Structure des petits réseaux génétiques et évolution in silico

Paul François (thèse) Hervé Rouault (thèse)
Laboratoire de Physique Statistique, CNRS \& ENS, Paris .

IHP, janvier 06.

Genetic networks.

- Dynamics in a cell: bistability, oscillations (circadian , ...)
- Spatial patterns (C. elegans, somites,...)
- Coordinated evolution of several genes/proteins.
- Design of synthetic modules.

A synthetic genetic switch

Two genes a and b that inhibit each other. Two stable steady states : $[A]$ high with $[B]$ low, and $[B]$ high with $[A]$ low.

Switching can be induced by an IPTG or a temperature pulse. Gardner et al, Nature 403:339-342 (2000)
Bistability requires dimerizations (or other interactions).

A synthetic genetic ring oscillator

The oscillation is based on three genes that repress each other in a circle ("rock-scissor-paper").
M. Elowitz and S. Leibler, Nature 403:335-338 (2000)

- What are the designs that achieve a given function?
- Can one sample them and add desired constraints (robustness,...) ?
- Easyness of creation, evolvability,...?
- Blueprints of useful networks.

An overrepresented motif in transcriptional networks

The "feedforward loop" is overrepresented in the transcriptional networks of E. Coli and S. Cerevisiae (Milo et al., Science 298: 824-827(2002)).

Function: a persistence detector?

Proposal : design by selection in silico.

The inverse of the statistical approach: from the desired task to the network.

To design modules performing given tasks (e.g. switches and oscillators), without imposing a priori any structure to the network, one evolves a collection of virtual "cells".
P. François and V. Hakim, PNAS, 101 580-585 (2004).

One computer 'cell' consists in

One computer 'cell' consists in

- a collection of genes $\overrightarrow{\Gamma_{a}}$
- and associated proteins

First implementation: transcription and translation condensed in one single step. mRNA are included in the present version.

One computer 'cell' consists in

- a collection of genes

- and associated proteins

First implementation: transcription and translation condensed in one single step. mRNA are included in the present version.

- transcriptional regulations $\stackrel{B}{+8}+$
- post-transcriptional regulations.
$A+B \rightarrow A B^{B}$

Representation	Corresponding equations
	$\frac{\mathrm{d}}{\mathrm{d} t}[\mathrm{~A}]=\tau_{A}[\mathrm{a}]-\delta_{A}[\mathrm{~A}]$
	$\begin{aligned} & \frac{\mathrm{d}}{\mathrm{dt}}[\mathrm{a}] \\ & \frac{\mathrm{d}}{\mathrm{dt}}[\mathrm{a}: \mathrm{B}]=\gamma[\mathrm{a}: \mathrm{B}]-\gamma[\mathrm{a}][\mathrm{B}]-\theta[\mathrm{B}] \\ & \frac{\mathrm{d}}{\mathrm{~d} t}[\mathrm{~A}]= \\ & =\tau_{A}[\mathrm{a}]+\tau_{A}^{\prime}[\mathrm{a}: \mathrm{B}] \end{aligned}$

Integration of ODEs

Elimination

> The modification of a kinetic constant in an existing reaction
or the addition of

- A new transcriptional regulation
- A new post-transcriptional regulation
- A new gene

The process is iterated over several generations.

Fitness function for oscillators

Two concentrations are fixed A_{1}
 and A_{2}.
ODEs are integrated
For $t=T / 2,3 T / 2,5 T / 2 \ldots$ fitness is given by the integral $\left(A-A_{1}\right)^{2}$.
For $t=T, 2 T, 3 T \ldots$ fitness is given by the integral $\left(A-A_{2}\right)^{2}$.

Fitness evolution

The oscillating network

A purely biochemical oscillator

A created bistable switch

Very different from two genes with reciprocal inhibition

A created bistable switch

A created bistable switch

A loop combining transcriptional and post-transcriptional interaction (i.e. protein-protein interaction) is at the core of several of these networks.

This Mixed Feedback Loop has now been found to be over-represented in S. Cerevisiae and E.Coli (Yeger-Lotem et al, PNAS 2004).

Mathematical analysis of the MFL

Reduced parameters: $\rho_{0}=\beta \rho_{f} /\left(\rho_{A} \delta_{r}\right), \rho_{1}=\beta \rho_{b} /\left(\rho_{A} \delta_{r}\right)$
A small parameter: $\delta_{r} / \sqrt{\rho_{A} \gamma}$
(P. François and V. Hakim, PRE (2005)

Comparison with real networks

First switch: lactose operon, with allolactose binding to lac repressor.

Proposed in 1961 by Monod and Jacob (based on Lac operon) as an alternative to reciprocal inhibition (Delbrück, 1949) !

Comparison with real networks

Second switch: developpement of competence in B.subtilis , Comk activates itself and is repressed by MecA.

Endogeneous oscillator : the circadian clock

Circadian activities of whole animals and single cells Liu et al, Cell (1997)

Froehlich et al, PNAS (2003)
Organism Activators A Repressors B

Neurospora Crassa
Drosophila
Mammals

FRQ PER, TIM PER, CRY

The created networks are working examples without delays or high Hill coefficients \Rightarrow motivation for new models of the circadian rhythms [for Neurospora, P. François Biophys. J. 88, 2369 (2005)].

The algorithm finds known (with complete description) and original designs.

An important lesson: The post-transcriptional interactions play a crucial role: the function of the networks cannot be understood at all by focusing only on the transcriptional regulations (protein sequestration in a complex appears to be a particularly important mechanism).

Work in progress/Perspectives

- Analysis of specific features of some genetic networks (e.g. temperature compensation).
- Blueprint for new synthetic networks.
- Evolution of real genetic networks.
- Spatial patterns, morphogenesis.

Somites

Somitogénèse et oscillations

(Cooke \& Zeeman (1976) \rightarrow Palmeirim et al (1997))

Segmentation as an oscillating/bistable transition?

The End (for today).

Thank you!

Temperature compensation

Selection of activation energies for temperature compensation:

- a $10^{\circ} \mathrm{K}$ increase : $T: 300^{\circ} \mathrm{K} \rightarrow 310^{\circ} \mathrm{K}$
- the kinetic constants increase $>30 \%$,
- period change $<3 \%$.

Fitness function for the switches

The desired two stable states are chosen $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$. ODEs are integrated, the "fitness" is given by the integral (A -$\left.A_{1}\right)^{2}+\left(B-B_{1}\right)^{2}$. Pulse of B protein ODEs are integrated, the fitness is given by the integral $\left(A-A_{2}\right)^{2}+$ $\left(B-B_{2}\right)^{2}$.

Transcriptional regulations

A

Post-transcriptional regulations

Transcriptional switches

A second type of switch

A second type of switch

A second type of switch

$$
\begin{aligned}
& \frac{\mathrm{d} A}{\mathrm{~d} t}=\frac{\alpha}{B_{0}+B^{v}}-\delta_{A} A \\
& \frac{\mathrm{~d} B}{\mathrm{~d} t}=\frac{\beta}{A_{0}+A^{\mu}}-\delta_{B} B
\end{aligned}
$$

$v \mu$ must be strictly higher than 1 to have bistability, which requires at least four (and not two) elementary reactions.
[Cherry and Adler, J. Theor. Biol. (2000)]

