint languages.

4.2 CLP(RT)

The absence of occur check in Prolog is not justified uniquely by (historical) rea-
sons of practical efficiency but also by the need of programming with circular data
structure, for representing cross-references for instance.

We can thus consider as computation domain the algebra of finite and infinite
terms [11] or more precisely the algebra RT of rational terms, which are finite or
infinite terms having a finite number of distinct subterms, and which can thus be
represented by finite graphs.

If we replace in the theory CET the axiom of occur check (Eg) by a new axiom
stating the existence of solutions to equation of the form x = f(z), we obtain a
complete theory of both the algebra R7 and the algebra of finite and infinite terms
[38], these structures are thus elementarily equivalent.

The unification algorithm of Huet [25] is a complete unification algorithm in RT.
The language Prolog IT introduced by A. Colmerauer in 1982 included that unifica-
tion algorithm together with a treatment of disequality constraints by a mechanism
of coroutines. Today we can see Prolog IT as an instance of CLP(RT). Historically,
it is the theoretical study of Prolog IT which lead J. Jaffar and J.L. Lassez in 1986
to the general concept of the class CLP.

4.3 CLP(H/E)

By still considering term algebras, we can define the class CLP(H /&) presented by
an equational theory £, that is a theory formed with a recursive set of identities
between terms. Birkhoff’s theorem shows the completeness of equational reasoning
for semi-deciding equality in £&: £ E M = N iff M =¢ N, i.e. iff M and N are
congruent modulo £. It is also possible to semi-decide the satisfiability of equality
constraints, £ = (M = N), In general however the problem of £-equality in an
equational theory is undecidable.
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The notion of unification in H can be generalized to a notion of unification with
complete sets of unifiers in H/E. However these sets can be infinite, for instance
the equation f(x,a) = f(a,z) where f is an associative operator has an infinite
base of unifiers, o9 = {z + a},01 = {z + f(a,a)},00 = {z + f(a, f(a,a))},....
It can also be the case that there doesn’t exist bases of unifiers in some equational
theories admitting decreasing chains of more and more general unifiers.

The equational theories of interest are those in which the satisfiability of equality
constraints is decidable. It is the case for instance in theories containing an asso-
ciative function symbol and constants, in theories on an arbitrary alphabet with
associative-commutative function symbols (in these theories there exists further-
more an a unification algorithm which computes a finite base of unifiers), in some
disjoint unions of equational theories, etc. See [29] for a survey.

The equational unification algorithms, when they exist, do not always pro-
vide efficient algorithms for solving equality constraints. For instance associative-
commutative unifiability is an NP-complete problem whereas the computation of
a base of associative-commutative unifers is complete for the double exponential
complexity class [30].

4.4 CLP()\)

In CLP(\) we consider the terms of the simply typed A-calcul, they are defined by
the following grammar of types ¢ and typed expressions e : t:

t o= v | t1 — to

e:t = $Ct| (/\l'itl.eitg):tl — 1o | (el:t1—>t2(e2:t1)):t2

The symbol X represents the operation of formation of a function by abstraction
of a variable in an expression. The other operation is the application of a function
to an expression of the right type. The theory of functionality is defined by two
axioms for variable renaming « and application 3:

Az.er =4 Ay.er[y/z] if y & V(ey),

(Az.e1)es —p eilex/x]

The type system insures the termination of -reductions modulo a-conversion.
The property of termination combined with the property of confluence of the A-
calculus, allows us to decide equality in this theory by simple rewriting:

€1 =a,3 €2 iff ~LB €1 =« ~LB €2.

However rewriting doesn’t suffice to decide the satisfiability of equality con-
straints. For instance to solve the equation FX = GY where F and G are func-
tional variables, we can impose F' =G, X =Y, or F = Ax.GY , or again F' = \z.H,
G = \y.I with HX = IY which leads back to the previous problem. Unification in
higher-order languages is an undecidable problem [24], already at order 2 [19]. Tt is
worth noting however that as the equality of typed A-expressions is decidable, the
set, of unifiers of two typed A-expressions is recursively enumerable.

Such a generalization of Prolog to higher-order logic has an extraordinary (ex-
cessive!) expressive power. As an illustration of this phenomenon, Cantor’s theorem
can be shown in two steps of SLD resolution where the computed substitution rep-
resents Cantor’s diagonal argument!

Theorem 4.17 (Cantor’s Theorem) NN is not countable.

Proor: (adapted from [24]).

Let us suppose the opposite Fh: N - (N > N)Vf: N >N In: N h(n) =
f After Skolemisation, the formula to refute becomes VF h(n(F)) = F which is
equivalent to the goal clause VF —h(n(F)) # F.



30 CHAPTER 4. EXAMPLES

A refutation of the goal h(n(F') # F can be obtained by two steps of CSLD reso-
lution with two simple properties of the natural numbers expressed by the following
program:

F#G « F(N)#G(N).

N # s(N).

The first program clause is used to form the first resolvant:
hn F) #F — (h(n F))(I) # F(I)
The second clause gives the refutation
(h(n F))(I) # F(I) — ]
with the sequential substitution
oo ={J < hII}{I=n(F)}{F =Xi.s(hii)}

One verifies that (h(n F))(I)o2 = Joy and F(I)os = s(J)oz. The unifier o2 of
the last step of resolution, which generates the contradiction, contains “the diagonal
argument” of Cantor: we consider the diagonal (Hii) of H which indicates the value
taken by the function number i at value ¢, and we construct the function f which
associates to 4 the successor of (Hii); then we consider the value of f at n = N f,
that is at the number of f; the contradiction comes from the fact that on the one
hand, by definition of H, fn = (Hnn), and on the other hand, by construction of
f, fn=S(Hnn). Hence such a function h cannot exist. O

It is worth noting that the unification algorithm on first-order terms could accept
variables in position of function. However the unification of these expressions would
be done in the first-order model of terms, and not in a theory of functionality.
This generalization of first-order unification is thus not sufficient for finding the
substitution of f in the previous example, but it allows to find the simple cases of
higher-order unification, as in the first step of resolution.

In fact the implemented CLP(\) systems such as A-Prolog [39] consider weak
theories of functionality which correspond to simple cases of higher-order unification.
The interesting features of these programming languages lies in particular in their
type system inherited from the A-calculus, and in the natural generalisation in this
context, of Horn clauses to imbricated implications, which is the basis of an original
system of modules and of powerful methods for meta-programming.

4.5 CLP(R)

The decidability of real arithmetic (R, 0,1, +, ¥, =, <) was shown by Tarski by show-
ing the completeness of the axiomatic theory of real closed fields:

Ci: (z+y)+z=z+ (y+2),
Cy: z+4+0=u,

C3: z+(—1%xxz)=0,

Cy: z+y=y+ua,

Cs: (xxy)xz=1xx*(yx*2),
Ce: z*x1=u,

Cr: 240> TJyxxy=1,
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Cs: wxy=yx*uz,

Co: zx(y+2)=(xxy)+ (x=x2),

Cio: 0751a

O1: —(z <z),

O z<y—(y<z—-ozx<z),

Os3: z<yVz=yVy<uzx,

Oy z<y—c+z<y+z,

Os: 0<z—=(0<y—=0<z*y),

Ri: 0<zx—>Tyyxy=nuc,

Ry 9y, 2023y, *x2" +y, 1 #2714+ ...+ yo = 0 for every odd integer n.

The result of completeness of this theory shows the decidability of elementary
geometry, the proof is based on a method for quantifier elimination [44]. In princi-
ple this method allows us to decide the satisfiability of arbitrary first-order logical
formulas on the reals, with however a tower of exponentials as algorithmic com-
plexity... CLP(R) systems with that degree of generality have been realized, see
for instance [23]. These prototype systems compute answers with of course widely
unstable and unpredictible performances.

If we limit the constraint language to the linear existential fragment, the sat-
isfaction problem becomes polynomial and the algorithms of linear programming
provide powerful decision methods [7]. The Simplex algorithm, for example, has
a quasi-linear practical complexity in the number of variables. This algorithm can
moreover handle the incremental addition and deletion of constraints. For these
reasons the Simplex algorithm is still the algorithm of choice for solving linear con-
straints in CLP(R) systems, while non-linear constraints are simply delayed until
they become linear (e.g. with the freeze predicate). Several CLP(R) systems have
been implemented since the mid 80’s [26] [41], and have been succesfully used in
a wide variety of applications ranging from decision support in financial domains,
verification and synthesis of analogical circuits, combinatorial optimization, etc.
[28].

The following CLP(R) program expresses the formula for computing mortgage.
In the predicate mortgage(P,T,I, B, M), P is the total amount, T the duration in
months, I the monthly rate, B the balance, and M the monthly reimbursement. The
program computes instanciated answers for different combinations of the inputs. It
computes also linear constraints as answers. The last query of the example shows a
case where the answer is a non-linear constraint, the satisfiability of this constraint
is not checked by the system (semi-correct answer in general, cf. 3.3).

Program 4.18 [27] Ezample of a CLP(R) program for computing mortgage.

-T>0, T<=1, B+ M=P % (1 + I).

mortgage(P,T,I,B,
I,B -T>1, mortgage(P *x (1 + I) - M, T -1, I, B, M).

M) :
mortgage(P,T,I,B,M):
| ?- mortgage(120000,120,0.01,0,M).
M = 1721.651381 7

yes
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| ?- mortgage(P,120,0.01,0,1721.651381).

P = 120000 ?

yes

| ?- mortgage(P,120,0.01,B,M).

P = 0.302995%B + 69.700522%M ?

yes

| ?- mortgage(999, 3, Int, 0, 400).

400 = (400 + (599 + 999*Int) * (1 + Int)) * (1 + Int) ?

yes

The need for computing with complex data structure obviously remains in
CLP(R). The structure of interest is thus not exactly R but more precisely the
algebra H(R) of first-order terms formed on an alphabet of constant and function
symbols, possibly containing arithmetic expressions in their leaves. It has been
shown that under some general conditions the completeness of a theory for a struc-
ture S remains for the structure H(S) [46]. The following example illustrates the
use of lists in CLP(R).

Program 4.19 [26] Example of a CLP(R) program for computing the tempera-
ture on a discrete surface, or more generally for solving the Dirichlet problem for
Laplace’s equation by the finite difference method. The program specifies that the
temperature in each interior point is the mean of its four neighbors. If the data are
sufficiently instanciated, for instance the temperature on the edges is known, the
answers are numerical values, otherwise they are linear constraints.

laplace([H1,H2,H3|T]): -
laplace_vec(H1,H2,H3), laplace([H2,H3|T]). laplace([_,_1).

laplace_vec([TL,T,TRIT1], [ML,M,MR|T2], [BL,B,BR|T3]):-
B+T+ML+MR -4 x*xM=0,
laplace_vec([T,TRIT1], [M,MR|T2], [B,BR|T3]).
laplace_vec([_,_1,[_,_1,[_,_1).

| 2- X = [

[0,0,0,0,0,0,0,0,0,0,0],

[100, _y s s—r—s—s_r_s_,100],
[100, _y s s—r—s—s_r_s_,100],
[100, _yyser—sser_»_,100],
[100, _y s s—r—s—s_r_s_,100],
[100, _y s s—r—s—s_r_s_,100],
[100, _yyser—sser_»_,100],
[100, _y s s—r—s—s_r_s_,100],
[100, _y s s—r—s_s_r_s_,100],
[100, _yyser—sser_»_,100],

[100,100,100,100,100,100,100,100,100,100,100]
1, laplace(X).
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x=((0,0,0,0,0,0,0,0,0,0,0],

[100,51.11,32.52,24.56,21.11,20.12,21.11,24.56,32.52,51.11,100],
[100,71.91,54.41,44.63,39.74,38.26,39.74,44.63,54.41,71.91,100],
[100,82.12,68.59,59.80,54.97,53.44,54.97,59.80,68.59,82.12,100] ,
[100,87.97,78.03,71.00,66.90,65.56,66.90,71.00,78.03,87.97,100],
[100,91.71,84.58,79.28,76.07,75.00,76.07,79.28,84.58,91.71,100] ,
[100,94.30,89.29,85.47,83.10,82.30,83.10,85.47,89.29,94.30,100] ,
[100,96.20,92.82,90.20,88.56,88.00,88.56,90.20,92.82,96.20,100] ,
[100,97.67,95.59,93.96,92.93,92.58,92.93,93.96,95.59,97.67,100] ,
[100,98.89,97.90,97.12,96.63,96.46,96.63,97.12,97.90,98.89,100] ,
[100,100,100,100,100,100,100,100,100,100,100]1]1 ?

yes | 7- laplace([
[B11, B12, B13, B14],
[B21, M22, M23, B24],
[B31, M32, M33, B34],
[B44, B42, B43, B44]

D.

B12 = -B21 - 4xB31 + 16%M32 - 8xM33 + B34 - 4%B42 + B43,
B13 = -B24 + B31 - 8%M32 + 16%M33 - 4%B34 + B42 - 4%B43,
M22 = -B31 + 4%M32 - M33 - B42,

M23 = -M32 + 4%M33 - B34 - B43 ?

yes

4.6 CLP(FD) and CLP(V)

Godel’s incompleteness theorem gives fundamental limits on integer arithmetic con-
straints. In order to obtain a decidable constraint language we can either consider
the linear fragment, (N, 0, 1,4+, =), which is completely axiomatized by Presburger’s
arithmetic, or restrict the constraint language on N given with all its operators.

The later approach is generally undertaken in the implementations of CLP(FD)
on “finite domains” where the variables are assumed to take their value in finite
intervals of the integers. The system CHIP [48] was the first CLP (FD) system devel-
oped in the mid 80’s, following the pioneering work of J.L. Lauriere [34]. CLP(FD)
systems include in addition to usual arithmetic predicates,

symbolic constraints, e.g.

element (I, [x1,...,xk],V) true if z;y =V where I and V are unknowns,

set cardinality constraints, e.g.

card(N, [X1,...,Xk],V) true if there are exactly N values equal to V in the
list of unknowns Xj, ..., X,

higher-order cardinality constraints, e.g.

card(N, [C1,...,Ck]) true if there are exactly N constraints true in the list
Ci,y...,C.

These constraints greatly enhance the expressive power of the constraint lan-
guage for modeling combinatorial optimization problems[48].

Program 4.20 One of the simplest example of CLP(FD) program is the N-queens
program. The problem, introduced by Gauss in the early days of combinatorics, is
to place N queens on an NxN chess board such that no two queens are placed on
a same row, column or diagonal. The CLP(FD) program modelizes the problem
with a list of N unknowns which give the line number of each queen in each column
(domain(L, [1,N]1) ). The program places first the inequality constraints between the
variables (X.=/=Y+d), and then enumerates the possible values (labeling), with
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some heuristics for choosing first the queen with the least domain of possible values
((first-fail heuristics ££) and trying first the (lines) values in the middle. Solving
the 200-queens problem is untractable by pure backtracking, but takes a few seconds
with this CLP(FD) program.

queens(N, L) :- list(N, L), domain(L,[1,N]),
safe(L), labeling(L,ff,middle).

safe([]).
safe([X| Y]) :- noattack(X, Y), safe(Y).

noattack(X, Xs) :- noattack(X, Xs, 1).

noattack(X, []1, Nb) :- !.

noattack(X, [Y | ¥Ys], Nb) :- X.=/=Y, X.=/=Y+Nb, X.=/=Y-Nb,
Nbl is Nb+1, noattack(X, Ys, Nbi).

list(0, [1):-!.
list(N, [ _I L1 ) :- M is N-1, 1list(M, L).

| 7- queens(4,L).

L =[2,4,1,3] 7 ;
L = [3,1,4,2] 7 ;
no

Program 4.21 [20] The organizers of a congress have 3 rooms and 2 days for
eleven half-day sessions (A,B,C,....K).

The sessions sets

AlJ, JI, IE, CF, FG, DH, BD, KE, BIHG, AGE, BHK, ABCH, DFJ

can’t be simultaneous (there exists at least one participant in all the sessions of
these sets). Moreover session E has to be given before session J, and the sessions
D and F before K.

The organizers have to determine a time-tabling. The problem can be expressed
with a simple CLP(FD) query.

| ?- domain([A,B,C,D,E,F,G,H,I,J,K],[1,4]),
alldifferent([A,J]) ,alldifferent([J,I]),alldifferent([I,E]),
alldifferent([E,C]),alldifferent([C,F]),alldifferent([F,G]),
alldifferent([D,H]),alldifferent([B,D]),alldifferent([K,E]),
alldifferent([B,I,H,G]),alldifferent([A,G,E]),
alldifferent([B,H,K]) ,alldifferent([A,B,C,H]),
alldifferent([D,F,J]),
J.>E, K.>D, K.>F,
atmost(3,[A,B,C,D,E,
atmost(3,[A,B,C,D,E,
atmost(3,[A,B,C,D,E,
atmost(3,[A,B,C,D,E,
labeling([A,B,C,D,E,
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For practical efficiency reasons, the algorithms for checking the satisfiability of
CLP(FD) constraints are generally not complete (the satisfiability of the store of
constraints is partially checked only), a complete check of satisfiability requires
enumeration. The computed answers in CLP(FD) systems are thus semi-correct in
general 3.3.

The constrained propagation algorithms that are used have for effect to restrict
the domain of variables by propagating the constraints at each resolution step,
often by a simple reasoning on the bounds of the domain of the variables. The
unsatisfiability of the constraints is detected when the domain of a variable becomes
empty. The constraints are used to prune the search space concurrently to the
logical resolution process. The constraint propagation algorithms used in CLP(FD)
originate from Artificial Intelligence, they check the consistency of each constraint
separately according to the domain of the variables (arc-consistency).

The constraint propagation algorithms used in CLP(FD) can be decribed as
particular implementations of a generic algorithm based on few principles. For this
purpose let us denote basic constraints by ¢, d... and constraint systems by T',T", ....
A variable z will be written with its domain z¢. By abuse of notation, a variable
with a singleton domain 2{"} denotes the value v € FD of the domain. As terms,
v and 21"} are not distinguished.

The set of solutions of a constraint system I' over D is the set of substitutions

Sol(T,FD) = {0 | 0 = {z? < v | 2¢ € V(T), v €d}, FD |=To}
The reduced domain of a variable z¢ w.r.t. a basic constraint ¢ is the domain
DR(z%c)={ved| FD E Icv/z])}

of values v for which the constraint c[v/z] is satisfiable. A constraint system T is
arc-consistent if

Vee I Vat € V(e) DR(z%,c) =d
Definition 4.22 The generic constraint propgation algorithm simplifies a system
[ of constraints over FD with the following rules associated to basic constraints:

“forward checking” (FC), “looking-ahead” (LA), “partial looking-ahead” (PLA)
and elimination (EL)

Fail: cAT — L
if ¢ € V(¢) and DR(z%,¢c) = 0.

FC: cAT — To
if V(e) = {z}, d = DR(z",¢), d' # 0, and o = {z* « y*} where y ¢ V(I).

LA: ¢cAT — coATo
if V()| > 1, 2" € V(e), d = DR(z%,¢c), d' #0,d #d, 0 = {z? y*}.

PLA: ¢cAT — co ATo
if [V(c)| > 1, 27 € V(¢), DR(z%,¢) Cd Cd, d #0, o = {a? « y¥}.

EL: cAT — T if FD k= co for every valuation o of the variables in ¢ by values
of their domain.

Lemma 4.23 (Validity) IfT' —% I" then Sol(T', FD) = {06 | 6 € Sol(I', FD)}.
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For instance, disequality contraints X.=\=Y) are propagated with the FC rule,
symbolic constraints as element (I,L,V) are propagated with the LA rule, linear
equalities are propagated with the LA rule using a simple reasoning on the bounds
of the domain: for a constraint ¢ of the form

aX® > pytmnl L g a,b>0,d>0

we have
DR(X™U ¢) = [maz(k, k'), 1]

DR(Y™" ¢) = [m,min(n,n')]

where k' = [22£4] and n’ = [22=4 | The reduced domain can thus be computed
in constant time in this case.

Program 4.24 Resolution of the puzzle SEND+MORE=MONEY by a CLP(FD)
program which requires the exploration of at most two choice points (or less according
to the choice of the variable to enumerate first).

send (L) : -sendc(L), labeling(L).

sendc([S,E,N,D,M,0,R,Y]) :-
domain([S,E,N,D,M,0,R,Y],[0,9]),
alldifferent([S,E,N,D,M,0,R,Y]),
S.=\=0,
M.=\=0,
1000%S+100*E+10*N+D
+ 1000%M+100*0+10*R+E
.= 10000*M+1000*0+100*N+10*E+Y.

| ?- send(L).
L =1[9,5,6,7,1,0,8,2] 7 ;

no
| ?- sendc([S,E,N,D,M,0,R,Y]).

M=1, 0=0, S=09,
Y+90*N.=10*%R+D+91*E,
alldifferent([E,N,D,R,Y]),
domain(E, [4,7]),

domain(N, [5,8]),

domain(D, [2,8]),

domain(R, [2,8]),
domain(Y,[2,8]) 7

yes
| ?- sendc([S,E,N,D,M,0,R,Y]),indomain(E).

b=7,E=5,M=1, N =6,
0=0,R=8,8=9,Y=27;
no

| ?- sendc([S,E,N,D,M,0,R,Y]),indomain(R).
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Y+90%N.=D+91*E+80,
alldifferent([E,N,D,Y]),
domain(E, [5,6]),
domain(N, [6,7]),
domain(D, [2,7]),
domain(Y,[2,7]1) 7 ;

no

Constraint propagation is a complete method for some constraints, i.e. it pro-
vides a decision procedure. It is the case for instance for systems of inequalities
of the form aX < bY + ¢ where a,b,c > 0 [48]. In this case the principle LA is
complete and gives a simple decision procedure.

Proposition 4.25 (Completeness of LA) Let T' be a constraint system of the
form
aX >bY +d, a,b>0, d>0.

Let T' —* TV /—. Then T is satisfiable if and only if T' # L, in which case
{z*l « k| 2 € V(T')} is a solution.

Proor: If I = 1 then by the validity lemma T is insatisfiable. If TV # 1 is
irreductible, then for every constraint ¢ € T, and every variable z¢ € V(c) we have
d = DR(z% c). Let 0 = {z!" + k | 2 € V(I')}, we can easily check that each
constraint in I is satisfied by o. Indeed let a X1 > pY ™"l 4 d be a constraint in
I, by definition of the reduced domain, the constraint a.k > Yl +d is satisfiable,
thus a.k > b.m + d that is o is a solution. Therefore D = I"o, and by the validity
lemma we get that I' is satisfiable. O

This class of constraints is important for scheduling problems, as they express
precedence constraints, as well as mutual exclusion constraints with a disjonction.

Program 4.26 Solving by simple CLP(FD) queries of a PERT scheduling problem
with five tasks A,B,C,D,E, and of a disjunctive scheduling problem where the mutual
exclusion constraints between the tasks C and D are treated as Prolog choice point
The higher-order predicate minimize (Goal,Cost) computes the optimal solu-
tions to the goal Goal w.r.t. the objective function Cost by branch and bound.

7- X.>=Y+2.

domain(Y, [0,4294967290]),
domain (X, [2,4294967292]),
X.>=Y+2, t ?

yes | ?- minimize((B.>=A+5,C.>=B+2,D.>=B+3,E.>=C+5,E.>=D+5) , E).
Solution with cost 13

A=0,B=5,D=38,

E = 13,

domain(C, [7,8]),

C.>=5+2 7 ;

no | ?- minimize((B.>=A+5,C.>=B+2,D.>=B+3,E.>=C+5,E.>=D+5,
(C.>=D+5 ; D.>=C+5)) , E).
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Solution with cost 18
Solution with cost 17

no

Although simple in their principle, constraint propagation algorithms have in-
teresting performances for solving large systems of constraints. Furthermore they
can be applied to complex global constraints for which the reduced domains can be
computed or approximated by powerful algorithms from Operations Research and
graph theory. The CLP(FD) programs which have been developed for disjunctive
scheduling problems compete today with the best solutions from Operations Re-
search [6]. The reason for this success is the capability of the language to express
(and experiment quickly) both complex propagation schemes for global constraints
and complex search strategies.



Chapter 5

Formal semantics

The first role of the formal semantics of a programming language is to define math-
ematically what a program computes. But of course the notion of computation is
relative to the choice of the properties of the execution that we wish to observe.
We can be interested for instance in the trace of the execution, or in the computed
answers (the ordered list of answers or the multi-set or the set), or just in the
termination, etc.

A set of observable properties (or observations) of the execution defines an equiv-
alence relation on the programs: P = P' iff for every input, P and P’ are obser-
vationally undistinguishable. A formal semantics S(P) is correct w.r.t. an equiv-
alence relation on programs =, if S(P) = S(P') = P = P’, fully abstract if
S(P)=S(PYs P=P.

The formal semantics can be used for analyzing programs or verifying the sound-
ness of program transformations (for optimizing execution for example ). The dif-
ferent ways of defining the formal semantics provide us with different tools for
analyzing programs.

In the following section we study the operational semantics of CLP languages,
which are based on the definition of the program behavior by an abstract machine
(the CSLD resolution rule), then we study for each notion of observable, their related
logical, algebraic and fixed point semantics.

5.1 Operational Semantics

For CLP programs, a natural choice of observation from the point of view of
theorem proving, is the observation of successes, that is the existence of a CSLD
refutation for a goal. We thus define a first equivalence relation P =; P’ iff for
every goal G, G has a CSLD refutation in P iff G has one in P’.

From the point of view of a programming language, we are of course more
interested by the set of computed answers to a goal. We can thus define a finer
equivalence relation, P =, P’ iff for every goal GG, a constraint ¢ is a computed
answer a G in P if and only if ¢ is a computed answer to G in P'.

We could define the operational semantics of a program CLP, as respectively
the set of goals which admit a CSLD refutation, and the set of pairs of goals and
constraints, < ¢,G >, such that ¢ is a computed answer for G. The lemma of A-
compositionality 3.7 shows however that the computed answers to a compound goal
(c|A1, ..., Ap), are a simple combination of answers to the atomic goals (true|A;),
1 <4 < n. The operational behavior of a CLP program w.r.t. the set of computed
answers can thus be entirely caracterized by the set of computed answers to atomic
goals only. We can thus define formally the operational semantics of CLP programs

39
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for the observation of computed answers by the set of constrained atoms:
O2(P) = {c|A | true|]A —* ¢|O}

Clearly we have P =5 P’ iff O2(P) = Oy(P").
For the observation of succeses we can define the operational semantics of the
program simply as a subset of the S-base:

O1(P) ={Ap € Bs | true|]A —* |00, S = cp}
We have P =1 P'iff Ol(P) = Ol(Pl)

5.2 Observation of Successes

In this section we define the fixed point semantics and the logical semantics of
CLP programs for the observation of successes, and we show the equivalence with
the operational semantics O;.

Definition 5.1 Let P be a CLP(S) program. The immediate consequence operator
TS : 2Bs — 2Bs s defined as:

TS(I) = {Ap € Bgs| there exists a renamed clause in normal form

(A < c|A1, ..., An) € P, and a valuation p s.t.

N ': cp and {Alpa aAnp} g I}}

Proposition 5.2 Let P be a CLP(S) program, and I be an S-interpretation. I is
a S-model of P if and only if I is a post-fived point of Ts, T (I) C I. Furthermore
I is a supported S-model of P if and only if I is a fized point of Ts, T (I) = I.

PROOF: I is a S-model of P,

iff for each clause A + c¢|Aq,..., A, € P and for each S-valuation p, if S | ¢p
and {A1p, ..., App} C I then Ap € I,

iff TS(I) C 1.

I is a fixed point of TS,

iff TS(I) =1,
iff I ={Ap € I|(A « ¢|A1,...,An) € P, S Ecp, {A1p,...,App} C I}
iff T is a supported S-model of P. O

Proposition 5.3 TS is a continuous operator on the lattice of S-interpretations.

ProoF: Let X be a chain of S-interpretations.
Ap € T3 (sup(X)),
iff (A< c|4y,...,4,) € P, S Ecpand {Aip,..., Anp} C sup(X),
iff (A« c|Ay,...,Ap) € P, SEcpand {Aip,...,Anp} C I, for some I € X,
iff A€ Tg(I) for some I € X,
iff A€ sup(TS(X)). . O

By the theorem of Knaster-Tarski, the operator T;.? has a least fixed point, equal
to T;.? 1 w, also equal to its least post-fixed point. We can thus define the fixed
point semantics of a program CLP(S) as the least fixed point of this operator:

F(P)=1fp(Tp) =TF tw

Theorem 5.4 (Least S-model) [26] Let P a constraint logic program on S. P
has a least S-model, denoted by Mg satisfying:

Mg = Fy(P)
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ProOF: Fy(P) = Ifp(T$) is also the least post-fixed point of T, thus by 5.2,
Ifp(Tg) is the least S-model of P. O

Theorem 5.5 [26] F(P) = O,(P).

PRrROOF: This result is a corollary of the more general theorem 5.13, given in the
following section on the observation of computed constraints. O

5.3 Observation of Computed Constraints

The computed answers of a program CLP(S) can also be characterized by a fixed
point semantics. The idea is to define an immediate consequence operator on the
lattice of constrained atoms. There is a complete adequacy between the computed
constraints by CSLD resolution and the constraints associated to atoms in the
least fixed point of this operator. This will be used to show a completeness result
w.r.t. correct answers of the logical semantics.

Let P a constraint logic program on a structure S presented by a theory 7. A
constrained atom is a pair ¢|A composed of a S-satisfiable constraint ¢ and of an
atom A containing no function symbol. The set of closed instances of a constrained
atom is defined as:

[c|Als = {Ap | S |E cp}

The set of constrained atoms forms a complete lattice called the T -base and denoted
by B7. A constrained interpretation I is a subset of the 7-base. We note [I]s =
{Ap | c|A € I, S = cp} the S-interpretation associated to I.

Definition 5.6 The immediate consequence operator S}g : 2B7 5 2B7 s defined
as:
SS(I) = {c|A € Br | there exists a renamed clause in normal form
(A« d|Ay, ..., An) € P, and constrained atoms {c1|A1, ...,cn|An} C 1,
s.t.c=dN N\, ¢ is S-satisfiable}.

Exercise 5.7 Show that S$ is a continuous operator on the lattice of constrained
interpretations.

Definition 5.8 The fized point semantics of a program CLP(S) is defined as the
least fived point of Sg,
Fy(P) = ifp(S) = SP tw.

Example 5.9 Consider the CLP(H ) append program

append(A,B,C):- A=[], B=C
append(A,B,C):- A=[X|L], C=[X|R], append(L,B,R).

The iteration of the mon-ground immediate consequence operator from the empty
constrained interpretation enumerates the CSLD answer constraints to the goal
append(A,B,C):
SH1+0 =10
SE1+1 ={A=]),B=Clappend(A, B,C)}
SHt2 =SHt1U
{A=[X|L],C =[X|R],L =[],B = R|append(A, B,C)}
= S} 41014 = [X],C = [X|B]lappend(A, B, C)}
SE13 =S¥ T20{A=[X,Y],C = [X,Y|B]lappend(4, B,C)}
SEt4 =SET3U{A=[X,Y,2],C = [X,Y, Z|Bllappend(A, B, C)}
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Lemma 5.10 For every constrained interpretation I, [S3(I)]s = T3 ([I]s).

Proor: We prove the two inclusions separately.

Let c|A € S§(I) and p be a valuation solution of c. By definition of S& there
exists a renamed clause in normal form (A + d|Ay,...,4,) € P and constrained
atoms {ci|A1,...,cn|An} C I, such that ¢ = d A \j_, ¢;. Thus p is also a solution
of ¢1,...,cn. Therefore {Aip,...,Anp} C [I]s and by definition of T, we have
ApeTg.

In the other direction, let Ap € TS ([I]s). By definition of TS, there exists a
clause (A < d|A4, ..., Ap) € P such that Ayp, ..., A,p} C [I]s and p is solution of d.
By definition of [I]s, there exist constrained atoms {c;|A1,...,cn|An} C I renamed
in such a way as p is a solution of c1,...,c,. Let ¢ = d A A, ¢;, p is a solution of
¢, thus ¢ is S-satisfiable and by definition of S5, we have c|A € S§(I). Therefore
Ap e [S§(D)s. 0

Theorem 5.11 [26] For every ordinal o, Tg 1 = [S§ 1 a]s.

PROOF: The proof is by transfinite induction on c.
The base case a = 0 is trivial.
For a successor ordinal, we have
(S5 1a] = [S3(S5 T a - Dls,
=Ts([Sp 1 a —1]s) by lemma 5.10,
=Tg(Ts 1 a — 1) by induction,
= T;.? T a.
For a limit ordinal, we have
(52 1 als = [Ugea Sp 1 Bls
= LJL3<cr[SI‘g T B]S’
=Usca T§ 1 B by induction,
=T8 1 a. O

Corollary 5.12 For every integer n > 0, TS 1 n has a finite presentation.

PROOF: For every integer n, S§ 1 n is finite and [S§ 1 n]s = Tp 1 n. O

Theorem 5.13 (Full abstraction) [18] O2(P) = F»>(P).

ProOF: If cis a computed answer for the goal true|A, we show that |4 € S 1w
by induction on the length of the derivation m.

The base case m = 1 corresponds to the resolution of the goal by a fact of the
form A < c. We have c|4 € S¢ 1 1.

For the induction step, the derivation is of the form:

(true|A) — (d| Ay, ..., Ap) —" (c|O).

By the A-compositionality lemma there exist computed answers ci, ..., ¢, for the
goals Ai, ..., Ay, such that ¢ = d A A]_; ¢;. By the induction hypothesis there exist
c1]Ay, ..., cnlA, € S 1 w. Thus by definition of S we obtain c|4 € S5 tw+ 1=
5SS 1 w.

In the other direction, if ¢/A € S 1 n, we show by induction on n that c is
a computed answer for the goal true|A. The base case n = 1 is equivalent to the
previous base case.

For the induction step, by definition of S}‘g, there exists a renamed clause in
normal form (A « d|4;, ..., A,) € P and {c1|A1,...,ca|An} € S5 T n — 1 such that
c=dA A, is S-satisfiable.
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We thus have the first step of resolution:
(true|A) — (d|Ay, ..., Ap)
and by induction, for every i, 1 <i < mn:
(true|A;) —* (¢;]0).
As ¢ is satisfiable then by lemma 3.7, we deduce that
(true|A) —* (c|O).

O

Corollary 5.14 c is a computed answer for the goal d|Aq, ..., Ay, if and only if there
ezists {c1|A1, ..., cnlAn} C S§ tw such that c = d A N\, ¢;.

Proor: By the A-compositionality lemma 3.7. g

Sf; 1 w captures the set of computed answer constraints with program P, never-
theless this set may be infinite and it may contain too much information for proving
some properties of the program. Abstract interpretation [5] is a method for prov-
ing properties of programs without handling irrelevant information. The idea is
to replace the real computation domain by an abstract computation domain which
retains sufficient information w.r.t. the property to prove.

Example 5.15 (Groundness analysis by abstract interpretation) Let us con-
sider the CLP(H) append program in 5.9, and let us infer information about the
groundness of the arguments of append after a success. More precisely let us ask
the following question: what is the groundness relation between arguments after a
success in append?

The term structure can be abstracted by a boolean structure which expresses the
groundness of the arguments. We thus associate a CLP(Bool) abstract program
by abstracting equality constraints over Herbrand variables by boolean constraints
representing the groundness of the variables:

append(A,B,C) : - A=true, B=C.
append(A,B,C) :- A=X/\L, C=X/\R, append(L,B,R).

The least fized point of the immediate consequence operator, computed in at
most 2° steps, expresses the groundness relation between arguments of the concrete
program.

Sgool T 0 = 0
S§Bool 41 ={A = true, B = Clappend(A, B,C)}
Sgool T 2 = Sgool T 1U
{A=XAL,C=XAR,L=true, B= Rl|append(A, B,C)}
= §Beool 41U {C = A A Blappend(A, B,C)}
Sgool T 3 = Sgool T 20
{A=XALC=XAR,R=X A B|append(A,B,C)}
= §Beol 42U {C = A A Blappend(A, B,C)}
— S}lg’ool T 92 = S}lg’ool Tw
In a success of append(A, B,C) C is ground if and only if A and B are ground.

Example 5.16 (Groundness analysis of reverse) Concrete CLP(H) program:

rev(A,B) :- A=[], B=[].
rev(A,B) :- A=[XIL], rev(L,K), append(K, [X],B).
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Abstract CLP(Bool) program:

rev(A,B) :- A=true, B=true.
rev(A,B) :- A=X/\L, rev(L,K), append(X,X,B).

Sgool 10 = ]

S§Bool +1 = {A = true, B = true|rev(A, B)}

SBool+2 =SB0l +1U{4 = X, B = X|rev(A, B)}
=SBl + 1U {A = Blrev(4, B)}

SBool 43 = §Bool 42U{A =X AL,L=K,B =K AX|rev(A, B)}
= §Bool 42U {A = Blrev(A4, B)}= S50l $ 2 = §Bool 1,

The fixpoint semantics is also useful to link the operational semantics of CLP
programs to their logical semantics.

Theorem 5.17 (Soundness of CSLD resolution) [26] Let P be a CLP(S) pro-
gram. If ¢ is a computed answer for the goal G then c is a correct answer.

Proor: If G = (d|A4,...,A,), we deduce from the A-compositionality lemma
3.7,that there exist computed answers cy, ..., ¢, for the goals Ay, ..., A, such that
c=dA N\, ¢ is satisfiable. For every i, 1 <i < n we have

cilA; € Sp 1w, by 5.13,

[cilAils € Mg, by 5.11, and 5.2,

P s V(e; D A;) as My is the least S-model of P,

P '25 V(C D Al) as S |= V(C D Ci).

Therefore we have P =g V(e D (dA A1 Ao A Ay)). O

Theorem 5.18 (Completeness of CSLD resolution) [36] Let P be a CLP(S)
program. If ¢ is a correct answer for the goal G then there exists a (possibly infinite)
set {¢;}i>o of computed answers for G, such that:

SEVY(eD \/ IWie).

i>0

PRrOOF: According to the A-compositionality lemma 3.7, it is sufficient to prove
the theorem for an atomic goal A. Let ¢ be a correct answer for the goal A. For
every solution p of ¢,

Ap is true in all the S-models of P,

iff Ap is true in the least S-model of P,

iff Ap € T;.? 1T w, by 5.5,

iff Ap € [S$ 1 wls, by 5.10,

iff ¢,|A € S$ 1 w, for some constraint ¢, s.t. p is solution of 3Y,c,, where
Y, = Vie,) \ V(4),

iff ¢, is a computed answer for A (by 5.13).

By taking the collection of all these constraints ¢, we obtain:

SEV(eD\/IW,e,)

Cp
g

The fact that a possibly infinite set of computed answers has to be considered
to insure the completeness w.r.t. correct answers in the structure S, is the same as
for logic programs without constraints, when the Herbrand’s domain, #, is formed
on a finite alphabet. For instance if Sy = {0, s}, then with the program

P = {p(0), p(s(X)) « p(X)}
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the goal p(X) has an infinite set of successful derivations with set of computed
substitutions

{X « s'(0) | i > 0}.

We have P,’H = VXp(X), but the identity substitution is not a computed answer.

If we take for the notion of correct answers, not the truth in the structure S,
but the truth w.r.t. the logical consequences of the theory 7 of presentation of S,
the number of computed answers to consider is finite.

Theorem 5.19 (Completeness w.r.t. the theory of the structure) [36] Let
P be a constraint logic program on a structure S presented by a theory T . If

P, T =EVY(eDG)AI(c)
then there exists a finite set {ci, ...,cn} of computed answers to G, such that:
T |: V(C D Elchl V..V EIYncn)

Proor: If P,T = c¢ D G then for every model S of T, for every S-solution p of ¢,
there exists a computed constraint c¢s , for G s.t. S |= ¢s,,p. Let {c;}i>0 be the set
of these computed answers.

Then for every model S and for every S-valuation p, § |= ¢ D V;>13Yic;,
therefore 7 |= ¢ D V;>13Yj¢;, hence by applying the compactness theorem of first-
order logic, there exists a finite part, let {¢;}1<i<n, such that 7 = ¢ D Vi—,3Yic;.
O

5.4 Observation of Finite Failures

Definition 5.20 Let P a program CLP(S). A derivation CSLD is fair if every
atom which appears in a goal of the derivation is selected after a finite number of
resolution steps.

A fair CSLD tree for a goal G is a CSLD derivation tree for G in which all
derivations are fair.

A goal G i finitely failed if G has a fair CSLD derivation tree to G, which is
finite and which contains no success.

Finite failure is another observable property of logic programs that it is worth
considering in addition to computed answers. Finite failure corresponds to a notion
of negative answer to a goal. However the logical semantics based on the logical
consequences of the program where each rule is viewed as an implication doesn’t
allow us to infere negative logical consequences, just because the Herbrand’s base
constitute a model of the program in which all the atoms are true.

On the other hand, the declarative semantics based on the least S-model of the
program is undecidable. This is easy to see on the Herbrand’s domain with a Prolog
program. Indeed, let us suppose the opposite, as Prolog is a language universal,
there thus exists a Prolog program for defining the following predicates:

success (P,B) which is true if Mp | 3B (i.e. if the goal B has a successful
SLD derivation with the program P), false otherwise (i.e. Mp E -3B),

fail(P,B) the negation of success(P,B).

We obtain a contradiction by considering the following program and goal:
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loop:- loop.

contr(P) :- success(P,P), loop.
contr(P):- fail(P,P).

?- contr(contr).

If contr(contr) has an SLD refutation, then it is also the case for the goal
success (contr,contr) which is true, hence fail (contr,contr) fails, thus by
definition of the predicate contr, the goal contr (contr) doesn’t admit an SLD
refutation: a contradiction.

If contr (contr) admits a successful derivation, then the goal fail (contr,contr)
is true, thus the goal has an SLD refutation: a contradiction.

Hence we conclude that the programs success and fail can not exist.

In order to give a declarative semantics to finite failures, it is thus necessary
to review the logical interpretation of the program, and to read the rules of the
program, as definitions of the predicates by equivalences, and instead of by impli-
cations.

Definition 5.21 Let P be a CLP program on a structure S, presented by a theory
T. The Clark’s completion of P is the set of formulas formed of T and of P*
defined as the set of formulas of the form

VXP(X) ¢ FVict AAL AL AAL )V .V (T ANAT A LA AL )

obtained for each predicate symbol p € P by collecting the rules which define p in
P, p(X)  ¢;|AL, ..., AL, with local variables Y;,
or of the form
VX -p(X)

if p is not defined in P.
Example 5.22 Let P be the program CLP(H) defined by the only rule
p(s(X) < p(X)

i.e. p(X)« X =s(Y)|p(Y). The Clark’s completion of P is the equality theory
CET augmented with

P* ={Vz p(z) & Iy z = s(y) Ap(y)-

The goal p(0) is finitely failed, we verify easily that P*,CET [ -p(0). On
the other hand the goal p(X) has an infinite fair derivation, it is thus not finitely
failed, hence P*,CET [ —3xzp(x). The cause of this situation is the existence of
non-standard models of CET (cf. 4.8), on the other hand in the standard model
P*H | —3Jzp(x).

We shall show that the logical consequences of the program’s completion does
characterize finite failures. Before that we show that the Clark’s completion doesn’t
change the logical semantics of correct answers.

Proposition 5.23 Let P be a constraint logic program on a structure S and I be
an S-interpretation on P. The following propositions are equivalent:

i) I is a supported S-model of P,
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it) I is a S-model of P*.
iii) I is a fized point of Ts

Proor: I is a S-model of P

iff T is a S-model of VX p(X) < ¢1 V ...V ¢, for every formula VX p(X) <
¢1 V...V Py in P*,

iff I is a post-fixed point of T, i.e. .TS(I) C I.

I is a supported S-interpretation of P,

iff T is a S-model of VX p(X) = ¢1 V... V ¢ for every formula VX p(X) <
¢1 V...V Py in P*,

iff I is a pre-fixed point of T§, i.e. I C T5(I).

We deduce that I is a supported S-model of P,

iff I is a S-model of P*,

iff I is a fixed point of T, O

Theorem 5.24 Let P be a constraint logic program on a structure S.

i) P* has the same least S-model than P, Mg = Mg.,
ii) PEsc— Aiff P* |=s ¢ — A, for every constraint ¢ and every atom A,
i) P,TlEc— Aiff P*,T Fc— A

PRroOF: i) follows immediately from 5.5 and 5.23.

For iii) we clearly have (P, T E ¢ —» A) = (P*,T = ¢ — A). We show the
contrapositive of the opposite, (P, T [ c— A) = (P*,T £ c— A).

Let I be a model of P and T, based on a structure S, let p be a valuation such
that I = —Ap and S = cp.

We have M§ = —Ap, thus Mg,
P*, T Ec— A

The proof of ii) is identical, the structure S being fixed. O

= —Ap, and as T [ ¢p, we conclude that

Remark 5.25 As shown by the completeness theorems 5.18, and 5.19, P Es ¢ —
A doesn’t imply P, T |=c — A. The previous theorem shows that the replacement of
P by P* exactly preserves these differences for the logical consequences of the form
c— A.

Theorem 5.26 (Soundness of the negation by finite failure) Let P be a logic
program with constraint on a structure S presented by a theory T. If G is finitely
failed then P*,T E —G.

PrOOF: By induction on the height h of the tree in finite failure for G = ¢|4, «
where A is the selected atom at the root of the tree.

In the base case h = 1, the constrained atom c|A has no CSLD transition, we
can deduce that P*, 7 &= —(c A A) hence that P*, T |= -G.

For the induction step, let us suppose h > 1. Let Gy,...,G, be the sons of
the root and Y7,...,Y, be the respective sets of introduced variables. We have
P*T EG+ 3V, Gy V..V3, G, By induction hypothesis, P*,T = -G, for
every 1 <i < mn, therefore P*, T = —G. O

Lemma 5.27 If (c|A) — (d|A4, ..., A,) then [d|A]ls C Ts([{d| A1, ...,d|An}]s)-

Theorem 5.28 (Completeness of finite failure) [26] Let P be a constraint logic
program on a structure S presented by a theory T. If P*,T | -G then G is finitely
failed.



48 CHAPTER 5. FORMAL SEMANTICS

ProOF: We show that if G has a fair CSLD tree which is not finitely failed then
P*,T,3(G) is satisfiable.

If G has a succesful derivation then by the soundness theorem (5.17), P*,T
JG. Otherwise G has a fair infinite CSLD-derivation

G = 00|G0 — 01|G1 — CQ|G2 — ...

For every i > 0, ¢; is T-satisfiable, thus by the compactness theorem of first-order
logic, ¢, = [J,>q ¢i is T-satisfiable.

Let S be a model of T s.t. S = 3(c,). Let Ip = {Ap | A € G; for some i >0
and let S |= ¢,p}. As the derivation is fair, every atom A in Iy is selected in a step
of resolution, thus c,|A — ¢,|A41, ..., A, with [c,]|A]s U ... U[ew|An]s C In. Of the
lemma 5.27 we deduce that Iy C T (Ip) hence Iy C T (Ip).

By the theorem of Knaster-Tarski, the iterated application up to ordinal w of
the operator T from I leads to a fixed point I s.t. Ip C I, thus [c,|Gols € I. We
deduce that P*,3(G) is S-satisfiable, thus that P*,7,3(G) is satisfiable. O

Introducing the connective of negation in logic programs, suppresses the restric-
tion to Horn clause formulas, and generalizes the approach to the whole first-order
logic. The Clark’s completion of logic programs with negation can be inconsistent
however, e.g. p < —p.. One solution to restore the consistency of such programs
is to skip to Kleene’s three-valued logic [17], [33]. The principle of negation by
finite failure is correct but incomplete w.r.t. the three-valued logic semantics of
logic programs with negation. Another principle called of constructive negation is
proved complete for CLP programs with negation in [46]. In [13] we define a princi-
ple of constructive negation by pruning, where negation is handled by a concurrent
mechanism of pruning between standard CSLD derivation trees, and whose com-
puted answers are characterized by a simple fixed point semantics. These results
make it possible to investigate the implementation of CLP systems not limited to
Horn clausal formulas, in which for instance the implementation of the optimization
predicates (cf. 4.26) can be derived [13].
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