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Full abstraction

Theorem 1 ([JL87popl])

TXP ↑ ω = Ogs(P)

TX
P ↑ ω ⊂ Ogs(P) is proved by induction on the powers n of TX

P .
n = 0, i.e., ∅, is trivial. Let Aρ ∈ TX

P ↑ n, there exists a rule
(A← c|A1, . . . ,An) ∈ P, s.t. {A1ρ, . . . ,Anρ} ⊂ TX

P ↑ n− 1 and X |= cρ. By
induction {A1ρ, . . . ,Anρ} ⊂ Ogs(P). By definition of Ogs and
∧-compositionality. we get Aρ ∈ Ogs(P).
Ogs(P) ⊂ TX

P ↑ ω is proved by induction on the length of derivations.
Successes with derivation of length 0 are ground facts in TX

P ↑ 1.
Let Aρ ∈ Ogs(P) with a derivation of length n. By definition of Ogs

there exists (A← c|A1, . . . ,An) ∈ P s.t. {A1ρ, . . . ,Anρ} ⊂ Ogs(P) and
X |= cρ. By induction {A1ρ, . . . ,Anρ} ⊂ TX

P ↑ ω. Hence by definition of
TX
P we get Aρ ∈ TX

P ↑ ω.
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TXP and X -models

Proposition 2

I is a X -model of P iff I is a post-fixed point of TXP , T
X
P (I) ⊂ I

Proof.
I is a X -model of P,
iff for each clause A← c|A1, . . . ,An ∈ P and for each
X -valuation ρ, if X |= cρ and {A1ρ, . . . ,Anρ} ⊂ I then Aρ ∈ I,
iff TXP (I) ⊂ I
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TXP and X -models

Theorem 3 (Least X -model [JL87popl])

Let P be a constraint logic program on X . P has a least
X -model, denoted by MXP satisfying:

MXP = TXP ↑ ω

Proof.
TXP ↑ ω = lfp(TXP ) is also the least post-fixed point of T

X
P , thus

by Prop. 2, lfp(TXP ) is the least X -model of P.
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Relating SXP and TXP operators

Theorem 4 ([JL87popl])

For every ordinal α, TXP ↑ α = [SXP ↑ α]X

Proof.
The base case α = 0 is trivial. For a successor ordinal, we have
[SX

P ↑ α]X = [SX
P (S

X
P ↑ α− 1)]X

= TX
P ([S

X
P ↑ α− 1]X )

= TX
P (T

X
P ↑ α− 1) by induction

= TX
P ↑ α

For a limit ordinal, we have
[SX

P ↑ α]X = [
∪

β<α S
X
P ↑ β]X

=
∪

β<α[S
X
P ↑ β]X

=
∪

β<α T
X
P ↑ β by induction

= TX
P ↑ α
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Full abstraction w.r.t. computed answers

Theorem 5 (Theorem of full abstraction [GL91iclp])

Oca(P) = SXP ↑ ω

SX
P ↑ ω ⊂ Oca(P) is proved by induction on the powers n of SX

P . n = 0
is trivial. Let c|A ∈ SX

P ↑ n, there exists a rule (A← d|A1, . . . ,An) ∈ P,
s.t. {c1|A1, . . . , cn|An} ⊂ SX

P ↑ n− 1, c = d ∧
∧n

i=1 ci and X |= ∃c. By
induction {c1|A1, . . . , cn|An} ⊂ Oca(P). By definition of Oca we get
c|A ∈ Oca(P).
Oca(P) ⊂ SX

P ↑ ω is proved by induction on the length of derivations.
Successes with derivation of length 0 are facts in SX

P ↑ 1. Let
c|A ∈ Oca(P) with a derivation of length n. By definition of Oca there
exists (A← d|A1, . . . ,An) ∈ P s.t. {c1|A1, . . . , cn|An} ⊂ Oca(P),
c = d ∧

∧n
i=1 ci and X |= ∃c. By induction {c1|A1, . . . , cn|An} ⊂ SX

P ↑ ω.
Hence by definition of SX

P we get c|A ∈ SX
P ↑ ω.
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Constraint-based Model Checking [DP99tacas]
Analysis of unbounded states concurrent systems by CLP
programs.
Concurrent transition systems defined by condition-action
rules [Shankar93acm]:

condition ϕ(x⃗) action x⃗′ = ψ(x⃗)

Translation into CLP clauses over one predicate p (for states)

p(x⃗)← ϕ(x⃗), ψ(x⃗′, x⃗), p(x⃗′).

The transitions of the concurrent system are in one-to-one
correspondance to the CSLD derivations of the CLP program.

Proposition 6
The set of states from which a set of states defined by a
constraint c is reachable is the set lfp(TP)
where P is the CLP program plus the clause p(x⃗)← c(x⃗).
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Computation Tree Logic CTL
Temporal logic for branching time:

States described by
propositional or first-order
formulas
Two path quantifiers for
non-determinism:

▶ A “for all paths”
▶ E “for some path”

Several temporal operators:

▶ X “next time”,
▶ F “eventually”,
▶ G “always”,
▶ U “until”.

E, A

F, G s p q
s

s

s
s

s
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Model Checking

Two types of interesting properties:
AG¬ϕ “Safety” property.
AFψ “Liveness” property.

Duality: for any formula ϕ we have
EFϕ = ¬AG¬ϕ and
EGϕ = ¬AF¬ϕ.

Model checking is an algorithm for computing, in a given
Kripke structure K = (S, I,R), I ⊂ S,R ⊂ S× S (S is the set of
states, I the initial states and R the transition relation), the
set of states which satisfy a given CTL formula ϕ, i.e., the set
{s ∈ S|K, s |= ϕ}.
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(Symbolic) Model Checking

Basic algorithm
When S is finite, represent K as a graph, and iteratively label
the nodes with the subformulas of ϕ which are true in that
node.
Add A to the states satisfying A (¬A, A ∧ B,…)
Add EFϕ (EXϕ) to the (immediate) predecessors of states labeled
by ϕ
Add E(ϕUψ) to the predecessor states of ψ while they satisfy ϕ
Add EGϕ to the states for which there exists a path leading to a
non trivial strongly connected components of the subgraph
restricted to the states satisfying ϕ

Symbolic model checking
Use OBDD’s to represent states and transitions as boolean
formulas (S is finite).
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Constraint-based Model Checking

Constraint-based model checking [DP99tacas] applies to
Kripke structures with an infinite set of states.
Numerical constraints provide a finite representation for an
infinite set of states.

Constraint logic programming theory:

EF(ϕ) = lfp(TR∪{p(x⃗)←ϕ})

EG(ϕ) = gfp(TR∧ϕ)

Prototype implementation DMC in Sicstus Prolog + Simplex,
CLP(H,FD,R,B)
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Part IV

Logical Semantics
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Part IV: Logical Semantics

13 Logical Semantics of CLP(X )

14 Automated Deduction

15 CLP(λ)

16 Negation as Failure
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Logical Semantics of CLP(X ) Programs

Proper logical semantics

(1) P, T |= ∃(G) (4) P, T |= c ⊃ G,

Logical semantics in a fixed pre-interpretation

(2) P |=X ∃(G) (5) P |=X c ⊃ G,

Algebraic semantics

(3) MXP |= ∃(G) (6) MXP |= c ⊃ G.
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Soundness of CSLD Resolution

Theorem 7 ([JL87popl])

If c is a computed answer for the goal G then MXP |= c ⊃ G,
P |=X c ⊃ G and P, T |= c ⊃ G.

If G = (d|A1, . . . ,An), we deduce from the ∧-compositionality lemma,
that there exist computed answers c1, . . . , cn for the goals A1, . . . ,An
such that c = d ∧

∧n
i=1 ci is satisfiable. For every 1 ≤ i ≤ n

ci|Ai ∈ SX
P ↑ ω, by the full abstraction Thm 5,

[ci|Ai]X ⊂ MX
P , by Thm. 4, and Thm. 3, hence M

X
P |= ∀(ci ⊃ Ai),

P |=X ∀(ci ⊃ Ai) as MX
P is the least X -model of P,

P |=X ∀(c ⊃ Ai) as X |= ∀(c ⊃ ci) for all i, 1 ≤ i ≤ n.
Therefore we have P |=X ∀(c ⊃ (d ∧ A1 ∧ · · · ∧ An)),
and as the same reasoning applies to any model X of T ,
P, T |= ∀(c ⊃ (d ∧ A1 ∧ · · · ∧ An))

18



Soundness of CSLD Resolution

Theorem 7 ([JL87popl])

If c is a computed answer for the goal G then MXP |= c ⊃ G,
P |=X c ⊃ G and P, T |= c ⊃ G.

If G = (d|A1, . . . ,An), we deduce from the ∧-compositionality lemma,
that there exist computed answers c1, . . . , cn for the goals A1, . . . ,An
such that c = d ∧

∧n
i=1 ci is satisfiable. For every 1 ≤ i ≤ n

ci|Ai ∈ SX
P ↑ ω, by the full abstraction Thm 5,

[ci|Ai]X ⊂ MX
P , by Thm. 4, and Thm. 3, hence M

X
P |= ∀(ci ⊃ Ai),

P |=X ∀(ci ⊃ Ai) as MX
P is the least X -model of P,

P |=X ∀(c ⊃ Ai) as X |= ∀(c ⊃ ci) for all i, 1 ≤ i ≤ n.
Therefore we have P |=X ∀(c ⊃ (d ∧ A1 ∧ · · · ∧ An)),
and as the same reasoning applies to any model X of T ,
P, T |= ∀(c ⊃ (d ∧ A1 ∧ · · · ∧ An))

18



Soundness of CSLD Resolution

Theorem 7 ([JL87popl])

If c is a computed answer for the goal G then MXP |= c ⊃ G,
P |=X c ⊃ G and P, T |= c ⊃ G.

If G = (d|A1, . . . ,An), we deduce from the ∧-compositionality lemma,
that there exist computed answers c1, . . . , cn for the goals A1, . . . ,An
such that c = d ∧

∧n
i=1 ci is satisfiable. For every 1 ≤ i ≤ n

ci|Ai ∈ SX
P ↑ ω, by the full abstraction Thm 5,

[ci|Ai]X ⊂ MX
P , by Thm. 4, and Thm. 3, hence M

X
P |= ∀(ci ⊃ Ai),

P |=X ∀(ci ⊃ Ai) as MX
P is the least X -model of P,

P |=X ∀(c ⊃ Ai) as X |= ∀(c ⊃ ci) for all i, 1 ≤ i ≤ n.
Therefore we have P |=X ∀(c ⊃ (d ∧ A1 ∧ · · · ∧ An)),
and as the same reasoning applies to any model X of T ,
P, T |= ∀(c ⊃ (d ∧ A1 ∧ · · · ∧ An))

18



Soundness of CSLD Resolution

Theorem 7 ([JL87popl])

If c is a computed answer for the goal G then MXP |= c ⊃ G,
P |=X c ⊃ G and P, T |= c ⊃ G.

If G = (d|A1, . . . ,An), we deduce from the ∧-compositionality lemma,
that there exist computed answers c1, . . . , cn for the goals A1, . . . ,An
such that c = d ∧

∧n
i=1 ci is satisfiable. For every 1 ≤ i ≤ n

ci|Ai ∈ SX
P ↑ ω, by the full abstraction Thm 5,

[ci|Ai]X ⊂ MX
P , by Thm. 4, and Thm. 3, hence M

X
P |= ∀(ci ⊃ Ai),

P |=X ∀(ci ⊃ Ai) as MX
P is the least X -model of P,

P |=X ∀(c ⊃ Ai) as X |= ∀(c ⊃ ci) for all i, 1 ≤ i ≤ n.
Therefore we have P |=X ∀(c ⊃ (d ∧ A1 ∧ · · · ∧ An)),
and as the same reasoning applies to any model X of T ,
P, T |= ∀(c ⊃ (d ∧ A1 ∧ · · · ∧ An))

18



Soundness of CSLD Resolution

Theorem 7 ([JL87popl])

If c is a computed answer for the goal G then MXP |= c ⊃ G,
P |=X c ⊃ G and P, T |= c ⊃ G.

If G = (d|A1, . . . ,An), we deduce from the ∧-compositionality lemma,
that there exist computed answers c1, . . . , cn for the goals A1, . . . ,An
such that c = d ∧

∧n
i=1 ci is satisfiable. For every 1 ≤ i ≤ n

ci|Ai ∈ SX
P ↑ ω, by the full abstraction Thm 5,

[ci|Ai]X ⊂ MX
P , by Thm. 4, and Thm. 3, hence M

X
P |= ∀(ci ⊃ Ai),

P |=X ∀(ci ⊃ Ai) as MX
P is the least X -model of P,

P |=X ∀(c ⊃ Ai) as X |= ∀(c ⊃ ci) for all i, 1 ≤ i ≤ n.

Therefore we have P |=X ∀(c ⊃ (d ∧ A1 ∧ · · · ∧ An)),
and as the same reasoning applies to any model X of T ,
P, T |= ∀(c ⊃ (d ∧ A1 ∧ · · · ∧ An))

18



Soundness of CSLD Resolution

Theorem 7 ([JL87popl])

If c is a computed answer for the goal G then MXP |= c ⊃ G,
P |=X c ⊃ G and P, T |= c ⊃ G.

If G = (d|A1, . . . ,An), we deduce from the ∧-compositionality lemma,
that there exist computed answers c1, . . . , cn for the goals A1, . . . ,An
such that c = d ∧

∧n
i=1 ci is satisfiable. For every 1 ≤ i ≤ n

ci|Ai ∈ SX
P ↑ ω, by the full abstraction Thm 5,

[ci|Ai]X ⊂ MX
P , by Thm. 4, and Thm. 3, hence M

X
P |= ∀(ci ⊃ Ai),

P |=X ∀(ci ⊃ Ai) as MX
P is the least X -model of P,

P |=X ∀(c ⊃ Ai) as X |= ∀(c ⊃ ci) for all i, 1 ≤ i ≤ n.
Therefore we have P |=X ∀(c ⊃ (d ∧ A1 ∧ · · · ∧ An)),
and as the same reasoning applies to any model X of T ,
P, T |= ∀(c ⊃ (d ∧ A1 ∧ · · · ∧ An))

18



Completeness of CSLD resolution

Theorem 8 ([Maher87iclp])

If MXP |= c ⊃ G then there exists a set {ci}i≥0 of computed
answers for G, such that: X |= ∀(c ⊃

∨
i≥0

∃Yici).

Proof.

For every solution ρ of c, for every atom Aj in G,
MX

P |= Ajρ iff Ajρ ∈ TX
P ↑ ω, by Thm. 3, iff Ajρ ∈ [SX

P ↑ ω]X by Thm. 4,
iff cj,ρ|Aj ∈ SX

P ↑ ω, for some constraint cj,ρ s.t. ρ is solution of ∃Yj,ρcj,ρ,
where Yj,ρ = V(cj,ρ) \ V(Aj),
iff cj,ρ is a computed answer for Aj (by 5) and X |= ∃Yj,ρcj,ρρ.
Let cρ be the conjunction of cj,ρ for all j. cρ is a computed answer
for G.
By taking the collection of cρ for all ρ we get X |= ∀(c ⊃

∨
cρ ∃Yρcρ)
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Completeness w.r.t. the theory of the structure

Theorem 9 ([Maher87iclp])

If P, T |= c ⊃ G then there exists a finite set {c1, . . . , cn} of
computed answers to G, such that:
T |= ∀(c ⊃ ∃Y1c1 ∨ · · · ∨ ∃Yncn).

Proof.

If P, T |= c ⊃ G then for every model X of T , for every X -solution ρ
of c, there exists a computed constraint cX ,ρ for G s.t. X |= cX ,ρρ.
Let {ci}i≥1 be the set of these computed answers. Then for every
model X and for every X -valuation ρ, X |= c ⊃

∨
i≥1 ∃Yici,

therefore T |= c ⊃
∨

i≥1 ∃Yici,
As T ∪ {∃(c ∧ ¬∃Yici)}i is unsatisfiable, by applying the compactness
theorem of first-order logic there exists a finite part {ci}1≤i≤n,
s.t. T |= c ⊃

∨n
i=1 ∃Yici.

20



Completeness w.r.t. the theory of the structure

Theorem 9 ([Maher87iclp])

If P, T |= c ⊃ G then there exists a finite set {c1, . . . , cn} of
computed answers to G, such that:
T |= ∀(c ⊃ ∃Y1c1 ∨ · · · ∨ ∃Yncn).

Proof.
If P, T |= c ⊃ G then for every model X of T , for every X -solution ρ
of c, there exists a computed constraint cX ,ρ for G s.t. X |= cX ,ρρ.
Let {ci}i≥1 be the set of these computed answers. Then for every
model X and for every X -valuation ρ, X |= c ⊃

∨
i≥1 ∃Yici,

therefore T |= c ⊃
∨

i≥1 ∃Yici,
As T ∪ {∃(c ∧ ¬∃Yici)}i is unsatisfiable, by applying the compactness
theorem of first-order logic there exists a finite part {ci}1≤i≤n,
s.t. T |= c ⊃

∨n
i=1 ∃Yici.

20



Completeness w.r.t. the theory of the structure

Theorem 9 ([Maher87iclp])

If P, T |= c ⊃ G then there exists a finite set {c1, . . . , cn} of
computed answers to G, such that:
T |= ∀(c ⊃ ∃Y1c1 ∨ · · · ∨ ∃Yncn).

Proof.
If P, T |= c ⊃ G then for every model X of T , for every X -solution ρ
of c, there exists a computed constraint cX ,ρ for G s.t. X |= cX ,ρρ.
Let {ci}i≥1 be the set of these computed answers. Then for every
model X and for every X -valuation ρ, X |= c ⊃

∨
i≥1 ∃Yici,

therefore T |= c ⊃
∨

i≥1 ∃Yici,

As T ∪ {∃(c ∧ ¬∃Yici)}i is unsatisfiable, by applying the compactness
theorem of first-order logic there exists a finite part {ci}1≤i≤n,
s.t. T |= c ⊃

∨n
i=1 ∃Yici.

20



Completeness w.r.t. the theory of the structure

Theorem 9 ([Maher87iclp])

If P, T |= c ⊃ G then there exists a finite set {c1, . . . , cn} of
computed answers to G, such that:
T |= ∀(c ⊃ ∃Y1c1 ∨ · · · ∨ ∃Yncn).

Proof.
If P, T |= c ⊃ G then for every model X of T , for every X -solution ρ
of c, there exists a computed constraint cX ,ρ for G s.t. X |= cX ,ρρ.
Let {ci}i≥1 be the set of these computed answers. Then for every
model X and for every X -valuation ρ, X |= c ⊃

∨
i≥1 ∃Yici,

therefore T |= c ⊃
∨

i≥1 ∃Yici,
As T ∪ {∃(c ∧ ¬∃Yici)}i is unsatisfiable, by applying the compactness
theorem of first-order logic there exists a finite part {ci}1≤i≤n,
s.t. T |= c ⊃

∨n
i=1 ∃Yici.

20



First-order theorem proving in CLP(H)

Prolog can be used to find proofs by refutation of Horn
clauses (with a complete search meta-interpreter).
P,∀(¬A) is unsatisfiable iff P |= ∃(A) iff A −→∗ □.

Groups can be axiomatized with Horn clauses with a ternary
predicate p(x,y, z) meaning x ∗ y = z.

clause(p(e,X,X)).
clause(p(i(X),X,e)).
clause((p(U,Z,W) :- p(X,Y,U), p(Y,Z,V), p(X,V,W))).
clause((p(X,V,W) :- p(X,Y,U), p(Y,Z,V), p(U,Z,W))).
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P,∀(¬A) is unsatisfiable iff P |= ∃(A) iff A −→∗ □.

Groups can be axiomatized with Horn clauses with a ternary
predicate p(x,y, z) meaning x ∗ y = z.
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Theorem proving in groups

To show i(i(x)) = x by refutation,

we show that the formula ¬∀x p(i(i(X)),e,X) is unsatisfiable
By Skolemization we get the goal clause ¬p(i(i(a)),e,a)

| ?- solve(p(i(i(a)),e,a)).
depth 2
yes

| ?- solve(p(a,e,a)).
depth 4
yes

| ?- solve(p(a,i(a),e)).
depth 3
yes
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Theorem proving in groups (cont.)

To show that any non empty subset of a group, stable by
division, is a subgroup we add two clauses

clause(s(a)).
clause((s(Z) :- s(X), s(Y), p(X,i(Y),Z))).

and prove that s contains e and i(a).

| ?- solve(s(e)).
depth 4
yes
| ?- solve(s(i(a))).
depth 5
yes
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Higher-order theorem proving in CLP(λ)

Church’s simply typed λ-calculus
t ::= v | t1 → t2
e : t ::= x : t | (λx : t1.e : t2) : t1 → t2 | (e1 : t1 → t2(e2 : t1)) : t2

Theory of functionality
λx.e1 =α λy.e1[y/x] if y ̸∈ V(e1),
(λx.e1)e2 →β e1[e2/x]
=α .→β is terminating and confluent

e1 =α,β e2 iff ↓β e1 =α ↓β e2.

Equality is decidable, but not unification…
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Theorem proving in CLP(λ)

Theorem 10 (Cantor’s Theorem)

NN is not countable.

Proof.
By two steps of CSLD resolution!

Let us suppose ∃h : N→ (N→ N) ∀f : N→ N ∃n : N h(n) = f
After Skolemisation we get ∀F h(n(F)) = F, i.e., ∀F ¬h(n(F)) ̸= F.
Let us consider the following program G ̸= H ← G(N) ̸= H(N).

N ̸= s(N).
We have h(n(F)) ̸= F −→σ1 (h(n(F)))(I) ̸= F(I) −→σ2 □
where the unifier σ2 = {G = h(I) I, I = n(F), F = λi.s(h(i) i), H = F} is
Cantor’s diagonal argument!
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Negation as Failure

A derivation CSLD is fair if every atom which appears in a
goal of the derivation is selected after a finite number of
resolution steps.
A fair CSLD tree for a goal G is a CSLD derivation tree for G in
which all derivations are fair.
A goal G is finitely failed if G has a fair CSLD derivation tree to
G, which is finite and which contains no success.

p :- p.

| ?- member(a,[b,c,d]).
no

| ?- p, member(a,[b,c,d]).
...

26



Logical semantics of finite failure?

Horn clauses entail no negative information: the Herbrand’s
base BX is a model.

On the other hand, the complement of the least X -model MXP
is not recursively enumerable.

Indeed let us suppose the opposite. We could define in Prolog
the predicates:

success(P,B) which succeeds iff MP |= ∃B, i.e., if the goal
B has a successful CSLD derivation with the program P
fail(P,B) which succeeds iff MP |= ¬∃B
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Undecidability of MXP

loop:- loop.
contr(P):- success(P,P), loop.
contr(P):- fail(P,P).

If contr(contr) has a success,
then success(contr,contr) succeeds,
and fail(contr,contr) doesn’t succeed,
hence contr(contr) doesn’t succeed: contradiction.

If contr(contr) doesn’t succeed,
then fail(contr,contr) succeeds,
hence contr(contr) succeeds: contradiction.

Therefore programs success and fail cannot both exist.
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Clark’s completion

The Clark’s completion of P is the set P∗ of formulas of the
form
∀X p(X)↔ (∃Y1c1 ∧ A1

1 ∧ · · · ∧ A1
n1
) ∨ · · · ∨ (∃Ykck ∧ Ak1 ∧ · · · ∧ Aknk)

where the p(X)← ci|Ai1, . . . ,Aini are the rules in P and Yi’s the
local variables,
∀X¬p(X) if p is not defined in P.

Example 11
CLP(H) program p(s(X)):- p(X).
Clark’s completion P∗ =

{∀x p(x)↔ ∃y x = s(y) ∧ p(y)}.
The goal p(0) finitely fails, we have P∗,CET |= ¬p(0).
The goal p(X) doesn’t finitely fail,
we have P∗,CET ̸|= ¬∃X p(X) although P∗ |=H ¬∃X p(X)
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Supported X -models

Proposition 12
i) I is a supported X -model of P iff ii) I is a X -model of P∗ iff
iii) I is a fixed point of TXP .

Proof.

I is a X -model of P
iff I is a X -model of ∀X p(X)← ϕ1 ∨ · · · ∨ ϕk for every formula
∀X p(X)↔ ϕ1 ∨ · · · ∨ ϕk in P∗,
iff I is a post-fixed point of TX

P , i.e., .T
X
P (I) ⊂ I (by Prop. 2).

I is a supported X -interpretation of P,
iff I is a X -model of ∀X p(X)→ ϕ1 ∨ · · · ∨ ϕk for every formula
∀X p(X)↔ ϕ1 ∨ · · · ∨ ϕk in P∗,
iff I is a pre-fixed point of TX

P , i.e., I ⊂ TX
P (I).

Thus i) I is a supported X -model of P iff ii) I is a X -model of P∗ iff
iii) I is a fixed point of TX

P .
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Models of the Clark’s completion

Theorem 13

i) P∗ has the same least X -model than P, MXP = MXP∗
ii) P |=X c ⊃ A iff P∗ |=X c ⊃ A, for all c and A,
iii) P, T |= c ⊃ A iff P∗, T |= c ⊃ A.

Proof.

i) is an immediate corollary of full abstraction and least X -model
theorems (1 and 3).
For iii) we clearly have (P, T |= c ⊃ A)⇒ (P∗, T |= c ⊃ A). We show the
contrapositive of the opposite, (P, T ̸|= c ⊃ A)⇒ (P∗, T ̸|= c ⊃ A).
Let I be a model of P and T , based on a structure X , let ρ be a
valuation such that I |= ¬Aρ and X |= cρ.
We have MX

P |= ¬Aρ, thus MX
P∗ |= ¬Aρ, and as T |= cρ, we conclude that

P∗, T ̸|= c ⊃ A.
The proof of ii) is identical, the structure X being fixed.
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Soundness of Negation as Finite Failure

Theorem 14
If G is finitely failed then P∗, T |= ¬G.

Proof.

By induction on the height h of the tree in finite failure for G = c|A, α
where A is the selected atom at the root of the tree.
In the base case h = 1, the constrained atom c|A has no CSLD
transition, we can deduce that P∗, T |= ¬(c ∧ A) hence that P∗, T |= ¬G.
For the induction step, let us suppose h > 1. Let G1, . . . ,Gn be the
sons of the root and Y1, . . . ,Yn be the respective sets of introduced
variables. We have P∗, T |= G↔ ∃Y1 G1 ∨ · · · ∨ ∃Yn Gn. By induction
hypothesis, P∗, T |= ¬Gi for every 1 ≤ i ≤ n, therefore P∗, T |= ¬G.
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Completeness of Negation as Failure

Theorem 15 ([JL87popl])

If P∗, T |= ¬G then G is finitely failed.

We show that if G is not finitely failed then P∗, T ,∃(G) is satisfiable.
If G has a success then by the soundness of CSLD resolution 7 ,
P∗, T |= ∃G. Else G has a fair infinite derivation
G = c0|G0 −→ c1|G1 −→ . . .

For every i ≥ 0, ci is T -satisfiable, thus by the compactness
theorem, cω =

∧
i≥0 ci is T -satisfiable. Let X be a model of T

s.t. X |= ∃(cω). Let I0 = {Aρ | A ∈ Gi for some i ≥ 0 and X |= cωρ}. As
the derivation is fair, every atom A in I0 is selected, thus
cω|A −→ cω|A1, . . . ,An with [cω|A] ∪ · · · ∪ [cω|An] ⊂ I0. We deduce that
I0 ⊂ TX

P (I0). By Knaster-Tarski’s theorem, the iterated application up
to ordinal ω of the operator TX

P from I0 leads to a fixed point I
s.t. I0 ⊂ I, thus [cω|G0] ⊂ I. Hence P∗,∃(G) is X -satisfiable, and
P∗, T ,∃(G) is satisfiable.
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Part V

Constraint Solving

34



Part V: Constraint Solving

17 Solving by Rewriting

18 Solving by Domain Reduction
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Solving Equality Constraints in H by Rewriting

Systems of equations Γ:

M1 = N1 ∧ · · · ∧Mn = Nn

A system is in solved form if it is of the form

x1 = M1 ∧ · · · ∧ xn = Mn

with n ≥ 0 and {x1, . . . ,xn} ∩ (V(M1) ∪ · · · ∪ V(Mn)) = ∅

Proposition 16
If Γ is in solved form then H |= ∃(Γ)

Idea of the unification algorithm: try to simplify Γ into either
a solved form or ⊥
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Herbrand-Robinson’s Unification Algorithm
Dec f(M1, . . . ,Mn) = f(N1, . . . ,Nn) ∧ Γ

→ M1 = N1 ∧ · · · ∧Mn = Nn ∧ Γ,
D⊥ f(M1, . . . ,Mn) = g(N1, . . . ,Nm) ∧ Γ→ ⊥ if f ̸= g,
Triv x = x ∧ Γ→ Γ,
Var x = M ∧ Γ→ x = M ∧ Γσ

if x ̸∈ V(M), x ∈ V(Γ), σ = {x← M},
V⊥ x = M ∧ Γ→ ⊥

if x ∈ V(M) and x ̸= M

Lemma 17 (Validity)
If Γ −→ Γ′ then CETH |= Γ ⊃ Γ′

Proof.
Simple application of the axioms for each rule
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Herbrand-Robinson’s Unification Algorithm
Lemma 18 (Termination)
The rules terminate

Proof.

Take as complexity measure of Γ, the number of variables in
non-solved form, and the size of Γ, ordered
lexicographically

Proposition 19 (Decidability of unification)
CET |= ∃(Γ) iff the irreducible form of Γ is a solved form

Proof.
An irreducible form is either ⊥, in which case Γ is
unsatisfiable, or, by case analysis, a solved form, in which
case Γ is satisfiable
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Herbrand-Robinson’s Unification Algorithm

Corollary 20 (Completeness of CET)
For any equation system Γ, either CET ⊢ ∃(Γ), or CET ⊢ ¬∃(Γ)

Corollary 21
H |= ∃(Γ) iff CET |= ∃(Γ)
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Fourier’s Alg. for Lin. Ineq. Constraints over R
Check the satisfiability of a system of linear inequalities
Σm
i=1aixi + c ≤ Σn

j=1bjyj + d
Normal forms: t ≤ x, x ≤ t, or t ≤ 0, where t is linear and
x ̸∈ V(t)
The normal form of s ≤ t w.r.t. x is noted s ≤ tx

Γ→
∧n
i=1

∧m
j=1 si ≤ tj ∧ Γ′

if Γx =
∧n
i=1 si ≤ x ∧ x ≤

∧m
j=1 tj ∧ Γ′ where x ̸∈ V(Γ′),

s ≤ t ∧ Γ→ Γ if s, t ∈ R and s ≤ t,
s ≤ t ∧ Γ→ ⊥ if s, t ∈ R and s > t

The rules terminate

Theorem 22
A system of linear inequalities Γ is satisfiable over R iff it
reduces to the empty system
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Constraint Solving by Domain Reduction
Simple reasoning on the domain of variables for each
constraint independently

“Arc consistency”: for each constraint c,
for each variable x in c,
for each value e of the domain of x,
there exists a solution of c with x = e

x

y

c(x,y)

Example: x,y, z ∈ {1, 2}
System x ̸= y ∧ x ̸= z ∧ y ̸= z arc-consistent

Global constraint all-different([x,y,z])
non arc-consistent

x
y
z

1

2
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Domain Reduction over Finite Domains

Sol(Γ,FD) = {σ | σ = {xd ← v | xd ∈ V(Γ), v ∈ d}, FD |= Γσ}

The reduced domain of a variable xd w.r.t. a basic constraint
c is the domain

DR(xd, c) = {v ∈ d | FD |= ∃(c[v/xd])}

A constraint system Γ is arc-consistent if

∀c ∈ Γ ∀xd ∈ V(c) DR(xd, c) = d

Idea of constraint propagation: reduce the domain of
variables independently to make the system arc-consistent
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Example a ∗ X ≥ b ∗ Y+ d

Simple interval reasoning:

aX[k,l] ≥ bY[m,n] + d a,b > 0,d ≥ 0

we have
DR(X[k,l], c) = [max(k,k′), l]

DR(Y[m,n], c) = [m,min(n,n′)]

where k′ = ⌈bm+d
a ⌉ and n′ = ⌊al−db ⌋
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Domain Reduction Algorithm

Fail: c ∧ Γ→ ⊥ if xd ∈ V(c) and DR(xd, c) = ∅.

FC: c ∧ Γ→ Γσ
if V(c) = {xd}, d′ = DR(xd, c), d′ ̸= ∅, and σ = {xd ← yd′}

LA: c ∧ Γ→ cσ ∧ Γσ
if |V(c)| > 1,
xd ∈ V(c), d′ = DR(xd, c),d′ ̸= ∅,d′ ̸= d, σ = {xd ← yd′}

PLA: c ∧ Γ→ cσ ∧ Γσ
if |V(c)| > 1, xd ∈ V(c), DR(xd, c) ⊂ d′ ⊊ d, d′ ̸= ∅, σ = {xd ← yd′}

EL: c ∧ Γ→ Γ
if FD |= cσ for every valuation σ of the variables in c by values
of their domain
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Domain Reduction Algorithm (continued)

Lemma 23 (Validity)
If Γ −→∗σ Γ′ then Sol(Γ,FD) = {σθ | θ ∈ Sol(Γ′,FD)}.

Proposition 24 (Completeness of LA for 2 var. ineq.)

Let Γ be a constraint system of the form

aX ≥ bY+ d a,b > 0,d ≥ 0.

Let Γ −→∗σ Γ′ ̸→ Then Γ is satisfiable if and only if Γ′ ≠ ⊥

Proof.
If Γ′ ̸= ⊥ is an irreducible form of Γ then for all c ∈ Γ′ and
x ∈ V(c) we have DR(xd, c) = d and {x[k,l] ← k | x ∈ V(Γ′)} is a
solution of Γ′
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CLP(FD) scheduling

Simple PERT problem

| ?- fd_minimize((B#>=A+5, C#>=B+2, D#>=B+3,
E#>=C+5, E#>=D+5), E).

A = 0, B = 5, D = 8, E = 13, C = _#1(7..8) ?
yes

Disjunctive scheduling is NP-hard

| ?- fd_minimize((B#>=A+5, C#>=B+2, D#>=B+3, E#>=C+5,
E#>=D+5, (C#>=D+5 ; D#>=C+5)), E).

A = 0, B = 5, C = 7, D = 12, E = 17 ? ;
no
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Disjunctive scheduling: bridge problem (4000
nodes)
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