Constraint Logic Programming

Sylvain Soliman@inria.fr

informatics / mathematics

Project-Team LIFEWARE

MPRI 2.35.1 Course – September–November 2017

Part I: CLP - Introduction and Logical Background

- 2 Examples and Applications
- First Order Logic

Part II: Constraint Logic Programs

Part III: CLP - Operational and Fixpoint Semantics

Full abstraction

Theorem 1 ([JL87popl])

 $T_{P}^{\mathcal{X}} \uparrow \omega = O_{gs}(P)$

 $T_{P}^{\mathcal{X}} \uparrow \omega \subset O_{as}(P)$ is proved by induction on the powers *n* of $T_{P}^{\mathcal{X}}$. n = 0, i.e., \emptyset , is trivial. Let $A_{\rho} \in T_{\rho}^{\mathcal{X}} \uparrow n$, there exists a rule $(A \leftarrow c | A_1, \dots, A_n) \in P$, s.t. $\{A_1 \rho, \dots, A_n \rho\} \subset T_P^{\mathcal{X}} \uparrow n - 1$ and $\mathcal{X} \models c \rho$. By induction $\{A_1\rho, \ldots, A_n\rho\} \subset O_{as}(P)$. By definition of O_{as} and \wedge -compositionality. we get $A\rho \in O_{as}(P)$. $O_{as}(P) \subset T_P^{\chi} \uparrow \omega$ is proved by induction on the length of derivations. Successes with derivation of length 0 are ground facts in $T_{P}^{\chi} \uparrow 1$. Let $A\rho \in O_{as}(P)$ with a derivation of length *n*. By definition of O_{as} there exists $(A \leftarrow c | A_1, \ldots, A_n) \in P$ s.t. $\{A_1 \rho, \ldots, A_n \rho\} \subset O_{as}(P)$ and $\mathcal{X} \models c\rho$. By induction $\{A_1\rho, \ldots, A_n\rho\} \subset T_{\rho}^{\mathcal{X}} \uparrow \omega$. Hence by definition of $T_{P}^{\mathcal{X}}$ we get $A\rho \in T_{P}^{\mathcal{X}} \uparrow \omega$.

$T_P^{\mathcal{X}}$ and \mathcal{X} -models

Proposition 2

I is a \mathcal{X} -model of P iff I is a post-fixed point of $T_P^{\mathcal{X}}$, $T_P^{\mathcal{X}}(I) \subset I$

Proof.

I is a \mathcal{X} -model of *P*, iff for each clause $A \leftarrow c | A_1, \dots, A_n \in P$ and for each \mathcal{X} -valuation ρ , if $\mathcal{X} \models c\rho$ and $\{A_1\rho, \dots, A_n\rho\} \subset I$ then $A\rho \in I$, iff $T_{\rho}^{\mathcal{X}}(I) \subset I$

$T_P^{\mathcal{X}}$ and \mathcal{X} -models

Theorem 3 (Least *X*-model [JL87popl])

Let P be a constraint logic program on \mathcal{X} . P has a least \mathcal{X} -model, denoted by $M_P^{\mathcal{X}}$ satisfying:

$$M_P^{\mathcal{X}} = T_P^{\mathcal{X}} \uparrow \omega$$

Proof.

 $T_P^{\mathcal{X}} \uparrow \omega = lfp(T_P^{\mathcal{X}})$ is also the least post-fixed point of $T_P^{\mathcal{X}}$, thus by Prop. 2, $lfp(T_P^{\mathcal{X}})$ is the least \mathcal{X} -model of P.

Relating S_P^{χ} and T_P^{χ} operators

Theorem 4 ([JL87popl])

For every ordinal α , $T_P^{\mathcal{X}} \uparrow \alpha = [S_P^{\mathcal{X}} \uparrow \alpha]_{\mathcal{X}}$

Proof.

e

Full abstraction w.r.t. computed answers

Theorem 5 (Theorem of full abstraction [GL91iclp])

 $O_{\mathit{Ca}}(\mathit{P}) = \mathit{S}_{\mathit{P}}^{\mathcal{X}} \uparrow \omega$

 $S_{P}^{\chi} \uparrow \omega \subset O_{Ca}(P)$ is proved by induction on the powers n of S_{P}^{χ} . n = 0is trivial. Let $c|A \in S_P^{\mathcal{X}} \uparrow n$, there exists a rule $(A \leftarrow d|A_1, \dots, A_n) \in P$, s.t. $\{c_1|A_1,\ldots,c_n|A_n\} \subset S_P^{\mathcal{X}} \uparrow n-1, c = d \land \bigwedge_{i=1}^n c_i \text{ and } \mathcal{X} \models \exists c.$ By induction $\{c_1|A_1,\ldots,c_n|A_n\} \subset O_{ca}(P)$. By definition of O_{ca} we get $c|A \in O_{ca}(P)$. $O_{ca}(P) \subset S_{P}^{\chi} \uparrow \omega$ is proved by induction on the length of derivations. Successes with derivation of length 0 are facts in $S_{P}^{\chi} \uparrow 1$. Let $c|A \in O_{ca}(P)$ with a derivation of length n. By definition of O_{ca} there exists $(A \leftarrow d|A_1, \dots, A_n) \in P$ s.t. $\{c_1|A_1, \dots, c_n|A_n\} \subset O_{ca}(P)$, $c = d \wedge \bigwedge_{i=1}^{n} c_i$ and $\mathcal{X} \models \exists c$. By induction $\{c_1 | A_1, \ldots, c_n | A_n\} \subset S_P^{\mathcal{X}} \uparrow \omega$. Hence by definition of $S_{P}^{\mathcal{X}}$ we get $c|A \in S_{P}^{\mathcal{X}} \uparrow \omega$.

Constraint-based Model Checking [DP99tacas] Analysis of unbounded states concurrent systems by CLP programs.

Concurrent transition systems defined by condition-action rules [Shankar93acm]:

condition $\phi(\vec{x})$ action $\vec{x}' = \psi(\vec{x})$

Translation into CLP clauses over one predicate p (for states)

 $p(\vec{x}) \leftarrow \phi(\vec{x}), \ \psi(\vec{x}', \vec{x}), \ p(\vec{x}').$

The transitions of the concurrent system are in one-to-one correspondance to the CSLD derivations of the CLP program.

Proposition 6

The set of states from which a set of states defined by a constraint c is reachable is the set $lfp(T_P)$ where P is the CLP program plus the clause $p(\vec{x}) \leftarrow c(\vec{x})$.

Computation Tree Logic CTL

Temporal logic for branching time:

- States described by propositional or first-order formulas
- Two path quantifiers for non-determinism:
 - A "for all paths"
 - E "for some path"
- Several temporal operators:
 - X "next time",
 - F "eventually",
 - G "always",
 - U "until".

Model Checking

```
Two types of interesting properties:

AG\neg\phi "Safety" property.

AF\psi "Liveness" property.
```

```
Duality: for any formula \phi we have EF\phi = \neg AG\neg\phi and EG\phi = \neg AF\neg\phi.
```

Model checking is an algorithm for computing, in a given Kripke structure K = (S, I, R), $I \subset S, R \subset S \times S$ (S is the set of states, I the initial states and R the transition relation), the set of states which satisfy a given CTL formula ϕ , i.e., the set $\{s \in S | K, s \models \phi\}$.

(Symbolic) Model Checking

Basic algorithm

When *S* is finite, represent *K* as a graph, and iteratively label the nodes with the subformulas of ϕ which are true in that node.

Add *A* to the states satisfying *A* (\neg *A*, *A* \land *B*,...)

Add *EF* ϕ (*EX* ϕ) to the (immediate) predecessors of states labeled by ϕ

Add $E(\phi U\psi)$ to the predecessor states of ψ while they satisfy ϕ

Add $EG\phi$ to the states for which there exists a path leading to a non trivial strongly connected components of the subgraph restricted to the states satisfying ϕ

Symbolic model checking

Use OBDD's to represent states and transitions as boolean formulas (*S* is finite).

Constraint-based Model Checking

Constraint-based model checking [DP99tacas] applies to Kripke structures with an infinite set of states. Numerical constraints provide a finite representation for an infinite set of states.

Constraint logic programming theory:

$$EF(\phi) = Ifp(T_{R \cup \{p(\vec{x}) \leftarrow \phi\}})$$
$$EG(\phi) = gfp(T_{R \land \phi})$$

Prototype implementation *DMC* in Sicstus Prolog + Simplex, CLP(H, FD, R, B)

Part IV Logical Semantics

Part IV: Logical Semantics

Logical Semantics of $CLP(\mathcal{X})$ Programs

Proper logical semantics

(1) $P, \mathcal{T} \models \exists (G)$ (4) $P, \mathcal{T} \models C \supset G$,

Logical semantics in a fixed pre-interpretation

(2)
$$P \models_{\mathcal{X}} \exists (G)$$
 (5) $P \models_{\mathcal{X}} C \supset G$,

• Algebraic semantics

(3)
$$M_P^{\mathcal{X}} \models \exists (G)$$
 (6) $M_P^{\mathcal{X}} \models c \supset G$.

Theorem 7 ([JL87popl])

If c is a computed answer for the goal G then $M_P^{\mathcal{X}} \models c \supset G$, $P \models_{\mathcal{X}} c \supset G$ and $P, \mathcal{T} \models c \supset G$.

Theorem 7 ([JL87popl])

If c is a computed answer for the goal G then $M_P^{\chi} \models c \supset G$, $P \models_{\chi} c \supset G$ and $P, \mathcal{T} \models c \supset G$.

If $G = (d|A_1, ..., A_n)$, we deduce from the \wedge -compositionality lemma, that there exist computed answers $c_1, ..., c_n$ for the goals $A_1, ..., A_n$ such that $c = d \wedge \bigwedge_{i=1}^n c_i$ is satisfiable. For every $1 \le i \le n$ $c_i|A_i \in S_P^{\mathcal{X}} \uparrow \omega$, by the full abstraction Thm 5,

Theorem 7 ([JL87popl])

If c is a computed answer for the goal G then $M_P^{\chi} \models c \supset G$, $P \models_{\chi} c \supset G$ and $P, \mathcal{T} \models c \supset G$.

If $G = (d|A_1, ..., A_n)$, we deduce from the \wedge -compositionality lemma, that there exist computed answers $c_1, ..., c_n$ for the goals $A_1, ..., A_n$ such that $c = d \wedge \bigwedge_{i=1}^n c_i$ is satisfiable. For every $1 \le i \le n$ $c_i|A_i \in S_{\mathcal{P}}^{\mathcal{X}} \uparrow \omega$, by the full abstraction Thm 5, $[c_i|A_i]_{\mathcal{X}} \subset M_{\mathcal{P}}^{\mathcal{X}}$, by Thm. 4, and Thm. 3, hence $M_{\mathcal{P}}^{\mathcal{X}} \models \forall (c_i \supset A_i)$,

Theorem 7 ([JL87popl])

If c is a computed answer for the goal G then $M_P^{\chi} \models c \supset G$, $P \models_{\chi} c \supset G$ and $P, \mathcal{T} \models c \supset G$.

If $G = (d|A_1, ..., A_n)$, we deduce from the \wedge -compositionality lemma, that there exist computed answers $c_1, ..., c_n$ for the goals $A_1, ..., A_n$ such that $c = d \wedge \bigwedge_{i=1}^n c_i$ is satisfiable. For every $1 \le i \le n$ $c_i|A_i \in S_p^{\mathcal{X}} \uparrow \omega$, by the full abstraction Thm 5, $[c_i|A_i]_{\mathcal{X}} \subset M_p^{\mathcal{X}}$, by Thm. 4, and Thm. 3, hence $M_p^{\mathcal{X}} \models \forall (c_i \supset A_i)$, $P \models_{\mathcal{X}} \forall (c_i \supset A_i)$ as $M_p^{\mathcal{X}}$ is the least \mathcal{X} -model of P,

Theorem 7 ([JL87popl])

If c is a computed answer for the goal G then $M_P^{\chi} \models c \supset G$, $P \models_{\chi} c \supset G$ and $P, \mathcal{T} \models c \supset G$.

If $G = (d|A_1, ..., A_n)$, we deduce from the \wedge -compositionality lemma, that there exist computed answers $c_1, ..., c_n$ for the goals $A_1, ..., A_n$ such that $c = d \wedge \bigwedge_{i=1}^n c_i$ is satisfiable. For every $1 \le i \le n$ $c_i|A_i \in S_P^{\mathcal{X}} \uparrow \omega$, by the full abstraction Thm 5, $[c_i|A_i]_{\mathcal{X}} \subset M_P^{\mathcal{X}}$, by Thm. 4, and Thm. 3, hence $M_P^{\mathcal{X}} \models \forall (c_i \supset A_i)$, $P \models_{\mathcal{X}} \forall (c_i \supset A_i)$ as $M_P^{\mathcal{X}}$ is the least \mathcal{X} -model of P, $P \models_{\mathcal{X}} \forall (c \supset A_i)$ as $\mathcal{X} \models \forall (c \supset c_i)$ for all $i, 1 \le i \le n$.

Theorem 7 ([JL87popl])

If c is a computed answer for the goal G then $M_P^{\chi} \models c \supset G$, $P \models_{\chi} c \supset G$ and $P, \mathcal{T} \models c \supset G$.

If $G = (d|A_1, ..., A_n)$, we deduce from the \wedge -compositionality lemma, that there exist computed answers $c_1, ..., c_n$ for the goals $A_1, ..., A_n$ such that $c = d \wedge \bigwedge_{i=1}^n c_i$ is satisfiable. For every $1 \le i \le n$ $c_i|A_i \in S_P^{\mathcal{X}} \uparrow \omega$, by the full abstraction Thm 5, $[c_i|A_i]_{\mathcal{X}} \subset M_P^{\mathcal{X}}$, by Thm. 4, and Thm. 3, hence $M_P^{\mathcal{X}} \models \forall (c_i \supset A_i)$, $P \models_{\mathcal{X}} \forall (c_i \supset A_i)$ as $M_P^{\mathcal{X}}$ is the least \mathcal{X} -model of P, $P \models_{\mathcal{X}} \forall (c \supset A_i)$ as $\mathcal{X} \models \forall (c \supset c_i)$ for all $i, 1 \le i \le n$. Therefore we have $P \models_{\mathcal{X}} \forall (c \supset (d \land A_1 \land \dots \land A_n))$, and as the same reasoning applies to any model \mathcal{X} of \mathcal{T} , $P, \mathcal{T} \models \forall (c \supset (d \land A_1 \land \dots \land A_n))$

Theorem 8 ([Maher87iclp])

If $M_{\rho}^{\mathcal{X}} \models c \supset G$ then there exists a set $\{c_i\}_{i \ge 0}$ of computed answers for *G*, such that: $\mathcal{X} \models \forall (c \supset \bigvee_{i \ge 0} \exists Y_i c_i)$.

Proof.

Theorem 8 ([Maher87iclp])

If $M_{\rho}^{\mathcal{X}} \models c \supset G$ then there exists a set $\{c_i\}_{i \ge 0}$ of computed answers for *G*, such that: $\mathcal{X} \models \forall (c \supset \bigvee_{i \ge 0} \exists Y_i c_i)$.

Proof.

For every solution ρ of c, for every atom A_j in G,

Theorem 8 ([Maher87iclp])

If $M_{\rho}^{\mathcal{X}} \models c \supset G$ then there exists a set $\{c_i\}_{i \ge 0}$ of computed answers for *G*, such that: $\mathcal{X} \models \forall (c \supset \bigvee_{i \ge 0} \exists Y_i c_i)$.

Proof.

For every solution ρ of c, for every atom A_j in G, $M_{\rho}^{\chi} \models A_j \rho$ iff $A_j \rho \in T_{\rho}^{\chi} \uparrow \omega$, by Thm. 3, iff $A_j \rho \in [S_{\rho}^{\chi} \uparrow \omega]_{\chi}$ by Thm. 4,

Theorem 8 ([Maher87iclp])

If $M_{P}^{\mathcal{X}} \models c \supset G$ then there exists a set $\{c_i\}_{i \ge 0}$ of computed answers for *G*, such that: $\mathcal{X} \models \forall (c \supset \bigvee_{i \ge 0} \exists Y_i c_i)$.

Proof.

For every solution ρ of c, for every atom A_j in G, $M_{\rho}^{\chi} \models A_{j\rho}$ iff $A_{j\rho} \in T_{\rho}^{\chi} \uparrow \omega$, by Thm. 3, iff $A_{j\rho} \in [S_{\rho}^{\chi} \uparrow \omega]_{\chi}$ by Thm. 4, iff $c_{j,\rho}|A_j \in S_{\rho}^{\chi} \uparrow \omega$, for some constraint $c_{j,\rho}$ s.t. ρ is solution of $\exists Y_{j,\rho}c_{j,\rho}$, where $Y_{j,\rho} = V(c_{j,\rho}) \setminus V(A_j)$,

Theorem 8 ([Maher87iclp])

If $M_{\rho}^{\mathcal{X}} \models c \supset G$ then there exists a set $\{c_i\}_{i \ge 0}$ of computed answers for *G*, such that: $\mathcal{X} \models \forall (c \supset \bigvee_{i \ge 0} \exists Y_i c_i)$.

Proof.

For every solution ρ of c, for every atom A_j in G, $M_{\rho}^{\chi} \models A_{j\rho} \text{ iff } A_{j\rho} \in T_{\rho}^{\chi} \uparrow \omega$, by Thm. 3, iff $A_{j\rho} \in [S_{\rho}^{\chi} \uparrow \omega]_{\chi}$ by Thm. 4, iff $c_{j,\rho}|A_j \in S_{\rho}^{\chi} \uparrow \omega$, for some constraint $c_{j,\rho}$ s.t. ρ is solution of $\exists Y_{j,\rho}c_{j,\rho}$, where $Y_{j,\rho} = V(c_{j,\rho}) \setminus V(A_j)$, iff $c_{j,\rho}$ is a computed answer for A_j (by 5) and $\chi \models \exists Y_{j,\rho}c_{j,\rho}\rho$.

Theorem 8 ([Maher87iclp])

If $M_P^{\mathcal{X}} \models c \supset G$ then there exists a set $\{c_i\}_{i \ge 0}$ of computed answers for *G*, such that: $\mathcal{X} \models \forall (c \supset \bigvee_{i \ge 0} \exists Y_i c_i)$.

Proof.

For every solution ρ of c, for every atom A_j in G, $M_{\rho}^{\chi} \models A_{j\rho}$ iff $A_{j\rho} \in T_{\rho}^{\chi} \uparrow \omega$, by Thm. 3, iff $A_{j\rho} \in [S_{\rho}^{\chi} \uparrow \omega]_{\chi}$ by Thm. 4, iff $c_{j,\rho}|A_j \in S_{\rho}^{\chi} \uparrow \omega$, for some constraint $c_{j,\rho}$ s.t. ρ is solution of $\exists Y_{j,\rho}c_{j,\rho}$, where $Y_{j,\rho} = V(c_{j,\rho}) \setminus V(A_j)$, iff $c_{j,\rho}$ is a computed answer for A_j (by 5) and $\chi \models \exists Y_{j,\rho}c_{j,\rho\rho}$.

Let c_{ρ} be the conjunction of $c_{j,\rho}$ for all j. c_{ρ} is a computed answer for G.

By taking the collection of c_{ρ} for all ρ we get $\mathcal{X} \models \forall (c \supset \bigvee_{c_{\rho}} \exists Y_{\rho} c_{\rho})$

Theorem 9 ([Maher87iclp])

If $P, \mathcal{T} \models c \supset G$ then there exists a finite set $\{c_1, \ldots, c_n\}$ of computed answers to G, such that: $\mathcal{T} \models \forall (c \supset \exists Y_1 c_1 \lor \cdots \lor \exists Y_n c_n).$

Proof.

Theorem 9 ([Maher87iclp])

If $P, \mathcal{T} \models c \supset G$ then there exists a finite set $\{c_1, \ldots, c_n\}$ of computed answers to G, such that: $\mathcal{T} \models \forall (c \supset \exists Y_1 c_1 \lor \cdots \lor \exists Y_n c_n).$

Proof.

If $P, \mathcal{T} \models c \supset G$ then for every model \mathcal{X} of \mathcal{T} , for every \mathcal{X} -solution ρ of c, there exists a computed constraint $c_{\mathcal{X},\rho}$ for G s.t. $\mathcal{X} \models c_{\mathcal{X},\rho}\rho$. Let $\{c_i\}_{i\geq 1}$ be the set of these computed answers. Then for every model \mathcal{X} and for every \mathcal{X} -valuation ρ , $\mathcal{X} \models c \supset \bigvee_{i\geq 1} \exists Y_i c_i$,

Theorem 9 ([Maher87iclp])

If $P, \mathcal{T} \models c \supset G$ then there exists a finite set $\{c_1, \ldots, c_n\}$ of computed answers to G, such that: $\mathcal{T} \models \forall (c \supset \exists Y_1 c_1 \lor \cdots \lor \exists Y_n c_n).$

Proof.

If $P, \mathcal{T} \models c \supset G$ then for every model \mathcal{X} of \mathcal{T} , for every \mathcal{X} -solution ρ of c, there exists a computed constraint $c_{\mathcal{X},\rho}$ for G s.t. $\mathcal{X} \models c_{\mathcal{X},\rho\rho}$. Let $\{c_i\}_{i \ge 1}$ be the set of these computed answers. Then for every model \mathcal{X} and for every \mathcal{X} -valuation ρ , $\mathcal{X} \models c \supset \bigvee_{i \ge 1} \exists Y_i c_i$, therefore $\mathcal{T} \models c \supset \bigvee_{i \ge 1} \exists Y_i c_i$,

Theorem 9 ([Maher87iclp])

If $P, T \models c \supset G$ then there exists a finite set $\{c_1, \ldots, c_n\}$ of computed answers to G, such that: $T \models \forall (c \supset \exists Y_1 c_1 \lor \cdots \lor \exists Y_n c_n).$

Proof.

If $P, \mathcal{T} \models c \supset G$ then for every model \mathcal{X} of \mathcal{T} , for every \mathcal{X} -solution ρ of c, there exists a computed constraint $c_{\mathcal{X},\rho}$ for G s.t. $\mathcal{X} \models c_{\mathcal{X},\rho}\rho$. Let $\{c_i\}_{i\geq 1}$ be the set of these computed answers. Then for every model \mathcal{X} and for every \mathcal{X} -valuation ρ , $\mathcal{X} \models c \supset \bigvee_{i\geq 1} \exists Y_i c_i$, therefore $\mathcal{T} \models c \supset \bigvee_{i\geq 1} \exists Y_i c_i$, As $\mathcal{T} \cup \{\exists (c \land \neg \exists Y_i c_i)\}_i$ is unsatisfiable, by applying the compactness theorem of first-order logic there exists a finite part $\{c_i\}_{1\leq i\leq n}$, s.t. $\mathcal{T} \models c \supset \bigvee_{i=1}^n \exists Y_i c_i$.

First-order theorem proving in $CLP(\mathcal{H})$

Prolog can be used to find proofs by refutation of Horn clauses (with a complete search meta-interpreter). $P, \forall (\neg A)$ is unsatisfiable iff $P \models \exists (A)$ iff $A \longrightarrow^* \Box$.

Groups can be axiomatized with Horn clauses with a ternary predicate p(x, y, z) meaning x * y = z.

First-order theorem proving in $CLP(\mathcal{H})$

Prolog can be used to find proofs by refutation of Horn clauses (with a complete search meta-interpreter). $P, \forall (\neg A)$ is unsatisfiable iff $P \models \exists (A)$ iff $A \longrightarrow^* \Box$.

Groups can be axiomatized with Horn clauses with a ternary predicate p(x, y, z) meaning x * y = z.

```
clause(p(e,X,X)).
```

First-order theorem proving in $CLP(\mathcal{H})$

Prolog can be used to find proofs by refutation of Horn clauses (with a complete search meta-interpreter). $P, \forall (\neg A)$ is unsatisfiable iff $P \models \exists (A)$ iff $A \longrightarrow^* \Box$.

Groups can be axiomatized with Horn clauses with a ternary predicate p(x, y, z) meaning x * y = z.

```
clause(p(e,X,X)).
clause(p(i(X),X,e)).
```
First-order theorem proving in $CLP(\mathcal{H})$

Prolog can be used to find proofs by refutation of Horn clauses (with a complete search meta-interpreter). $P, \forall (\neg A)$ is unsatisfiable iff $P \models \exists (A)$ iff $A \longrightarrow^* \Box$.

Groups can be axiomatized with Horn clauses with a ternary predicate p(x, y, z) meaning x * y = z.

```
clause(p(e,X,X)).
clause(p(i(X),X,e)).
clause((p(U,Z,W) :- p(X,Y,U), p(Y,Z,V), p(X,V,W))).
clause((p(X,V,W) :- p(X,Y,U), p(Y,Z,V), p(U,Z,W))).
```

To show i(i(x)) = x by refutation,

```
| ?- solve(p(i(i(a)),e,a)).
depth 2
yes
```

```
| ?- solve(p(i(i(a)),e,a)).
depth 2
yes
```

```
| ?- solve(p(a,e,a)).
depth 4
yes
```

```
| ?- solve(p(i(i(a)),e,a)).
depth 2
yes
```

```
| ?- solve(p(a,e,a)).
depth 4
yes
```

```
| ?- solve(p(a,i(a),e)).
depth 3
yes
```

Theorem proving in groups (cont.)

To show that any non empty subset of a group, stable by division, is a subgroup we add two clauses

Theorem proving in groups (cont.)

To show that any non empty subset of a group, stable by division, is a subgroup we add two clauses

```
clause(s(a)).
clause((s(Z) :- s(X), s(Y), p(X,i(Y),Z))).
```

and prove that *s* contains *e* and i(a).

Theorem proving in groups (cont.)

To show that any non empty subset of a group, stable by division, is a subgroup we add two clauses

```
clause(s(a)).
clause((s(Z) :- s(X), s(Y), p(X,i(Y),Z))).
```

and prove that s contains e and i(a).

```
| ?- solve(s(e)).
depth 4
yes
| ?- solve(s(i(a))).
depth 5
yes
```

Higher-order theorem proving in $CLP(\lambda)$

Church's simply typed λ -calculus $t ::= v \mid t_1 \rightarrow t_2$ $e: t ::= x: t \mid (\lambda x: t_1.e: t_2): t_1 \rightarrow t_2 \mid (e_1: t_1 \rightarrow t_2(e_2: t_1)): t_2$

Theory of functionality $\lambda x. e_1 =_{\alpha} \lambda y. e_1[y/x]$ if $y \notin V(e_1)$, $(\lambda x. e_1)e_2 \rightarrow_{\beta} e_1[e_2/x]$ $=_{\alpha} . \rightarrow_{\beta}$ is terminating and confluent

$$\mathbf{e}_1 =_{\alpha,\beta} \mathbf{e}_2 \text{ iff } \downarrow_{\beta} \mathbf{e}_1 =_{\alpha} \downarrow_{\beta} \mathbf{e}_2.$$

Equality is decidable, but not unification...

Theorem proving in $CLP(\lambda)$

Theorem 10 (Cantor's Theorem)

 $\mathbb{N}^{\mathbb{N}}$ is not countable.

Proof.

By two steps of CSLD resolution!

Theorem proving in $CLP(\lambda)$

Theorem 10 (Cantor's Theorem)

 $\mathbb{N}^{\mathbb{N}}$ is not countable.

Proof.

By two steps of CSLD resolution! Let us suppose $\exists h : \mathbb{N} \to (\mathbb{N} \to \mathbb{N}) \ \forall f : \mathbb{N} \to \mathbb{N} \ \exists n : \mathbb{N} \ h(n) = f$ After Skolemisation we get $\forall F \ h(n(F)) = F$, i.e., $\forall F \neg h(n(F)) \neq F$. Let us consider the following program $G \neq H \leftarrow G(N) \neq H(N)$. $N \neq s(N)$.

We have $h(n(F)) \neq F \longrightarrow^{\sigma_1} (h(n(F)))(I) \neq F(I) \longrightarrow^{\sigma_2} \square$ where the unifier $\sigma_2 = \{G = h(I) \ I, \ I = n(F), \ F = \lambda i.s(h(i) \ i), \ H = F\}$ is Cantor's diagonal argument!

Negation as Failure

A derivation CSLD is fair if every atom which appears in a goal of the derivation is selected after a finite number of resolution steps.

A fair CSLD tree for a goal G is a CSLD derivation tree for G in which all derivations are fair.

A goal G is finitely failed if G has a fair CSLD derivation tree to G, which is finite and which contains no success.

```
p :- p.
| ?- member(a,[b,c,d]).
no
| ?- p, member(a,[b,c,d]).
...
```

Logical semantics of finite failure?

Horn clauses entail no negative information: the Herbrand's base $\mathcal{B}_{\mathcal{X}}$ is a model.

On the other hand, the complement of the least \mathcal{X} -model $M_P^{\mathcal{X}}$ is not recursively enumerable.

Indeed let us suppose the opposite. We could define in Prolog the predicates:

- success (P,B) which succeeds iff $M_P \models \exists B$, i.e., if the goal *B* has a successful CSLD derivation with the program *P*
- fail(P,B) which succeeds iff $M_P \models \neg \exists B$

Undecidability of M_P^{χ}

```
loop:- loop.
contr(P):- success(P,P), loop.
contr(P):- fail(P,P).
```

If contr(contr) has a success, then success(contr,contr) succeeds, and fail(contr,contr) doesn't succeed, hence contr(contr) doesn't succeed: contradiction.

If contr(contr) doesn't succeed, then fail(contr,contr) succeeds, hence contr(contr) succeeds: contradiction.

Therefore programs success and fail cannot both exist.

Clark's completion

The Clark's completion of P is the set P^* of formulas of the form

 $\forall X \ p(X) \leftrightarrow (\exists Y_1 c_1 \land A_1^1 \land \dots \land A_{n_1}^1) \lor \dots \lor (\exists Y_k c_k \land A_1^k \land \dots \land A_{n_k}^k)$ where the $p(X) \leftarrow c_i | A_1^i, \dots, A_{n_i}^i$ are the rules in *P* and Y_i 's the local variables, $\forall X \neg p(X)$ if *p* is not defined in *P*.

Example 11

```
CLP(\mathcal{H}) program p(s(X)) := p(X).
Clark's completion P^* =
```

Clark's completion

The Clark's completion of P is the set P^* of formulas of the form

 $\forall X \ p(X) \leftrightarrow (\exists Y_1 c_1 \land A_1^1 \land \dots \land A_{n_1}^1) \lor \dots \lor (\exists Y_k c_k \land A_1^k \land \dots \land A_{n_k}^k)$ where the $p(X) \leftarrow c_i | A_1^i, \dots, A_{n_i}^i$ are the rules in *P* and Y_i 's the local variables, $\forall X \neg p(X)$ if *p* is not defined in *P*.

Example 11

CLP(\mathcal{H}) program p(s(X)) := p(X). Clark's completion $P^* = \{ \forall x \ p(x) \leftrightarrow \exists y \ x = s(y) \land p(y) \}$. The goal p(0) finitely fails, we have $P^*, CET \models \neg p(0)$. The goal p(X) doesn't finitely fail, we have

Clark's completion

The Clark's completion of P is the set P^* of formulas of the form

 $\forall X \ p(X) \leftrightarrow (\exists Y_1 c_1 \land A_1^1 \land \dots \land A_{n_1}^1) \lor \dots \lor (\exists Y_k c_k \land A_1^k \land \dots \land A_{n_k}^k)$ where the $p(X) \leftarrow c_i | A_1^i, \dots, A_{n_i}^i$ are the rules in *P* and Y_i 's the local variables, $\forall X \neg p(X)$ if *p* is not defined in *P*.

Example 11

CLP(\mathcal{H}) program p(s(X)) := p(X). Clark's completion $P^* = \{ \forall x \ p(x) \leftrightarrow \exists y \ x = s(y) \land p(y) \}$. The goal p(0) finitely fails, we have $P^*, CET \models \neg p(0)$. The goal p(X) doesn't finitely fail, we have $P^*, CET \not\models \neg \exists X \ p(X)$ although $P^* \models_{\mathcal{H}} \neg \exists X \ p(X)$

Supported \mathcal{X} -models

Proposition 12

i) I is a supported \mathcal{X} -model of P iff ii) I is a \mathcal{X} -model of P^{*} iff iii) I is a fixed point of $T_P^{\mathcal{X}}$.

Proof.

Supported \mathcal{X} -models

Proposition 12

i) I is a supported \mathcal{X} -model of P iff ii) I is a \mathcal{X} -model of P^{*} iff iii) I is a fixed point of $T_P^{\mathcal{X}}$.

Proof.

I is a \mathcal{X} -model of P

Proposition 12

i) *I* is a supported \mathcal{X} -model of *P* iff *ii*) *I* is a \mathcal{X} -model of *P*^{*} iff *iii*) *I* is a fixed point of $T_P^{\mathcal{X}}$.

Proof.

I is a \mathcal{X} -model of *P* iff *I* is a \mathcal{X} -model of $\forall X \ p(X) \leftarrow \phi_1 \lor \cdots \lor \phi_k$ for every formula $\forall X \ p(X) \leftrightarrow \phi_1 \lor \cdots \lor \phi_k$ in *P*^{*},

Proposition 12

i) *I* is a supported \mathcal{X} -model of *P* iff *ii*) *I* is a \mathcal{X} -model of *P*^{*} iff *iii*) *I* is a fixed point of $T_P^{\mathcal{X}}$.

Proof.

I is a \mathcal{X} -model of *P* iff *I* is a \mathcal{X} -model of $\forall X \ p(X) \leftarrow \phi_1 \lor \cdots \lor \phi_k$ for every formula $\forall X \ p(X) \leftrightarrow \phi_1 \lor \cdots \lor \phi_k$ in P^* , iff *I* is a post-fixed point of $T_P^{\mathcal{X}}$, i.e., $T_P^{\mathcal{X}}(I) \subset I$ (by Prop. 2).

Proposition 12

i) I is a supported \mathcal{X} -model of P iff ii) I is a \mathcal{X} -model of P^{*} iff iii) I is a fixed point of $T_P^{\mathcal{X}}$.

Proof.

I is a \mathcal{X} -model of Piff *I* is a \mathcal{X} -model of $\forall X \ p(X) \leftarrow \phi_1 \lor \cdots \lor \phi_k$ for every formula $\forall X \ p(X) \leftrightarrow \phi_1 \lor \cdots \lor \phi_k$ in P^* , iff *I* is a post-fixed point of $T_P^{\mathcal{X}}$, i.e., $T_P^{\mathcal{X}}(I) \subset I$ (by Prop. 2). *I* is a supported \mathcal{X} -interpretation of P, iff *I* is a \mathcal{X} -model of $\forall X \ p(X) \rightarrow \phi_1 \lor \cdots \lor \phi_k$ for every formula $\forall X \ p(X) \leftrightarrow \phi_1 \lor \cdots \lor \phi_k$ in P^* ,

Proposition 12

i) *I* is a supported \mathcal{X} -model of *P* iff *ii*) *I* is a \mathcal{X} -model of *P*^{*} iff *iii*) *I* is a fixed point of $T_P^{\mathcal{X}}$.

Proof.

I is a \mathcal{X} -model of *P* iff *I* is a \mathcal{X} -model of $\forall X \ p(X) \leftarrow \phi_1 \lor \cdots \lor \phi_k$ for every formula $\forall X \ p(X) \leftrightarrow \phi_1 \lor \cdots \lor \phi_k$ in P^* , iff *I* is a post-fixed point of $T_P^{\mathcal{X}}$, i.e., $T_P^{\mathcal{X}}(I) \subset I$ (by Prop. 2). *I* is a supported \mathcal{X} -interpretation of *P*, iff *I* is a \mathcal{X} -model of $\forall X \ p(X) \to \phi_1 \lor \cdots \lor \phi_k$ for every formula $\forall X \ p(X) \leftrightarrow \phi_1 \lor \cdots \lor \phi_k$ in P^* , iff *I* is a pre-fixed point of $T_P^{\mathcal{X}}$, i.e., $I \subset T_P^{\mathcal{X}}(I)$.

Proposition 12

i) *I* is a supported \mathcal{X} -model of *P* iff *ii*) *I* is a \mathcal{X} -model of *P*^{*} iff *iii*) *I* is a fixed point of $T_P^{\mathcal{X}}$.

Proof.

I is a \mathcal{X} -model of \mathcal{P} iff *I* is a \mathcal{X} -model of $\forall X \ p(X) \leftarrow \phi_1 \lor \cdots \lor \phi_k$ for every formula $\forall X \ p(X) \leftrightarrow \phi_1 \lor \cdots \lor \phi_k$ in \mathcal{P}^* , iff *I* is a post-fixed point of $T_{\mathcal{P}}^{\mathcal{X}}$, i.e., $T_{\mathcal{P}}^{\mathcal{X}}(I) \subset I$ (by Prop. 2). *I* is a supported \mathcal{X} -interpretation of \mathcal{P} , iff *I* is a \mathcal{X} -model of $\forall X \ p(X) \rightarrow \phi_1 \lor \cdots \lor \phi_k$ for every formula $\forall X \ p(X) \leftrightarrow \phi_1 \lor \cdots \lor \phi_k$ in \mathcal{P}^* , iff *I* is a pre-fixed point of $T_{\mathcal{P}}^{\mathcal{X}}$, i.e., $I \subset T_{\mathcal{P}}^{\mathcal{X}}(I)$. Thus *i*) *I* is a supported \mathcal{X} -model of \mathcal{P} iff *ii*) *I* is a \mathcal{X} -model of \mathcal{P}^* iff *iii*) *I* is a fixed point of $T_{\mathcal{P}}^{\mathcal{X}}$.

Theorem 13

i) P^* has the same least \mathcal{X} -model than P, $M_P^{\mathcal{X}} = M_{P^*}^{\mathcal{X}}$ *ii)* $P \models_{\mathcal{X}} c \supset A$ iff $P^* \models_{\mathcal{X}} c \supset A$, for all c and A, *iii)* $P, \mathcal{T} \models c \supset A$ iff $P^*, \mathcal{T} \models c \supset A$.

Proof.

Theorem 13

i) P^* has the same least \mathcal{X} -model than P, $M_P^{\mathcal{X}} = M_{P^*}^{\mathcal{X}}$ *ii)* $P \models_{\mathcal{X}} c \supset A$ iff $P^* \models_{\mathcal{X}} c \supset A$, for all c and A, *iii)* $P, \mathcal{T} \models c \supset A$ iff $P^*, \mathcal{T} \models c \supset A$.

Proof.

i) is an immediate corollary of full abstraction and least $\mathcal X\text{-model}$ theorems (1 and 3).

Theorem 13

i) P^* has the same least \mathcal{X} -model than P, $M_P^{\mathcal{X}} = M_{P^*}^{\mathcal{X}}$ *ii)* $P \models_{\mathcal{X}} c \supset A$ iff $P^* \models_{\mathcal{X}} c \supset A$, for all c and A, *iii)* $P, \mathcal{T} \models c \supset A$ iff $P^*, \mathcal{T} \models c \supset A$.

Proof.

i) is an immediate corollary of full abstraction and least \mathcal{X} -model theorems (1 and 3). For iii) we clearly have $(P, \mathcal{T} \models c \supset A) \Rightarrow (P^*, \mathcal{T} \models c \supset A)$. We show the contrapositive of the opposite, $(P, \mathcal{T} \nvDash c \supset A) \Rightarrow (P^*, \mathcal{T} \nvDash c \supset A)$.

Theorem 13

i) P^* has the same least \mathcal{X} -model than P, $M_P^{\mathcal{X}} = M_{P^*}^{\mathcal{X}}$ *ii)* $P \models_{\mathcal{X}} c \supset A$ iff $P^* \models_{\mathcal{X}} c \supset A$, for all c and A, *iii)* $P, \mathcal{T} \models c \supset A$ iff $P^*, \mathcal{T} \models c \supset A$.

Proof.

i) is an immediate corollary of full abstraction and least \mathcal{X} -model theorems (1 and 3). For iii) we clearly have $(P, \mathcal{T} \models c \supset A) \Rightarrow (P^*, \mathcal{T} \models c \supset A)$. We show the contrapositive of the opposite, $(P, \mathcal{T} \not\models c \supset A) \Rightarrow (P^*, \mathcal{T} \not\models c \supset A)$. Let *I* be a model of *P* and \mathcal{T} , based on a structure \mathcal{X} , let ρ be a valuation such that $I \models \neg A\rho$ and $\mathcal{X} \models c\rho$.

Theorem 13

i) P^* has the same least \mathcal{X} -model than P, $M_P^{\mathcal{X}} = M_{P^*}^{\mathcal{X}}$ *ii)* $P \models_{\mathcal{X}} c \supset A$ iff $P^* \models_{\mathcal{X}} c \supset A$, for all c and A, *iii)* $P, \mathcal{T} \models c \supset A$ iff $P^*, \mathcal{T} \models c \supset A$.

Proof.

i) is an immediate corollary of full abstraction and least \mathcal{X} -model theorems (1 and 3). For iii) we clearly have $(P, \mathcal{T} \models c \supset A) \Rightarrow (P^*, \mathcal{T} \models c \supset A)$. We show the contrapositive of the opposite, $(P, \mathcal{T} \not\models c \supset A) \Rightarrow (P^*, \mathcal{T} \not\models c \supset A)$. Let *I* be a model of *P* and \mathcal{T} , based on a structure \mathcal{X} , let ρ be a valuation such that $I \models \neg A\rho$ and $\mathcal{X} \models c\rho$. We have $M_{\rho}^{\mathcal{X}} \models \neg A\rho$, thus $M_{\rho^*}^{\mathcal{X}} \models \neg A\rho$, and as $\mathcal{T} \models c\rho$, we conclude that $P^*, \mathcal{T} \not\models c \supset A$.

Theorem 13

i) P^* has the same least \mathcal{X} -model than P, $M_P^{\mathcal{X}} = M_{P^*}^{\mathcal{X}}$ *ii)* $P \models_{\mathcal{X}} c \supset A$ iff $P^* \models_{\mathcal{X}} c \supset A$, for all c and A, *iii)* $P, \mathcal{T} \models c \supset A$ iff $P^*, \mathcal{T} \models c \supset A$.

Proof.

i) is an immediate corollary of full abstraction and least \mathcal{X} -model theorems (1 and 3).

For iii) we clearly have $(P, \mathcal{T} \models c \supset A) \Rightarrow (P^*, \mathcal{T} \models c \supset A)$. We show the contrapositive of the opposite, $(P, \mathcal{T} \not\models c \supset A) \Rightarrow (P^*, \mathcal{T} \not\models c \supset A)$. Let *I* be a model of *P* and \mathcal{T} , based on a structure \mathcal{X} , let ρ be a valuation such that $I \models \neg A\rho$ and $\mathcal{X} \models c\rho$.

We have $M_{\rho}^{\mathcal{X}} \models \neg A\rho$, thus $M_{\rho*}^{\mathcal{X}} \models \neg A\rho$, and as $\mathcal{T} \models c\rho$, we conclude that $P^*, \mathcal{T} \nvDash c \supset A$.

The proof of ii) is identical, the structure \mathcal{X} being fixed.

Theorem 14 If *G* is finitely failed then P^* , $\mathcal{T} \models \neg G$.

Proof.

Theorem 14 If *G* is finitely failed then P^* , $\mathcal{T} \models \neg G$.

Proof.

By induction on the height *h* of the tree in finite failure for $G = c|A, \alpha$ where *A* is the selected atom at the root of the tree.

Theorem 14 If *G* is finitely failed then P^* , $\mathcal{T} \models \neg G$.

Proof.

By induction on the height *h* of the tree in finite failure for $G = c|A, \alpha$ where *A* is the selected atom at the root of the tree. In the base case h = 1, the constrained atom c|A has no CSLD transition, we can deduce that $P^*, \mathcal{T} \models \neg (c \land A)$ hence that $P^*, \mathcal{T} \models \neg G$.

Theorem 14 If *G* is finitely failed then $P^*, \mathcal{T} \models \neg G$.

Proof.

By induction on the height *h* of the tree in finite failure for $G = c|A, \alpha$ where *A* is the selected atom at the root of the tree. In the base case h = 1, the constrained atom c|A has no CSLD transition, we can deduce that $P^*, \mathcal{T} \models \neg (c \land A)$ hence that $P^*, \mathcal{T} \models \neg G$. For the induction step, let us suppose h > 1. Let G_1, \ldots, G_n be the sons of the root and Y_1, \ldots, Y_n be the respective sets of introduced variables. We have $P^*, \mathcal{T} \models G \leftrightarrow \exists Y_1 \ G_1 \lor \cdots \lor \exists Y_n \ G_n$. By induction hypothesis, $P^*, \mathcal{T} \models \neg G_i$ for every $1 \le i \le n$, therefore $P^*, \mathcal{T} \models \neg G$.

Completeness of Negation as Failure

Theorem 15 ([JL87popl])

If $P^*, \mathcal{T} \models \neg G$ then G is finitely failed.
Theorem 15 ([JL87popl])

If $P^*, \mathcal{T} \models \neg G$ then G is finitely failed.

We show that if *G* is not finitely failed then P^* , \mathcal{T} , \exists (*G*) is satisfiable.

Theorem 15 ([JL87popl])

If $P^*, \mathcal{T} \models \neg G$ then G is finitely failed.

We show that if *G* is not finitely failed then $P^*, \mathcal{T}, \exists (G) \text{ is satisfiable.}$ If *G* has a success then by the soundness of CSLD resolution 7 , $P^*, \mathcal{T} \models \exists G.$

Theorem 15 ([JL87popl])

If $P^*, \mathcal{T} \models \neg G$ then G is finitely failed.

We show that if *G* is not finitely failed then $P^*, \mathcal{T}, \exists (G) \text{ is satisfiable.}$ If *G* has a success then by the soundness of CSLD resolution 7 , $P^*, \mathcal{T} \models \exists G$. Else *G* has a fair infinite derivation $G = c_0 | G_0 \longrightarrow c_1 | G_1 \longrightarrow ...$ For every i > 0, c_i is \mathcal{T} -satisfiable,

Theorem 15 ([JL87popl])

If $P^*, \mathcal{T} \models \neg G$ then G is finitely failed.

We show that if *G* is not finitely failed then $P^*, \mathcal{T}, \exists (G)$ is satisfiable. If *G* has a success then by the soundness of CSLD resolution 7, $P^*, \mathcal{T} \models \exists G$. Else *G* has a fair infinite derivation $G = c_0 | G_0 \longrightarrow c_1 | G_1 \longrightarrow \dots$ For every $i \ge 0$, c_i is \mathcal{T} -satisfiable, thus by the compactness theorem, $c_{\omega} = \bigwedge_{i>0} c_i$ is \mathcal{T} -satisfiable.

Theorem 15 ([JL87popl])

If $P^*, \mathcal{T} \models \neg G$ then G is finitely failed.

We show that if G is not finitely failed then $P^*, \mathcal{T}, \exists (G)$ is satisfiable. If G has a success then by the soundness of CSLD resolution 7, $P^*, \mathcal{T} \models \exists G$. Else G has a fair infinite derivation $G = c_0 | G_0 \longrightarrow c_1 | G_1 \longrightarrow \dots$ For every i > 0, c_i is \mathcal{T} -satisfiable, thus by the compactness theorem, $c_{\omega} = \bigwedge_{i>0} c_i$ is \mathcal{T} -satisfiable. Let \mathcal{X} be a model of \mathcal{T} s.t. $\mathcal{X} \models \exists (c_{\omega})$. Let $I_0 = \{A\rho \mid A \in G_i \text{ for some } i \geq 0 \text{ and } \mathcal{X} \models c_{\omega}\rho\}$. As the derivation is fair, every atom A in I_0 is selected, thus $c_{\omega}|A \longrightarrow c_{\omega}|A_1, \ldots, A_n$ with $[c_{\omega}|A] \cup \cdots \cup [c_{\omega}|A_n] \subset I_0$. We deduce that $I_0 \subset T^{\chi}_{\rho}(I_0)$. By Knaster-Tarski's theorem, the iterated application up to ordinal ω of the operator T_{P}^{χ} from I_{0} leads to a fixed point I s.t. $I_0 \subset I$, thus $[c_{\omega}|G_0] \subset I$. Hence $P^*, \exists (G)$ is \mathcal{X} -satisfiable, and $P^*, \mathcal{T}, \exists (G) \text{ is satisfiable.}$

Part V

Constraint Solving

Part V: Constraint Solving

Solving Equality Constraints in \mathcal{H} by Rewriting

Systems of equations Γ :

$$M_1 = N_1 \wedge \cdots \wedge M_n = N_n$$

A system is in solved form if it is of the form

$$\mathbf{x}_1 = \mathbf{M}_1 \wedge \cdots \wedge \mathbf{x}_n = \mathbf{M}_n$$

with $n \ge 0$ and $\{x_1, \ldots, x_n\} \cap (V(M_1) \cup \cdots \cup V(M_n)) = \emptyset$

Proposition 16

If Γ is in solved form then $\mathcal{H} \models \exists (\Gamma)$

Idea of the unification algorithm: try to simplify Γ into either a solved form or \bot

Dec
$$f(M_1, ..., M_n) = f(N_1, ..., N_n) \land \Gamma$$

 $\rightarrow M_1 = N_1 \land \dots \land M_n = N_n \land \Gamma$,
D $\perp f(M_1, ..., M_n) = g(N_1, ..., N_m) \land \Gamma \rightarrow \bot$ if $f \neq g$,
Triv $x = x \land \Gamma \rightarrow \Gamma$,
Var $x = M \land \Gamma \rightarrow x = M \land \Gamma \sigma$
if $x \notin V(M), x \in V(\Gamma), \sigma = \{x \leftarrow M\}$,
V $\perp x = M \land \Gamma \rightarrow \bot$
if $x \in V(M)$ and $x \neq M$

Lemma 17 (Validity) If $\Gamma \longrightarrow \Gamma'$ then $CET_{\mathcal{H}} \models \Gamma \supset \Gamma'$

Proof.

Simple application of the axioms for each rule

Lemma 18 (Termination)

The rules terminate

Proof.

Lemma 18 (Termination)

The rules terminate

Proof.

Take as complexity measure of Γ , the number of variables in non-solved form, and the size of Γ , ordered lexicographically

Proposition 19 (Decidability of unification)

 $\textit{CET} \models \exists (\Gamma) \textit{ iff the irreducible form of } \Gamma \textit{ is a solved form}$

Proof.

Lemma 18 (Termination)

The rules terminate

Proof.

Take as complexity measure of Γ , the number of variables in non-solved form, and the size of Γ , ordered lexicographically

Proposition 19 (Decidability of unification)

CET $\models \exists (\Gamma)$ *iff the irreducible form of* Γ *is a solved form*

Proof.

An irreducible form is either \bot , in which case Γ is unsatisfiable, or, by case analysis, a solved form, in which case Γ is satisfiable

Corollary 20 (Completeness of CET)

For any equation system Γ , either $CET \vdash \exists(\Gamma)$, or $CET \vdash \neg \exists(\Gamma)$

Corollary 21 $\mathcal{H} \models \exists (\Gamma) \text{ iff } CET \models \exists (\Gamma)$

Fourier's Alg. for Lin. Ineq. Constraints over $\ensuremath{\mathcal{R}}$

Check the satisfiability of a system of linear inequalities $\sum_{i=1}^{m} a_i x_i + c \le \sum_{j=1}^{n} b_j y_j + d$ Normal forms: $t \le x$, $x \le t$, or $t \le 0$, where t is linear and $x \notin V(t)$

The normal form of $s \le t$ w.r.t. x is noted $\overline{s \le t}^x$

•
$$\Gamma \to \bigwedge_{i=1}^{n} \bigwedge_{j=1}^{m} s_{i} \leq t_{j} \wedge \Gamma'$$

if $\overline{\Gamma}^{x} = \bigwedge_{i=1}^{n} s_{i} \leq x \wedge x \leq \bigwedge_{j=1}^{m} t_{j} \wedge \Gamma'$ where $x \notin V(\Gamma')$,
• $s \leq t \wedge \Gamma \to \Gamma$ if $s, t \in \mathcal{R}$ and $s \leq t$,
• $s \leq t \wedge \Gamma \to \bot$ if $s, t \in \mathcal{R}$ and $s > t$

The rules terminate

Theorem 22

A system of linear inequalities Γ is satisfiable over ${\cal R}$ iff it reduces to the empty system

Constraint Solving by Domain Reduction Simple reasoning on the domain of variables for each constraint independently

"Arc consistency": for each constraint c, for each variable x in c, for each value e of the domain of x, there exists a solution of c with x = e

Example: $x, y, z \in \{1, 2\}$ System $x \neq y \land x \neq z \land y \neq z$ arc-consistent

Global constraint all-different([x,y,z])
non arc-consistent

Domain Reduction over Finite Domains

$$Sol(\Gamma, \mathcal{FD}) = \{ \sigma \mid \sigma = \{ \mathbf{x}^{\mathbf{d}} \leftarrow \mathbf{v} \mid \mathbf{x}^{\mathbf{d}} \in \mathbf{V}(\Gamma), \ \mathbf{v} \in \mathbf{d} \}, \ \mathcal{FD} \models \Gamma\sigma \}$$

The reduced domain of a variable x^d w.r.t. a basic constraint c is the domain

$$DR(x^d, c) = \{ v \in d \mid \mathcal{FD} \models \exists (c[v/x^d]) \}$$

A constraint system Γ is arc-consistent if

$$\forall c \in \Gamma \ \forall x^d \in V(c) \ DR(x^d, c) = d$$

Idea of constraint propagation: reduce the domain of variables independently to make the system arc-consistent

Example $a * X \ge b * Y + d$

Simple interval reasoning:

$$aX^{[k,l]} \ge bY^{[m,n]} + d$$
 $a, b > 0, d \ge 0$

Example $a * X \ge b * Y + d$

Simple interval reasoning:

$$aX^{[k,l]} \ge bY^{[m,n]} + d$$
 $a, b > 0, d \ge 0$

we have

$$DR(X^{[k,l]},c) = [max(k,k'),l]$$
$$DR(Y^{[m,n]},c) = [m,min(n,n')]$$
where $k' = \lceil \frac{bm+d}{a} \rceil$ and $n' = \lfloor \frac{al-d}{b} \rfloor$

Domain Reduction Algorithm

Fail: $c \wedge \Gamma \rightarrow \bot$ if $x^d \in V(c)$ and $DR(x^d, c) = \emptyset$.

FC: $c \wedge \Gamma \rightarrow \Gamma \sigma$ if $V(c) = \{x^d\}$, $d' = DR(x^d, c)$, $d' \neq \emptyset$, and $\sigma = \{x^d \leftarrow y^{d'}\}$

$$\begin{array}{l} \textbf{LA: } \boldsymbol{c} \wedge \boldsymbol{\Gamma} \rightarrow \boldsymbol{c} \boldsymbol{\sigma} \wedge \boldsymbol{\Gamma} \boldsymbol{\sigma} \\ \text{if } |\boldsymbol{V}(\boldsymbol{c})| > 1, \\ \boldsymbol{x}^{\boldsymbol{d}} \in \boldsymbol{V}(\boldsymbol{c}), \ \boldsymbol{d}' = \boldsymbol{D} \boldsymbol{R}(\boldsymbol{x}^{\boldsymbol{d}}, \boldsymbol{c}), \boldsymbol{d}' \neq \emptyset, \boldsymbol{d}' \neq \boldsymbol{d}, \boldsymbol{\sigma} = \{ \boldsymbol{x}^{\boldsymbol{d}} \leftarrow \boldsymbol{y}^{\boldsymbol{d}'} \} \end{array}$$

PLA: $c \wedge \Gamma \rightarrow c\sigma \wedge \Gamma\sigma$ if |V(c)| > 1, $x^d \in V(c)$, $DR(x^d, c) \subset d' \subsetneq d$, $d' \neq \emptyset$, $\sigma = \{x^d \leftarrow y^{d'}\}$

EL: $c \land \Gamma \to \Gamma$ if $\mathcal{FD} \models c\sigma$ for every valuation σ of the variables in c by values of their domain

Domain Reduction Algorithm (continued)

Lemma 23 (Validity)

If
$$\Gamma \longrightarrow_{\sigma}^{*} \Gamma'$$
 then $Sol(\Gamma, \mathcal{FD}) = \{\sigma \theta \mid \theta \in Sol(\Gamma', \mathcal{FD})\}.$

Proposition 24 (Completeness of LA for 2 var. ineq.)

Let Γ be a constraint system of the form

$$aX \ge bY + d$$
 $a, b > 0, d \ge 0.$

Let $\Gamma \longrightarrow_{\sigma}^{*} \Gamma' \not\rightarrow$ Then Γ is satisfiable if and only if $\Gamma' \neq \bot$

Proof.

If $\Gamma' \neq \bot$ is an irreducible form of Γ then for all $c \in \Gamma'$ and $x \in V(c)$ we have $DR(x^d, c) = d$ and $\{x^{[k,l]} \leftarrow k \mid x \in V(\Gamma')\}$ is a solution of Γ'

$CLP(\mathcal{FD})$ scheduling

Simple PERT problem

Disjunctive scheduling is NP-hard

Disjunctive scheduling: bridge problem (4000 nodes)

