
Constraint Logic Programming

Sylvain Soliman
Sylvain.Soliman@inria.fr

Project-Team LIFEWARE

MPRI 2.35.1 Course – September–November 2017

1

mailto:Sylvain.Soliman@inria.fr

Part I: CLP - Introduction and Logical
Background

1 The Constraint Programming paradigm

2 Examples and Applications

3 First Order Logic

4 Models

5 Logical Theories

2

Part II: Constraint Logic Programs

6 Constraint Languages

7 CLP(X)

8 CLP(H)

9 CLP(R,FD,B)

3

Part III: CLP - Operational and Fixpoint
Semantics

10 Operational Semantics

11 Fixpoint Semantics

12 Program Analysis

4

Full abstraction

Theorem 1 ([JL87popl])

TXP ↑ ω = Ogs(P)

TX
P ↑ ω ⊂ Ogs(P) is proved by induction on the powers n of TX

P .
n = 0, i.e., ∅, is trivial. Let Aρ ∈ TX

P ↑ n, there exists a rule
(A← c|A1, . . . ,An) ∈ P, s.t. {A1ρ, . . . ,Anρ} ⊂ TX

P ↑ n− 1 and X |= cρ. By
induction {A1ρ, . . . ,Anρ} ⊂ Ogs(P). By definition of Ogs and
∧-compositionality. we get Aρ ∈ Ogs(P).
Ogs(P) ⊂ TX

P ↑ ω is proved by induction on the length of derivations.
Successes with derivation of length 0 are ground facts in TX

P ↑ 1.
Let Aρ ∈ Ogs(P) with a derivation of length n. By definition of Ogs

there exists (A← c|A1, . . . ,An) ∈ P s.t. {A1ρ, . . . ,Anρ} ⊂ Ogs(P) and
X |= cρ. By induction {A1ρ, . . . ,Anρ} ⊂ TX

P ↑ ω. Hence by definition of
TX
P we get Aρ ∈ TX

P ↑ ω.

5

TXP and X -models

Proposition 2

I is a X -model of P iff I is a post-fixed point of TXP , T
X
P (I) ⊂ I

Proof.
I is a X -model of P,
iff for each clause A← c|A1, . . . ,An ∈ P and for each
X -valuation ρ, if X |= cρ and {A1ρ, . . . ,Anρ} ⊂ I then Aρ ∈ I,
iff TXP (I) ⊂ I

6

TXP and X -models

Theorem 3 (Least X -model [JL87popl])

Let P be a constraint logic program on X . P has a least
X -model, denoted by MXP satisfying:

MXP = TXP ↑ ω

Proof.
TXP ↑ ω = lfp(TXP) is also the least post-fixed point of T

X
P , thus

by Prop. 2, lfp(TXP) is the least X -model of P.

7

Relating SXP and TXP operators

Theorem 4 ([JL87popl])

For every ordinal α, TXP ↑ α = [SXP ↑ α]X

Proof.
The base case α = 0 is trivial. For a successor ordinal, we have
[SX

P ↑ α]X = [SX
P (S

X
P ↑ α− 1)]X

= TX
P ([S

X
P ↑ α− 1]X)

= TX
P (T

X
P ↑ α− 1) by induction

= TX
P ↑ α

For a limit ordinal, we have
[SX

P ↑ α]X = [
∪

β<α S
X
P ↑ β]X

=
∪

β<α[S
X
P ↑ β]X

=
∪

β<α T
X
P ↑ β by induction

= TX
P ↑ α

8

Full abstraction w.r.t. computed answers

Theorem 5 (Theorem of full abstraction [GL91iclp])

Oca(P) = SXP ↑ ω

SX
P ↑ ω ⊂ Oca(P) is proved by induction on the powers n of SX

P . n = 0
is trivial. Let c|A ∈ SX

P ↑ n, there exists a rule (A← d|A1, . . . ,An) ∈ P,
s.t. {c1|A1, . . . , cn|An} ⊂ SX

P ↑ n− 1, c = d ∧
∧n

i=1 ci and X |= ∃c. By
induction {c1|A1, . . . , cn|An} ⊂ Oca(P). By definition of Oca we get
c|A ∈ Oca(P).
Oca(P) ⊂ SX

P ↑ ω is proved by induction on the length of derivations.
Successes with derivation of length 0 are facts in SX

P ↑ 1. Let
c|A ∈ Oca(P) with a derivation of length n. By definition of Oca there
exists (A← d|A1, . . . ,An) ∈ P s.t. {c1|A1, . . . , cn|An} ⊂ Oca(P),
c = d ∧

∧n
i=1 ci and X |= ∃c. By induction {c1|A1, . . . , cn|An} ⊂ SX

P ↑ ω.
Hence by definition of SX

P we get c|A ∈ SX
P ↑ ω.

9

Constraint-based Model Checking [DP99tacas]
Analysis of unbounded states concurrent systems by CLP
programs.
Concurrent transition systems defined by condition-action
rules [Shankar93acm]:

condition ϕ(x⃗) action x⃗′ = ψ(x⃗)

Translation into CLP clauses over one predicate p (for states)

p(x⃗)← ϕ(x⃗), ψ(x⃗′, x⃗), p(x⃗′).

The transitions of the concurrent system are in one-to-one
correspondance to the CSLD derivations of the CLP program.

Proposition 6
The set of states from which a set of states defined by a
constraint c is reachable is the set lfp(TP)
where P is the CLP program plus the clause p(x⃗)← c(x⃗).

10

Computation Tree Logic CTL
Temporal logic for branching time:

States described by
propositional or first-order
formulas
Two path quantifiers for
non-determinism:

▶ A “for all paths”
▶ E “for some path”

Several temporal operators:

▶ X “next time”,
▶ F “eventually”,
▶ G “always”,
▶ U “until”.

E, A

F, G s p q
s

s

s
s

s

11

Model Checking

Two types of interesting properties:
AG¬ϕ “Safety” property.
AFψ “Liveness” property.

Duality: for any formula ϕ we have
EFϕ = ¬AG¬ϕ and
EGϕ = ¬AF¬ϕ.

Model checking is an algorithm for computing, in a given
Kripke structure K = (S, I,R), I ⊂ S,R ⊂ S× S (S is the set of
states, I the initial states and R the transition relation), the
set of states which satisfy a given CTL formula ϕ, i.e., the set
{s ∈ S|K, s |= ϕ}.

12

(Symbolic) Model Checking

Basic algorithm
When S is finite, represent K as a graph, and iteratively label
the nodes with the subformulas of ϕ which are true in that
node.
Add A to the states satisfying A (¬A, A ∧ B,…)
Add EFϕ (EXϕ) to the (immediate) predecessors of states labeled
by ϕ
Add E(ϕUψ) to the predecessor states of ψ while they satisfy ϕ
Add EGϕ to the states for which there exists a path leading to a
non trivial strongly connected components of the subgraph
restricted to the states satisfying ϕ

Symbolic model checking
Use OBDD’s to represent states and transitions as boolean
formulas (S is finite).

13

Constraint-based Model Checking

Constraint-based model checking [DP99tacas] applies to
Kripke structures with an infinite set of states.
Numerical constraints provide a finite representation for an
infinite set of states.

Constraint logic programming theory:

EF(ϕ) = lfp(TR∪{p(x⃗)←ϕ})

EG(ϕ) = gfp(TR∧ϕ)

Prototype implementation DMC in Sicstus Prolog + Simplex,
CLP(H,FD,R,B)

14

Part IV

Logical Semantics

15

Part IV: Logical Semantics

13 Logical Semantics of CLP(X)

14 Automated Deduction

15 CLP(λ)

16 Negation as Failure

16

Logical Semantics of CLP(X) Programs

Proper logical semantics

(1) P, T |= ∃(G) (4) P, T |= c ⊃ G,

Logical semantics in a fixed pre-interpretation

(2) P |=X ∃(G) (5) P |=X c ⊃ G,

Algebraic semantics

(3) MXP |= ∃(G) (6) MXP |= c ⊃ G.

17

Soundness of CSLD Resolution

Theorem 7 ([JL87popl])

If c is a computed answer for the goal G then MXP |= c ⊃ G,
P |=X c ⊃ G and P, T |= c ⊃ G.

If G = (d|A1, . . . ,An), we deduce from the ∧-compositionality lemma,
that there exist computed answers c1, . . . , cn for the goals A1, . . . ,An
such that c = d ∧

∧n
i=1 ci is satisfiable. For every 1 ≤ i ≤ n

ci|Ai ∈ SX
P ↑ ω, by the full abstraction Thm 5,

[ci|Ai]X ⊂ MX
P , by Thm. 4, and Thm. 3, hence M

X
P |= ∀(ci ⊃ Ai),

P |=X ∀(ci ⊃ Ai) as MX
P is the least X -model of P,

P |=X ∀(c ⊃ Ai) as X |= ∀(c ⊃ ci) for all i, 1 ≤ i ≤ n.
Therefore we have P |=X ∀(c ⊃ (d ∧ A1 ∧ · · · ∧ An)),
and as the same reasoning applies to any model X of T ,
P, T |= ∀(c ⊃ (d ∧ A1 ∧ · · · ∧ An))

18

Soundness of CSLD Resolution

Theorem 7 ([JL87popl])

If c is a computed answer for the goal G then MXP |= c ⊃ G,
P |=X c ⊃ G and P, T |= c ⊃ G.

If G = (d|A1, . . . ,An), we deduce from the ∧-compositionality lemma,
that there exist computed answers c1, . . . , cn for the goals A1, . . . ,An
such that c = d ∧

∧n
i=1 ci is satisfiable. For every 1 ≤ i ≤ n

ci|Ai ∈ SX
P ↑ ω, by the full abstraction Thm 5,

[ci|Ai]X ⊂ MX
P , by Thm. 4, and Thm. 3, hence M

X
P |= ∀(ci ⊃ Ai),

P |=X ∀(ci ⊃ Ai) as MX
P is the least X -model of P,

P |=X ∀(c ⊃ Ai) as X |= ∀(c ⊃ ci) for all i, 1 ≤ i ≤ n.
Therefore we have P |=X ∀(c ⊃ (d ∧ A1 ∧ · · · ∧ An)),
and as the same reasoning applies to any model X of T ,
P, T |= ∀(c ⊃ (d ∧ A1 ∧ · · · ∧ An))

18

Soundness of CSLD Resolution

Theorem 7 ([JL87popl])

If c is a computed answer for the goal G then MXP |= c ⊃ G,
P |=X c ⊃ G and P, T |= c ⊃ G.

If G = (d|A1, . . . ,An), we deduce from the ∧-compositionality lemma,
that there exist computed answers c1, . . . , cn for the goals A1, . . . ,An
such that c = d ∧

∧n
i=1 ci is satisfiable. For every 1 ≤ i ≤ n

ci|Ai ∈ SX
P ↑ ω, by the full abstraction Thm 5,

[ci|Ai]X ⊂ MX
P , by Thm. 4, and Thm. 3, hence M

X
P |= ∀(ci ⊃ Ai),

P |=X ∀(ci ⊃ Ai) as MX
P is the least X -model of P,

P |=X ∀(c ⊃ Ai) as X |= ∀(c ⊃ ci) for all i, 1 ≤ i ≤ n.
Therefore we have P |=X ∀(c ⊃ (d ∧ A1 ∧ · · · ∧ An)),
and as the same reasoning applies to any model X of T ,
P, T |= ∀(c ⊃ (d ∧ A1 ∧ · · · ∧ An))

18

Soundness of CSLD Resolution

Theorem 7 ([JL87popl])

If c is a computed answer for the goal G then MXP |= c ⊃ G,
P |=X c ⊃ G and P, T |= c ⊃ G.

If G = (d|A1, . . . ,An), we deduce from the ∧-compositionality lemma,
that there exist computed answers c1, . . . , cn for the goals A1, . . . ,An
such that c = d ∧

∧n
i=1 ci is satisfiable. For every 1 ≤ i ≤ n

ci|Ai ∈ SX
P ↑ ω, by the full abstraction Thm 5,

[ci|Ai]X ⊂ MX
P , by Thm. 4, and Thm. 3, hence M

X
P |= ∀(ci ⊃ Ai),

P |=X ∀(ci ⊃ Ai) as MX
P is the least X -model of P,

P |=X ∀(c ⊃ Ai) as X |= ∀(c ⊃ ci) for all i, 1 ≤ i ≤ n.
Therefore we have P |=X ∀(c ⊃ (d ∧ A1 ∧ · · · ∧ An)),
and as the same reasoning applies to any model X of T ,
P, T |= ∀(c ⊃ (d ∧ A1 ∧ · · · ∧ An))

18

Soundness of CSLD Resolution

Theorem 7 ([JL87popl])

If c is a computed answer for the goal G then MXP |= c ⊃ G,
P |=X c ⊃ G and P, T |= c ⊃ G.

If G = (d|A1, . . . ,An), we deduce from the ∧-compositionality lemma,
that there exist computed answers c1, . . . , cn for the goals A1, . . . ,An
such that c = d ∧

∧n
i=1 ci is satisfiable. For every 1 ≤ i ≤ n

ci|Ai ∈ SX
P ↑ ω, by the full abstraction Thm 5,

[ci|Ai]X ⊂ MX
P , by Thm. 4, and Thm. 3, hence M

X
P |= ∀(ci ⊃ Ai),

P |=X ∀(ci ⊃ Ai) as MX
P is the least X -model of P,

P |=X ∀(c ⊃ Ai) as X |= ∀(c ⊃ ci) for all i, 1 ≤ i ≤ n.

Therefore we have P |=X ∀(c ⊃ (d ∧ A1 ∧ · · · ∧ An)),
and as the same reasoning applies to any model X of T ,
P, T |= ∀(c ⊃ (d ∧ A1 ∧ · · · ∧ An))

18

Soundness of CSLD Resolution

Theorem 7 ([JL87popl])

If c is a computed answer for the goal G then MXP |= c ⊃ G,
P |=X c ⊃ G and P, T |= c ⊃ G.

If G = (d|A1, . . . ,An), we deduce from the ∧-compositionality lemma,
that there exist computed answers c1, . . . , cn for the goals A1, . . . ,An
such that c = d ∧

∧n
i=1 ci is satisfiable. For every 1 ≤ i ≤ n

ci|Ai ∈ SX
P ↑ ω, by the full abstraction Thm 5,

[ci|Ai]X ⊂ MX
P , by Thm. 4, and Thm. 3, hence M

X
P |= ∀(ci ⊃ Ai),

P |=X ∀(ci ⊃ Ai) as MX
P is the least X -model of P,

P |=X ∀(c ⊃ Ai) as X |= ∀(c ⊃ ci) for all i, 1 ≤ i ≤ n.
Therefore we have P |=X ∀(c ⊃ (d ∧ A1 ∧ · · · ∧ An)),
and as the same reasoning applies to any model X of T ,
P, T |= ∀(c ⊃ (d ∧ A1 ∧ · · · ∧ An))

18

Completeness of CSLD resolution

Theorem 8 ([Maher87iclp])

If MXP |= c ⊃ G then there exists a set {ci}i≥0 of computed
answers for G, such that: X |= ∀(c ⊃

∨
i≥0

∃Yici).

Proof.

For every solution ρ of c, for every atom Aj in G,
MX

P |= Ajρ iff Ajρ ∈ TX
P ↑ ω, by Thm. 3, iff Ajρ ∈ [SX

P ↑ ω]X by Thm. 4,
iff cj,ρ|Aj ∈ SX

P ↑ ω, for some constraint cj,ρ s.t. ρ is solution of ∃Yj,ρcj,ρ,
where Yj,ρ = V(cj,ρ) \ V(Aj),
iff cj,ρ is a computed answer for Aj (by 5) and X |= ∃Yj,ρcj,ρρ.
Let cρ be the conjunction of cj,ρ for all j. cρ is a computed answer
for G.
By taking the collection of cρ for all ρ we get X |= ∀(c ⊃

∨
cρ ∃Yρcρ)

19

Completeness of CSLD resolution

Theorem 8 ([Maher87iclp])

If MXP |= c ⊃ G then there exists a set {ci}i≥0 of computed
answers for G, such that: X |= ∀(c ⊃

∨
i≥0

∃Yici).

Proof.
For every solution ρ of c, for every atom Aj in G,

MX
P |= Ajρ iff Ajρ ∈ TX

P ↑ ω, by Thm. 3, iff Ajρ ∈ [SX
P ↑ ω]X by Thm. 4,

iff cj,ρ|Aj ∈ SX
P ↑ ω, for some constraint cj,ρ s.t. ρ is solution of ∃Yj,ρcj,ρ,

where Yj,ρ = V(cj,ρ) \ V(Aj),
iff cj,ρ is a computed answer for Aj (by 5) and X |= ∃Yj,ρcj,ρρ.
Let cρ be the conjunction of cj,ρ for all j. cρ is a computed answer
for G.
By taking the collection of cρ for all ρ we get X |= ∀(c ⊃

∨
cρ ∃Yρcρ)

19

Completeness of CSLD resolution

Theorem 8 ([Maher87iclp])

If MXP |= c ⊃ G then there exists a set {ci}i≥0 of computed
answers for G, such that: X |= ∀(c ⊃

∨
i≥0

∃Yici).

Proof.
For every solution ρ of c, for every atom Aj in G,
MX

P |= Ajρ iff Ajρ ∈ TX
P ↑ ω, by Thm. 3, iff Ajρ ∈ [SX

P ↑ ω]X by Thm. 4,

iff cj,ρ|Aj ∈ SX
P ↑ ω, for some constraint cj,ρ s.t. ρ is solution of ∃Yj,ρcj,ρ,

where Yj,ρ = V(cj,ρ) \ V(Aj),
iff cj,ρ is a computed answer for Aj (by 5) and X |= ∃Yj,ρcj,ρρ.
Let cρ be the conjunction of cj,ρ for all j. cρ is a computed answer
for G.
By taking the collection of cρ for all ρ we get X |= ∀(c ⊃

∨
cρ ∃Yρcρ)

19

Completeness of CSLD resolution

Theorem 8 ([Maher87iclp])

If MXP |= c ⊃ G then there exists a set {ci}i≥0 of computed
answers for G, such that: X |= ∀(c ⊃

∨
i≥0

∃Yici).

Proof.
For every solution ρ of c, for every atom Aj in G,
MX

P |= Ajρ iff Ajρ ∈ TX
P ↑ ω, by Thm. 3, iff Ajρ ∈ [SX

P ↑ ω]X by Thm. 4,
iff cj,ρ|Aj ∈ SX

P ↑ ω, for some constraint cj,ρ s.t. ρ is solution of ∃Yj,ρcj,ρ,
where Yj,ρ = V(cj,ρ) \ V(Aj),

iff cj,ρ is a computed answer for Aj (by 5) and X |= ∃Yj,ρcj,ρρ.
Let cρ be the conjunction of cj,ρ for all j. cρ is a computed answer
for G.
By taking the collection of cρ for all ρ we get X |= ∀(c ⊃

∨
cρ ∃Yρcρ)

19

Completeness of CSLD resolution

Theorem 8 ([Maher87iclp])

If MXP |= c ⊃ G then there exists a set {ci}i≥0 of computed
answers for G, such that: X |= ∀(c ⊃

∨
i≥0

∃Yici).

Proof.
For every solution ρ of c, for every atom Aj in G,
MX

P |= Ajρ iff Ajρ ∈ TX
P ↑ ω, by Thm. 3, iff Ajρ ∈ [SX

P ↑ ω]X by Thm. 4,
iff cj,ρ|Aj ∈ SX

P ↑ ω, for some constraint cj,ρ s.t. ρ is solution of ∃Yj,ρcj,ρ,
where Yj,ρ = V(cj,ρ) \ V(Aj),
iff cj,ρ is a computed answer for Aj (by 5) and X |= ∃Yj,ρcj,ρρ.

Let cρ be the conjunction of cj,ρ for all j. cρ is a computed answer
for G.
By taking the collection of cρ for all ρ we get X |= ∀(c ⊃

∨
cρ ∃Yρcρ)

19

Completeness of CSLD resolution

Theorem 8 ([Maher87iclp])

If MXP |= c ⊃ G then there exists a set {ci}i≥0 of computed
answers for G, such that: X |= ∀(c ⊃

∨
i≥0

∃Yici).

Proof.
For every solution ρ of c, for every atom Aj in G,
MX

P |= Ajρ iff Ajρ ∈ TX
P ↑ ω, by Thm. 3, iff Ajρ ∈ [SX

P ↑ ω]X by Thm. 4,
iff cj,ρ|Aj ∈ SX

P ↑ ω, for some constraint cj,ρ s.t. ρ is solution of ∃Yj,ρcj,ρ,
where Yj,ρ = V(cj,ρ) \ V(Aj),
iff cj,ρ is a computed answer for Aj (by 5) and X |= ∃Yj,ρcj,ρρ.
Let cρ be the conjunction of cj,ρ for all j. cρ is a computed answer
for G.
By taking the collection of cρ for all ρ we get X |= ∀(c ⊃

∨
cρ ∃Yρcρ)

19

Completeness w.r.t. the theory of the structure

Theorem 9 ([Maher87iclp])

If P, T |= c ⊃ G then there exists a finite set {c1, . . . , cn} of
computed answers to G, such that:
T |= ∀(c ⊃ ∃Y1c1 ∨ · · · ∨ ∃Yncn).

Proof.

If P, T |= c ⊃ G then for every model X of T , for every X -solution ρ
of c, there exists a computed constraint cX ,ρ for G s.t. X |= cX ,ρρ.
Let {ci}i≥1 be the set of these computed answers. Then for every
model X and for every X -valuation ρ, X |= c ⊃

∨
i≥1 ∃Yici,

therefore T |= c ⊃
∨

i≥1 ∃Yici,
As T ∪ {∃(c ∧ ¬∃Yici)}i is unsatisfiable, by applying the compactness
theorem of first-order logic there exists a finite part {ci}1≤i≤n,
s.t. T |= c ⊃

∨n
i=1 ∃Yici.

20

Completeness w.r.t. the theory of the structure

Theorem 9 ([Maher87iclp])

If P, T |= c ⊃ G then there exists a finite set {c1, . . . , cn} of
computed answers to G, such that:
T |= ∀(c ⊃ ∃Y1c1 ∨ · · · ∨ ∃Yncn).

Proof.
If P, T |= c ⊃ G then for every model X of T , for every X -solution ρ
of c, there exists a computed constraint cX ,ρ for G s.t. X |= cX ,ρρ.
Let {ci}i≥1 be the set of these computed answers. Then for every
model X and for every X -valuation ρ, X |= c ⊃

∨
i≥1 ∃Yici,

therefore T |= c ⊃
∨

i≥1 ∃Yici,
As T ∪ {∃(c ∧ ¬∃Yici)}i is unsatisfiable, by applying the compactness
theorem of first-order logic there exists a finite part {ci}1≤i≤n,
s.t. T |= c ⊃

∨n
i=1 ∃Yici.

20

Completeness w.r.t. the theory of the structure

Theorem 9 ([Maher87iclp])

If P, T |= c ⊃ G then there exists a finite set {c1, . . . , cn} of
computed answers to G, such that:
T |= ∀(c ⊃ ∃Y1c1 ∨ · · · ∨ ∃Yncn).

Proof.
If P, T |= c ⊃ G then for every model X of T , for every X -solution ρ
of c, there exists a computed constraint cX ,ρ for G s.t. X |= cX ,ρρ.
Let {ci}i≥1 be the set of these computed answers. Then for every
model X and for every X -valuation ρ, X |= c ⊃

∨
i≥1 ∃Yici,

therefore T |= c ⊃
∨

i≥1 ∃Yici,

As T ∪ {∃(c ∧ ¬∃Yici)}i is unsatisfiable, by applying the compactness
theorem of first-order logic there exists a finite part {ci}1≤i≤n,
s.t. T |= c ⊃

∨n
i=1 ∃Yici.

20

Completeness w.r.t. the theory of the structure

Theorem 9 ([Maher87iclp])

If P, T |= c ⊃ G then there exists a finite set {c1, . . . , cn} of
computed answers to G, such that:
T |= ∀(c ⊃ ∃Y1c1 ∨ · · · ∨ ∃Yncn).

Proof.
If P, T |= c ⊃ G then for every model X of T , for every X -solution ρ
of c, there exists a computed constraint cX ,ρ for G s.t. X |= cX ,ρρ.
Let {ci}i≥1 be the set of these computed answers. Then for every
model X and for every X -valuation ρ, X |= c ⊃

∨
i≥1 ∃Yici,

therefore T |= c ⊃
∨

i≥1 ∃Yici,
As T ∪ {∃(c ∧ ¬∃Yici)}i is unsatisfiable, by applying the compactness
theorem of first-order logic there exists a finite part {ci}1≤i≤n,
s.t. T |= c ⊃

∨n
i=1 ∃Yici.

20

First-order theorem proving in CLP(H)

Prolog can be used to find proofs by refutation of Horn
clauses (with a complete search meta-interpreter).
P,∀(¬A) is unsatisfiable iff P |= ∃(A) iff A −→∗ □.

Groups can be axiomatized with Horn clauses with a ternary
predicate p(x,y, z) meaning x ∗ y = z.

clause(p(e,X,X)).
clause(p(i(X),X,e)).
clause((p(U,Z,W) :- p(X,Y,U), p(Y,Z,V), p(X,V,W))).
clause((p(X,V,W) :- p(X,Y,U), p(Y,Z,V), p(U,Z,W))).

21

First-order theorem proving in CLP(H)

Prolog can be used to find proofs by refutation of Horn
clauses (with a complete search meta-interpreter).
P,∀(¬A) is unsatisfiable iff P |= ∃(A) iff A −→∗ □.

Groups can be axiomatized with Horn clauses with a ternary
predicate p(x,y, z) meaning x ∗ y = z.

clause(p(e,X,X)).

clause(p(i(X),X,e)).
clause((p(U,Z,W) :- p(X,Y,U), p(Y,Z,V), p(X,V,W))).
clause((p(X,V,W) :- p(X,Y,U), p(Y,Z,V), p(U,Z,W))).

21

First-order theorem proving in CLP(H)

Prolog can be used to find proofs by refutation of Horn
clauses (with a complete search meta-interpreter).
P,∀(¬A) is unsatisfiable iff P |= ∃(A) iff A −→∗ □.

Groups can be axiomatized with Horn clauses with a ternary
predicate p(x,y, z) meaning x ∗ y = z.

clause(p(e,X,X)).
clause(p(i(X),X,e)).

clause((p(U,Z,W) :- p(X,Y,U), p(Y,Z,V), p(X,V,W))).
clause((p(X,V,W) :- p(X,Y,U), p(Y,Z,V), p(U,Z,W))).

21

First-order theorem proving in CLP(H)

Prolog can be used to find proofs by refutation of Horn
clauses (with a complete search meta-interpreter).
P,∀(¬A) is unsatisfiable iff P |= ∃(A) iff A −→∗ □.

Groups can be axiomatized with Horn clauses with a ternary
predicate p(x,y, z) meaning x ∗ y = z.

clause(p(e,X,X)).
clause(p(i(X),X,e)).
clause((p(U,Z,W) :- p(X,Y,U), p(Y,Z,V), p(X,V,W))).
clause((p(X,V,W) :- p(X,Y,U), p(Y,Z,V), p(U,Z,W))).

21

Theorem proving in groups

To show i(i(x)) = x by refutation,

we show that the formula ¬∀x p(i(i(X)),e,X) is unsatisfiable
By Skolemization we get the goal clause ¬p(i(i(a)),e,a)

| ?- solve(p(i(i(a)),e,a)).
depth 2
yes

| ?- solve(p(a,e,a)).
depth 4
yes

| ?- solve(p(a,i(a),e)).
depth 3
yes

22

Theorem proving in groups

To show i(i(x)) = x by refutation,
we show that the formula ¬∀x p(i(i(X)),e,X) is unsatisfiable
By Skolemization we get the goal clause ¬p(i(i(a)),e,a)

| ?- solve(p(i(i(a)),e,a)).
depth 2
yes

| ?- solve(p(a,e,a)).
depth 4
yes

| ?- solve(p(a,i(a),e)).
depth 3
yes

22

Theorem proving in groups

To show i(i(x)) = x by refutation,
we show that the formula ¬∀x p(i(i(X)),e,X) is unsatisfiable
By Skolemization we get the goal clause ¬p(i(i(a)),e,a)

| ?- solve(p(i(i(a)),e,a)).
depth 2
yes

| ?- solve(p(a,e,a)).
depth 4
yes

| ?- solve(p(a,i(a),e)).
depth 3
yes

22

Theorem proving in groups

To show i(i(x)) = x by refutation,
we show that the formula ¬∀x p(i(i(X)),e,X) is unsatisfiable
By Skolemization we get the goal clause ¬p(i(i(a)),e,a)

| ?- solve(p(i(i(a)),e,a)).
depth 2
yes

| ?- solve(p(a,e,a)).
depth 4
yes

| ?- solve(p(a,i(a),e)).
depth 3
yes

22

Theorem proving in groups

To show i(i(x)) = x by refutation,
we show that the formula ¬∀x p(i(i(X)),e,X) is unsatisfiable
By Skolemization we get the goal clause ¬p(i(i(a)),e,a)

| ?- solve(p(i(i(a)),e,a)).
depth 2
yes

| ?- solve(p(a,e,a)).
depth 4
yes

| ?- solve(p(a,i(a),e)).
depth 3
yes

22

Theorem proving in groups (cont.)

To show that any non empty subset of a group, stable by
division, is a subgroup we add two clauses

clause(s(a)).
clause((s(Z) :- s(X), s(Y), p(X,i(Y),Z))).

and prove that s contains e and i(a).

| ?- solve(s(e)).
depth 4
yes
| ?- solve(s(i(a))).
depth 5
yes

23

Theorem proving in groups (cont.)

To show that any non empty subset of a group, stable by
division, is a subgroup we add two clauses

clause(s(a)).
clause((s(Z) :- s(X), s(Y), p(X,i(Y),Z))).

and prove that s contains e and i(a).

| ?- solve(s(e)).
depth 4
yes
| ?- solve(s(i(a))).
depth 5
yes

23

Theorem proving in groups (cont.)

To show that any non empty subset of a group, stable by
division, is a subgroup we add two clauses

clause(s(a)).
clause((s(Z) :- s(X), s(Y), p(X,i(Y),Z))).

and prove that s contains e and i(a).

| ?- solve(s(e)).
depth 4
yes
| ?- solve(s(i(a))).
depth 5
yes

23

Higher-order theorem proving in CLP(λ)

Church’s simply typed λ-calculus
t ::= v | t1 → t2
e : t ::= x : t | (λx : t1.e : t2) : t1 → t2 | (e1 : t1 → t2(e2 : t1)) : t2

Theory of functionality
λx.e1 =α λy.e1[y/x] if y ̸∈ V(e1),
(λx.e1)e2 →β e1[e2/x]
=α .→β is terminating and confluent

e1 =α,β e2 iff ↓β e1 =α ↓β e2.

Equality is decidable, but not unification…

24

Theorem proving in CLP(λ)

Theorem 10 (Cantor’s Theorem)

NN is not countable.

Proof.
By two steps of CSLD resolution!

Let us suppose ∃h : N→ (N→ N) ∀f : N→ N ∃n : N h(n) = f
After Skolemisation we get ∀F h(n(F)) = F, i.e., ∀F ¬h(n(F)) ̸= F.
Let us consider the following program G ̸= H ← G(N) ̸= H(N).

N ̸= s(N).
We have h(n(F)) ̸= F −→σ1 (h(n(F)))(I) ̸= F(I) −→σ2 □
where the unifier σ2 = {G = h(I) I, I = n(F), F = λi.s(h(i) i), H = F} is
Cantor’s diagonal argument!

25

Theorem proving in CLP(λ)

Theorem 10 (Cantor’s Theorem)

NN is not countable.

Proof.
By two steps of CSLD resolution!
Let us suppose ∃h : N→ (N→ N) ∀f : N→ N ∃n : N h(n) = f
After Skolemisation we get ∀F h(n(F)) = F, i.e., ∀F ¬h(n(F)) ̸= F.
Let us consider the following program G ̸= H ← G(N) ̸= H(N).

N ̸= s(N).
We have h(n(F)) ̸= F −→σ1 (h(n(F)))(I) ̸= F(I) −→σ2 □
where the unifier σ2 = {G = h(I) I, I = n(F), F = λi.s(h(i) i), H = F} is
Cantor’s diagonal argument!

25

Negation as Failure

A derivation CSLD is fair if every atom which appears in a
goal of the derivation is selected after a finite number of
resolution steps.
A fair CSLD tree for a goal G is a CSLD derivation tree for G in
which all derivations are fair.
A goal G is finitely failed if G has a fair CSLD derivation tree to
G, which is finite and which contains no success.

p :- p.

| ?- member(a,[b,c,d]).
no

| ?- p, member(a,[b,c,d]).
...

26

Logical semantics of finite failure?

Horn clauses entail no negative information: the Herbrand’s
base BX is a model.

On the other hand, the complement of the least X -model MXP
is not recursively enumerable.

Indeed let us suppose the opposite. We could define in Prolog
the predicates:

success(P,B) which succeeds iff MP |= ∃B, i.e., if the goal
B has a successful CSLD derivation with the program P
fail(P,B) which succeeds iff MP |= ¬∃B

27

Undecidability of MXP

loop:- loop.
contr(P):- success(P,P), loop.
contr(P):- fail(P,P).

If contr(contr) has a success,
then success(contr,contr) succeeds,
and fail(contr,contr) doesn’t succeed,
hence contr(contr) doesn’t succeed: contradiction.

If contr(contr) doesn’t succeed,
then fail(contr,contr) succeeds,
hence contr(contr) succeeds: contradiction.

Therefore programs success and fail cannot both exist.

28

Clark’s completion

The Clark’s completion of P is the set P∗ of formulas of the
form
∀X p(X)↔ (∃Y1c1 ∧ A1

1 ∧ · · · ∧ A1
n1
) ∨ · · · ∨ (∃Ykck ∧ Ak1 ∧ · · · ∧ Aknk)

where the p(X)← ci|Ai1, . . . ,Aini are the rules in P and Yi’s the
local variables,
∀X¬p(X) if p is not defined in P.

Example 11
CLP(H) program p(s(X)):- p(X).
Clark’s completion P∗ =

{∀x p(x)↔ ∃y x = s(y) ∧ p(y)}.
The goal p(0) finitely fails, we have P∗,CET |= ¬p(0).
The goal p(X) doesn’t finitely fail,
we have P∗,CET ̸|= ¬∃X p(X) although P∗ |=H ¬∃X p(X)

29

Clark’s completion

The Clark’s completion of P is the set P∗ of formulas of the
form
∀X p(X)↔ (∃Y1c1 ∧ A1

1 ∧ · · · ∧ A1
n1
) ∨ · · · ∨ (∃Ykck ∧ Ak1 ∧ · · · ∧ Aknk)

where the p(X)← ci|Ai1, . . . ,Aini are the rules in P and Yi’s the
local variables,
∀X¬p(X) if p is not defined in P.

Example 11
CLP(H) program p(s(X)):- p(X).
Clark’s completion P∗ = {∀x p(x)↔ ∃y x = s(y) ∧ p(y)}.
The goal p(0) finitely fails, we have P∗,CET |= ¬p(0).
The goal p(X) doesn’t finitely fail,
we have

P∗,CET ̸|= ¬∃X p(X) although P∗ |=H ¬∃X p(X)

29

Clark’s completion

The Clark’s completion of P is the set P∗ of formulas of the
form
∀X p(X)↔ (∃Y1c1 ∧ A1

1 ∧ · · · ∧ A1
n1
) ∨ · · · ∨ (∃Ykck ∧ Ak1 ∧ · · · ∧ Aknk)

where the p(X)← ci|Ai1, . . . ,Aini are the rules in P and Yi’s the
local variables,
∀X¬p(X) if p is not defined in P.

Example 11
CLP(H) program p(s(X)):- p(X).
Clark’s completion P∗ = {∀x p(x)↔ ∃y x = s(y) ∧ p(y)}.
The goal p(0) finitely fails, we have P∗,CET |= ¬p(0).
The goal p(X) doesn’t finitely fail,
we have P∗,CET ̸|= ¬∃X p(X) although P∗ |=H ¬∃X p(X)

29

Supported X -models

Proposition 12
i) I is a supported X -model of P iff ii) I is a X -model of P∗ iff
iii) I is a fixed point of TXP .

Proof.

I is a X -model of P
iff I is a X -model of ∀X p(X)← ϕ1 ∨ · · · ∨ ϕk for every formula
∀X p(X)↔ ϕ1 ∨ · · · ∨ ϕk in P∗,
iff I is a post-fixed point of TX

P , i.e., .T
X
P (I) ⊂ I (by Prop. 2).

I is a supported X -interpretation of P,
iff I is a X -model of ∀X p(X)→ ϕ1 ∨ · · · ∨ ϕk for every formula
∀X p(X)↔ ϕ1 ∨ · · · ∨ ϕk in P∗,
iff I is a pre-fixed point of TX

P , i.e., I ⊂ TX
P (I).

Thus i) I is a supported X -model of P iff ii) I is a X -model of P∗ iff
iii) I is a fixed point of TX

P .

30

Supported X -models

Proposition 12
i) I is a supported X -model of P iff ii) I is a X -model of P∗ iff
iii) I is a fixed point of TXP .

Proof.
I is a X -model of P

iff I is a X -model of ∀X p(X)← ϕ1 ∨ · · · ∨ ϕk for every formula
∀X p(X)↔ ϕ1 ∨ · · · ∨ ϕk in P∗,
iff I is a post-fixed point of TX

P , i.e., .T
X
P (I) ⊂ I (by Prop. 2).

I is a supported X -interpretation of P,
iff I is a X -model of ∀X p(X)→ ϕ1 ∨ · · · ∨ ϕk for every formula
∀X p(X)↔ ϕ1 ∨ · · · ∨ ϕk in P∗,
iff I is a pre-fixed point of TX

P , i.e., I ⊂ TX
P (I).

Thus i) I is a supported X -model of P iff ii) I is a X -model of P∗ iff
iii) I is a fixed point of TX

P .

30

Supported X -models

Proposition 12
i) I is a supported X -model of P iff ii) I is a X -model of P∗ iff
iii) I is a fixed point of TXP .

Proof.
I is a X -model of P
iff I is a X -model of ∀X p(X)← ϕ1 ∨ · · · ∨ ϕk for every formula
∀X p(X)↔ ϕ1 ∨ · · · ∨ ϕk in P∗,

iff I is a post-fixed point of TX
P , i.e., .T

X
P (I) ⊂ I (by Prop. 2).

I is a supported X -interpretation of P,
iff I is a X -model of ∀X p(X)→ ϕ1 ∨ · · · ∨ ϕk for every formula
∀X p(X)↔ ϕ1 ∨ · · · ∨ ϕk in P∗,
iff I is a pre-fixed point of TX

P , i.e., I ⊂ TX
P (I).

Thus i) I is a supported X -model of P iff ii) I is a X -model of P∗ iff
iii) I is a fixed point of TX

P .

30

Supported X -models

Proposition 12
i) I is a supported X -model of P iff ii) I is a X -model of P∗ iff
iii) I is a fixed point of TXP .

Proof.
I is a X -model of P
iff I is a X -model of ∀X p(X)← ϕ1 ∨ · · · ∨ ϕk for every formula
∀X p(X)↔ ϕ1 ∨ · · · ∨ ϕk in P∗,
iff I is a post-fixed point of TX

P , i.e., .T
X
P (I) ⊂ I (by Prop. 2).

I is a supported X -interpretation of P,
iff I is a X -model of ∀X p(X)→ ϕ1 ∨ · · · ∨ ϕk for every formula
∀X p(X)↔ ϕ1 ∨ · · · ∨ ϕk in P∗,
iff I is a pre-fixed point of TX

P , i.e., I ⊂ TX
P (I).

Thus i) I is a supported X -model of P iff ii) I is a X -model of P∗ iff
iii) I is a fixed point of TX

P .

30

Supported X -models

Proposition 12
i) I is a supported X -model of P iff ii) I is a X -model of P∗ iff
iii) I is a fixed point of TXP .

Proof.
I is a X -model of P
iff I is a X -model of ∀X p(X)← ϕ1 ∨ · · · ∨ ϕk for every formula
∀X p(X)↔ ϕ1 ∨ · · · ∨ ϕk in P∗,
iff I is a post-fixed point of TX

P , i.e., .T
X
P (I) ⊂ I (by Prop. 2).

I is a supported X -interpretation of P,
iff I is a X -model of ∀X p(X)→ ϕ1 ∨ · · · ∨ ϕk for every formula
∀X p(X)↔ ϕ1 ∨ · · · ∨ ϕk in P∗,

iff I is a pre-fixed point of TX
P , i.e., I ⊂ TX

P (I).
Thus i) I is a supported X -model of P iff ii) I is a X -model of P∗ iff
iii) I is a fixed point of TX

P .

30

Supported X -models

Proposition 12
i) I is a supported X -model of P iff ii) I is a X -model of P∗ iff
iii) I is a fixed point of TXP .

Proof.
I is a X -model of P
iff I is a X -model of ∀X p(X)← ϕ1 ∨ · · · ∨ ϕk for every formula
∀X p(X)↔ ϕ1 ∨ · · · ∨ ϕk in P∗,
iff I is a post-fixed point of TX

P , i.e., .T
X
P (I) ⊂ I (by Prop. 2).

I is a supported X -interpretation of P,
iff I is a X -model of ∀X p(X)→ ϕ1 ∨ · · · ∨ ϕk for every formula
∀X p(X)↔ ϕ1 ∨ · · · ∨ ϕk in P∗,
iff I is a pre-fixed point of TX

P , i.e., I ⊂ TX
P (I).

Thus i) I is a supported X -model of P iff ii) I is a X -model of P∗ iff
iii) I is a fixed point of TX

P .

30

Supported X -models

Proposition 12
i) I is a supported X -model of P iff ii) I is a X -model of P∗ iff
iii) I is a fixed point of TXP .

Proof.
I is a X -model of P
iff I is a X -model of ∀X p(X)← ϕ1 ∨ · · · ∨ ϕk for every formula
∀X p(X)↔ ϕ1 ∨ · · · ∨ ϕk in P∗,
iff I is a post-fixed point of TX

P , i.e., .T
X
P (I) ⊂ I (by Prop. 2).

I is a supported X -interpretation of P,
iff I is a X -model of ∀X p(X)→ ϕ1 ∨ · · · ∨ ϕk for every formula
∀X p(X)↔ ϕ1 ∨ · · · ∨ ϕk in P∗,
iff I is a pre-fixed point of TX

P , i.e., I ⊂ TX
P (I).

Thus i) I is a supported X -model of P iff ii) I is a X -model of P∗ iff
iii) I is a fixed point of TX

P .

30

Models of the Clark’s completion

Theorem 13

i) P∗ has the same least X -model than P, MXP = MXP∗
ii) P |=X c ⊃ A iff P∗ |=X c ⊃ A, for all c and A,
iii) P, T |= c ⊃ A iff P∗, T |= c ⊃ A.

Proof.

i) is an immediate corollary of full abstraction and least X -model
theorems (1 and 3).
For iii) we clearly have (P, T |= c ⊃ A)⇒ (P∗, T |= c ⊃ A). We show the
contrapositive of the opposite, (P, T ̸|= c ⊃ A)⇒ (P∗, T ̸|= c ⊃ A).
Let I be a model of P and T , based on a structure X , let ρ be a
valuation such that I |= ¬Aρ and X |= cρ.
We have MX

P |= ¬Aρ, thus MX
P∗ |= ¬Aρ, and as T |= cρ, we conclude that

P∗, T ̸|= c ⊃ A.
The proof of ii) is identical, the structure X being fixed.

31

Models of the Clark’s completion

Theorem 13

i) P∗ has the same least X -model than P, MXP = MXP∗
ii) P |=X c ⊃ A iff P∗ |=X c ⊃ A, for all c and A,
iii) P, T |= c ⊃ A iff P∗, T |= c ⊃ A.

Proof.
i) is an immediate corollary of full abstraction and least X -model
theorems (1 and 3).

For iii) we clearly have (P, T |= c ⊃ A)⇒ (P∗, T |= c ⊃ A). We show the
contrapositive of the opposite, (P, T ̸|= c ⊃ A)⇒ (P∗, T ̸|= c ⊃ A).
Let I be a model of P and T , based on a structure X , let ρ be a
valuation such that I |= ¬Aρ and X |= cρ.
We have MX

P |= ¬Aρ, thus MX
P∗ |= ¬Aρ, and as T |= cρ, we conclude that

P∗, T ̸|= c ⊃ A.
The proof of ii) is identical, the structure X being fixed.

31

Models of the Clark’s completion

Theorem 13

i) P∗ has the same least X -model than P, MXP = MXP∗
ii) P |=X c ⊃ A iff P∗ |=X c ⊃ A, for all c and A,
iii) P, T |= c ⊃ A iff P∗, T |= c ⊃ A.

Proof.
i) is an immediate corollary of full abstraction and least X -model
theorems (1 and 3).
For iii) we clearly have (P, T |= c ⊃ A)⇒ (P∗, T |= c ⊃ A). We show the
contrapositive of the opposite, (P, T ̸|= c ⊃ A)⇒ (P∗, T ̸|= c ⊃ A).

Let I be a model of P and T , based on a structure X , let ρ be a
valuation such that I |= ¬Aρ and X |= cρ.
We have MX

P |= ¬Aρ, thus MX
P∗ |= ¬Aρ, and as T |= cρ, we conclude that

P∗, T ̸|= c ⊃ A.
The proof of ii) is identical, the structure X being fixed.

31

Models of the Clark’s completion

Theorem 13

i) P∗ has the same least X -model than P, MXP = MXP∗
ii) P |=X c ⊃ A iff P∗ |=X c ⊃ A, for all c and A,
iii) P, T |= c ⊃ A iff P∗, T |= c ⊃ A.

Proof.
i) is an immediate corollary of full abstraction and least X -model
theorems (1 and 3).
For iii) we clearly have (P, T |= c ⊃ A)⇒ (P∗, T |= c ⊃ A). We show the
contrapositive of the opposite, (P, T ̸|= c ⊃ A)⇒ (P∗, T ̸|= c ⊃ A).
Let I be a model of P and T , based on a structure X , let ρ be a
valuation such that I |= ¬Aρ and X |= cρ.

We have MX
P |= ¬Aρ, thus MX

P∗ |= ¬Aρ, and as T |= cρ, we conclude that
P∗, T ̸|= c ⊃ A.
The proof of ii) is identical, the structure X being fixed.

31

Models of the Clark’s completion

Theorem 13

i) P∗ has the same least X -model than P, MXP = MXP∗
ii) P |=X c ⊃ A iff P∗ |=X c ⊃ A, for all c and A,
iii) P, T |= c ⊃ A iff P∗, T |= c ⊃ A.

Proof.
i) is an immediate corollary of full abstraction and least X -model
theorems (1 and 3).
For iii) we clearly have (P, T |= c ⊃ A)⇒ (P∗, T |= c ⊃ A). We show the
contrapositive of the opposite, (P, T ̸|= c ⊃ A)⇒ (P∗, T ̸|= c ⊃ A).
Let I be a model of P and T , based on a structure X , let ρ be a
valuation such that I |= ¬Aρ and X |= cρ.
We have MX

P |= ¬Aρ, thus MX
P∗ |= ¬Aρ, and as T |= cρ, we conclude that

P∗, T ̸|= c ⊃ A.

The proof of ii) is identical, the structure X being fixed.

31

Models of the Clark’s completion

Theorem 13

i) P∗ has the same least X -model than P, MXP = MXP∗
ii) P |=X c ⊃ A iff P∗ |=X c ⊃ A, for all c and A,
iii) P, T |= c ⊃ A iff P∗, T |= c ⊃ A.

Proof.
i) is an immediate corollary of full abstraction and least X -model
theorems (1 and 3).
For iii) we clearly have (P, T |= c ⊃ A)⇒ (P∗, T |= c ⊃ A). We show the
contrapositive of the opposite, (P, T ̸|= c ⊃ A)⇒ (P∗, T ̸|= c ⊃ A).
Let I be a model of P and T , based on a structure X , let ρ be a
valuation such that I |= ¬Aρ and X |= cρ.
We have MX

P |= ¬Aρ, thus MX
P∗ |= ¬Aρ, and as T |= cρ, we conclude that

P∗, T ̸|= c ⊃ A.
The proof of ii) is identical, the structure X being fixed.

31

Soundness of Negation as Finite Failure

Theorem 14
If G is finitely failed then P∗, T |= ¬G.

Proof.

By induction on the height h of the tree in finite failure for G = c|A, α
where A is the selected atom at the root of the tree.
In the base case h = 1, the constrained atom c|A has no CSLD
transition, we can deduce that P∗, T |= ¬(c ∧ A) hence that P∗, T |= ¬G.
For the induction step, let us suppose h > 1. Let G1, . . . ,Gn be the
sons of the root and Y1, . . . ,Yn be the respective sets of introduced
variables. We have P∗, T |= G↔ ∃Y1 G1 ∨ · · · ∨ ∃Yn Gn. By induction
hypothesis, P∗, T |= ¬Gi for every 1 ≤ i ≤ n, therefore P∗, T |= ¬G.

32

Soundness of Negation as Finite Failure

Theorem 14
If G is finitely failed then P∗, T |= ¬G.

Proof.
By induction on the height h of the tree in finite failure for G = c|A, α
where A is the selected atom at the root of the tree.

In the base case h = 1, the constrained atom c|A has no CSLD
transition, we can deduce that P∗, T |= ¬(c ∧ A) hence that P∗, T |= ¬G.
For the induction step, let us suppose h > 1. Let G1, . . . ,Gn be the
sons of the root and Y1, . . . ,Yn be the respective sets of introduced
variables. We have P∗, T |= G↔ ∃Y1 G1 ∨ · · · ∨ ∃Yn Gn. By induction
hypothesis, P∗, T |= ¬Gi for every 1 ≤ i ≤ n, therefore P∗, T |= ¬G.

32

Soundness of Negation as Finite Failure

Theorem 14
If G is finitely failed then P∗, T |= ¬G.

Proof.
By induction on the height h of the tree in finite failure for G = c|A, α
where A is the selected atom at the root of the tree.
In the base case h = 1, the constrained atom c|A has no CSLD
transition, we can deduce that P∗, T |= ¬(c ∧ A) hence that P∗, T |= ¬G.

For the induction step, let us suppose h > 1. Let G1, . . . ,Gn be the
sons of the root and Y1, . . . ,Yn be the respective sets of introduced
variables. We have P∗, T |= G↔ ∃Y1 G1 ∨ · · · ∨ ∃Yn Gn. By induction
hypothesis, P∗, T |= ¬Gi for every 1 ≤ i ≤ n, therefore P∗, T |= ¬G.

32

Soundness of Negation as Finite Failure

Theorem 14
If G is finitely failed then P∗, T |= ¬G.

Proof.
By induction on the height h of the tree in finite failure for G = c|A, α
where A is the selected atom at the root of the tree.
In the base case h = 1, the constrained atom c|A has no CSLD
transition, we can deduce that P∗, T |= ¬(c ∧ A) hence that P∗, T |= ¬G.
For the induction step, let us suppose h > 1. Let G1, . . . ,Gn be the
sons of the root and Y1, . . . ,Yn be the respective sets of introduced
variables. We have P∗, T |= G↔ ∃Y1 G1 ∨ · · · ∨ ∃Yn Gn. By induction
hypothesis, P∗, T |= ¬Gi for every 1 ≤ i ≤ n, therefore P∗, T |= ¬G.

32

Completeness of Negation as Failure

Theorem 15 ([JL87popl])

If P∗, T |= ¬G then G is finitely failed.

We show that if G is not finitely failed then P∗, T ,∃(G) is satisfiable.
If G has a success then by the soundness of CSLD resolution 7 ,
P∗, T |= ∃G. Else G has a fair infinite derivation
G = c0|G0 −→ c1|G1 −→ . . .

For every i ≥ 0, ci is T -satisfiable, thus by the compactness
theorem, cω =

∧
i≥0 ci is T -satisfiable. Let X be a model of T

s.t. X |= ∃(cω). Let I0 = {Aρ | A ∈ Gi for some i ≥ 0 and X |= cωρ}. As
the derivation is fair, every atom A in I0 is selected, thus
cω|A −→ cω|A1, . . . ,An with [cω|A] ∪ · · · ∪ [cω|An] ⊂ I0. We deduce that
I0 ⊂ TX

P (I0). By Knaster-Tarski’s theorem, the iterated application up
to ordinal ω of the operator TX

P from I0 leads to a fixed point I
s.t. I0 ⊂ I, thus [cω|G0] ⊂ I. Hence P∗,∃(G) is X -satisfiable, and
P∗, T ,∃(G) is satisfiable.

33

Completeness of Negation as Failure

Theorem 15 ([JL87popl])

If P∗, T |= ¬G then G is finitely failed.

We show that if G is not finitely failed then P∗, T ,∃(G) is satisfiable.

If G has a success then by the soundness of CSLD resolution 7 ,
P∗, T |= ∃G. Else G has a fair infinite derivation
G = c0|G0 −→ c1|G1 −→ . . .

For every i ≥ 0, ci is T -satisfiable, thus by the compactness
theorem, cω =

∧
i≥0 ci is T -satisfiable. Let X be a model of T

s.t. X |= ∃(cω). Let I0 = {Aρ | A ∈ Gi for some i ≥ 0 and X |= cωρ}. As
the derivation is fair, every atom A in I0 is selected, thus
cω|A −→ cω|A1, . . . ,An with [cω|A] ∪ · · · ∪ [cω|An] ⊂ I0. We deduce that
I0 ⊂ TX

P (I0). By Knaster-Tarski’s theorem, the iterated application up
to ordinal ω of the operator TX

P from I0 leads to a fixed point I
s.t. I0 ⊂ I, thus [cω|G0] ⊂ I. Hence P∗,∃(G) is X -satisfiable, and
P∗, T ,∃(G) is satisfiable.

33

Completeness of Negation as Failure

Theorem 15 ([JL87popl])

If P∗, T |= ¬G then G is finitely failed.

We show that if G is not finitely failed then P∗, T ,∃(G) is satisfiable.
If G has a success then by the soundness of CSLD resolution 7 ,
P∗, T |= ∃G.

Else G has a fair infinite derivation
G = c0|G0 −→ c1|G1 −→ . . .

For every i ≥ 0, ci is T -satisfiable, thus by the compactness
theorem, cω =

∧
i≥0 ci is T -satisfiable. Let X be a model of T

s.t. X |= ∃(cω). Let I0 = {Aρ | A ∈ Gi for some i ≥ 0 and X |= cωρ}. As
the derivation is fair, every atom A in I0 is selected, thus
cω|A −→ cω|A1, . . . ,An with [cω|A] ∪ · · · ∪ [cω|An] ⊂ I0. We deduce that
I0 ⊂ TX

P (I0). By Knaster-Tarski’s theorem, the iterated application up
to ordinal ω of the operator TX

P from I0 leads to a fixed point I
s.t. I0 ⊂ I, thus [cω|G0] ⊂ I. Hence P∗,∃(G) is X -satisfiable, and
P∗, T ,∃(G) is satisfiable.

33

Completeness of Negation as Failure

Theorem 15 ([JL87popl])

If P∗, T |= ¬G then G is finitely failed.

We show that if G is not finitely failed then P∗, T ,∃(G) is satisfiable.
If G has a success then by the soundness of CSLD resolution 7 ,
P∗, T |= ∃G. Else G has a fair infinite derivation
G = c0|G0 −→ c1|G1 −→ . . .

For every i ≥ 0, ci is T -satisfiable,

thus by the compactness
theorem, cω =

∧
i≥0 ci is T -satisfiable. Let X be a model of T

s.t. X |= ∃(cω). Let I0 = {Aρ | A ∈ Gi for some i ≥ 0 and X |= cωρ}. As
the derivation is fair, every atom A in I0 is selected, thus
cω|A −→ cω|A1, . . . ,An with [cω|A] ∪ · · · ∪ [cω|An] ⊂ I0. We deduce that
I0 ⊂ TX

P (I0). By Knaster-Tarski’s theorem, the iterated application up
to ordinal ω of the operator TX

P from I0 leads to a fixed point I
s.t. I0 ⊂ I, thus [cω|G0] ⊂ I. Hence P∗,∃(G) is X -satisfiable, and
P∗, T ,∃(G) is satisfiable.

33

Completeness of Negation as Failure

Theorem 15 ([JL87popl])

If P∗, T |= ¬G then G is finitely failed.

We show that if G is not finitely failed then P∗, T ,∃(G) is satisfiable.
If G has a success then by the soundness of CSLD resolution 7 ,
P∗, T |= ∃G. Else G has a fair infinite derivation
G = c0|G0 −→ c1|G1 −→ . . .

For every i ≥ 0, ci is T -satisfiable, thus by the compactness
theorem, cω =

∧
i≥0 ci is T -satisfiable.

Let X be a model of T
s.t. X |= ∃(cω). Let I0 = {Aρ | A ∈ Gi for some i ≥ 0 and X |= cωρ}. As
the derivation is fair, every atom A in I0 is selected, thus
cω|A −→ cω|A1, . . . ,An with [cω|A] ∪ · · · ∪ [cω|An] ⊂ I0. We deduce that
I0 ⊂ TX

P (I0). By Knaster-Tarski’s theorem, the iterated application up
to ordinal ω of the operator TX

P from I0 leads to a fixed point I
s.t. I0 ⊂ I, thus [cω|G0] ⊂ I. Hence P∗,∃(G) is X -satisfiable, and
P∗, T ,∃(G) is satisfiable.

33

Completeness of Negation as Failure

Theorem 15 ([JL87popl])

If P∗, T |= ¬G then G is finitely failed.

We show that if G is not finitely failed then P∗, T ,∃(G) is satisfiable.
If G has a success then by the soundness of CSLD resolution 7 ,
P∗, T |= ∃G. Else G has a fair infinite derivation
G = c0|G0 −→ c1|G1 −→ . . .

For every i ≥ 0, ci is T -satisfiable, thus by the compactness
theorem, cω =

∧
i≥0 ci is T -satisfiable. Let X be a model of T

s.t. X |= ∃(cω). Let I0 = {Aρ | A ∈ Gi for some i ≥ 0 and X |= cωρ}. As
the derivation is fair, every atom A in I0 is selected, thus
cω|A −→ cω|A1, . . . ,An with [cω|A] ∪ · · · ∪ [cω|An] ⊂ I0. We deduce that
I0 ⊂ TX

P (I0). By Knaster-Tarski’s theorem, the iterated application up
to ordinal ω of the operator TX

P from I0 leads to a fixed point I
s.t. I0 ⊂ I, thus [cω|G0] ⊂ I. Hence P∗,∃(G) is X -satisfiable, and
P∗, T ,∃(G) is satisfiable.

33

Part V

Constraint Solving

34

Part V: Constraint Solving

17 Solving by Rewriting

18 Solving by Domain Reduction

35

Solving Equality Constraints in H by Rewriting

Systems of equations Γ:

M1 = N1 ∧ · · · ∧Mn = Nn

A system is in solved form if it is of the form

x1 = M1 ∧ · · · ∧ xn = Mn

with n ≥ 0 and {x1, . . . ,xn} ∩ (V(M1) ∪ · · · ∪ V(Mn)) = ∅

Proposition 16
If Γ is in solved form then H |= ∃(Γ)

Idea of the unification algorithm: try to simplify Γ into either
a solved form or ⊥

36

Herbrand-Robinson’s Unification Algorithm
Dec f(M1, . . . ,Mn) = f(N1, . . . ,Nn) ∧ Γ

→ M1 = N1 ∧ · · · ∧Mn = Nn ∧ Γ,
D⊥ f(M1, . . . ,Mn) = g(N1, . . . ,Nm) ∧ Γ→ ⊥ if f ̸= g,
Triv x = x ∧ Γ→ Γ,
Var x = M ∧ Γ→ x = M ∧ Γσ

if x ̸∈ V(M), x ∈ V(Γ), σ = {x← M},
V⊥ x = M ∧ Γ→ ⊥

if x ∈ V(M) and x ̸= M

Lemma 17 (Validity)
If Γ −→ Γ′ then CETH |= Γ ⊃ Γ′

Proof.
Simple application of the axioms for each rule

37

Herbrand-Robinson’s Unification Algorithm
Lemma 18 (Termination)
The rules terminate

Proof.

Take as complexity measure of Γ, the number of variables in
non-solved form, and the size of Γ, ordered
lexicographically

Proposition 19 (Decidability of unification)
CET |= ∃(Γ) iff the irreducible form of Γ is a solved form

Proof.
An irreducible form is either ⊥, in which case Γ is
unsatisfiable, or, by case analysis, a solved form, in which
case Γ is satisfiable

38

Herbrand-Robinson’s Unification Algorithm
Lemma 18 (Termination)
The rules terminate

Proof.
Take as complexity measure of Γ, the number of variables in
non-solved form, and the size of Γ, ordered
lexicographically

Proposition 19 (Decidability of unification)
CET |= ∃(Γ) iff the irreducible form of Γ is a solved form

Proof.

An irreducible form is either ⊥, in which case Γ is
unsatisfiable, or, by case analysis, a solved form, in which
case Γ is satisfiable

38

Herbrand-Robinson’s Unification Algorithm
Lemma 18 (Termination)
The rules terminate

Proof.
Take as complexity measure of Γ, the number of variables in
non-solved form, and the size of Γ, ordered
lexicographically

Proposition 19 (Decidability of unification)
CET |= ∃(Γ) iff the irreducible form of Γ is a solved form

Proof.
An irreducible form is either ⊥, in which case Γ is
unsatisfiable, or, by case analysis, a solved form, in which
case Γ is satisfiable

38

Herbrand-Robinson’s Unification Algorithm

Corollary 20 (Completeness of CET)
For any equation system Γ, either CET ⊢ ∃(Γ), or CET ⊢ ¬∃(Γ)

Corollary 21
H |= ∃(Γ) iff CET |= ∃(Γ)

39

Fourier’s Alg. for Lin. Ineq. Constraints over R
Check the satisfiability of a system of linear inequalities
Σm
i=1aixi + c ≤ Σn

j=1bjyj + d
Normal forms: t ≤ x, x ≤ t, or t ≤ 0, where t is linear and
x ̸∈ V(t)
The normal form of s ≤ t w.r.t. x is noted s ≤ tx

Γ→
∧n
i=1

∧m
j=1 si ≤ tj ∧ Γ′

if Γx =
∧n
i=1 si ≤ x ∧ x ≤

∧m
j=1 tj ∧ Γ′ where x ̸∈ V(Γ′),

s ≤ t ∧ Γ→ Γ if s, t ∈ R and s ≤ t,
s ≤ t ∧ Γ→ ⊥ if s, t ∈ R and s > t

The rules terminate

Theorem 22
A system of linear inequalities Γ is satisfiable over R iff it
reduces to the empty system

40

Constraint Solving by Domain Reduction
Simple reasoning on the domain of variables for each
constraint independently

“Arc consistency”: for each constraint c,
for each variable x in c,
for each value e of the domain of x,
there exists a solution of c with x = e

x

y

c(x,y)

Example: x,y, z ∈ {1, 2}
System x ̸= y ∧ x ̸= z ∧ y ̸= z arc-consistent

Global constraint all-different([x,y,z])
non arc-consistent

x
y
z

1

2

41

Domain Reduction over Finite Domains

Sol(Γ,FD) = {σ | σ = {xd ← v | xd ∈ V(Γ), v ∈ d}, FD |= Γσ}

The reduced domain of a variable xd w.r.t. a basic constraint
c is the domain

DR(xd, c) = {v ∈ d | FD |= ∃(c[v/xd])}

A constraint system Γ is arc-consistent if

∀c ∈ Γ ∀xd ∈ V(c) DR(xd, c) = d

Idea of constraint propagation: reduce the domain of
variables independently to make the system arc-consistent

42

Example a ∗ X ≥ b ∗ Y+ d

Simple interval reasoning:

aX[k,l] ≥ bY[m,n] + d a,b > 0,d ≥ 0

we have
DR(X[k,l], c) = [max(k,k′), l]

DR(Y[m,n], c) = [m,min(n,n′)]

where k′ = ⌈bm+d
a ⌉ and n′ = ⌊al−db ⌋

43

Example a ∗ X ≥ b ∗ Y+ d

Simple interval reasoning:

aX[k,l] ≥ bY[m,n] + d a,b > 0,d ≥ 0

we have
DR(X[k,l], c) = [max(k,k′), l]

DR(Y[m,n], c) = [m,min(n,n′)]

where k′ = ⌈bm+d
a ⌉ and n′ = ⌊al−db ⌋

43

Domain Reduction Algorithm

Fail: c ∧ Γ→ ⊥ if xd ∈ V(c) and DR(xd, c) = ∅.

FC: c ∧ Γ→ Γσ
if V(c) = {xd}, d′ = DR(xd, c), d′ ̸= ∅, and σ = {xd ← yd′}

LA: c ∧ Γ→ cσ ∧ Γσ
if |V(c)| > 1,
xd ∈ V(c), d′ = DR(xd, c),d′ ̸= ∅,d′ ̸= d, σ = {xd ← yd′}

PLA: c ∧ Γ→ cσ ∧ Γσ
if |V(c)| > 1, xd ∈ V(c), DR(xd, c) ⊂ d′ ⊊ d, d′ ̸= ∅, σ = {xd ← yd′}

EL: c ∧ Γ→ Γ
if FD |= cσ for every valuation σ of the variables in c by values
of their domain

44

Domain Reduction Algorithm (continued)

Lemma 23 (Validity)
If Γ −→∗σ Γ′ then Sol(Γ,FD) = {σθ | θ ∈ Sol(Γ′,FD)}.

Proposition 24 (Completeness of LA for 2 var. ineq.)

Let Γ be a constraint system of the form

aX ≥ bY+ d a,b > 0,d ≥ 0.

Let Γ −→∗σ Γ′ ̸→ Then Γ is satisfiable if and only if Γ′ ≠ ⊥

Proof.
If Γ′ ̸= ⊥ is an irreducible form of Γ then for all c ∈ Γ′ and
x ∈ V(c) we have DR(xd, c) = d and {x[k,l] ← k | x ∈ V(Γ′)} is a
solution of Γ′

45

CLP(FD) scheduling

Simple PERT problem

| ?- fd_minimize((B#>=A+5, C#>=B+2, D#>=B+3,
E#>=C+5, E#>=D+5), E).

A = 0, B = 5, D = 8, E = 13, C = _#1(7..8) ?
yes

Disjunctive scheduling is NP-hard

| ?- fd_minimize((B#>=A+5, C#>=B+2, D#>=B+3, E#>=C+5,
E#>=D+5, (C#>=D+5 ; D#>=C+5)), E).

A = 0, B = 5, C = 7, D = 12, E = 17 ? ;
no

46

Disjunctive scheduling: bridge problem (4000
nodes)

47

	CLP - Introduction and Logical Background
	The Constraint Programming paradigm
	Examples and Applications
	First Order Logic
	Models
	Logical Theories
	Constraint Languages
	CLP(X)
	CLP(H)
	CLP(R,FD,B)
	Operational Semantics
	Fixpoint Semantics
	Program Analysis
	Logical Semantics of CLP(X)
	Automated Deduction
	CLP()
	Negation as Failure
	Solving by Rewriting
	Solving by Domain Reduction

