
Constraint Logic Programming

Sylvain Soliman
Sylvain.Soliman@inria.fr

Project-Team LIFEWARE

MPRI 2.35.1 Course – September–November 2017

1

mailto:Sylvain.Soliman@inria.fr

Part I: CLP - Introduction and Logical
Background

1 The Constraint Programming paradigm

2 Examples and Applications

3 First Order Logic

4 Models

5 Logical Theories

2

Part II: Constraint Logic Programs

6 Constraint Languages

7 CLP(X)

8 CLP(H)

9 CLP(R,FD,B)

3

Part III: CLP - Operational and Fixpoint
Semantics

10 Operational Semantics

11 Fixpoint Semantics

12 Program Analysis

4

Full abstraction

Theorem 1 ([JL87popl])

TX
P ↑ ω = Ogs(P)

TX
P ↑ ω ⊂ Ogs(P) is proved by induction on the powers n of TX

P .
n = 0, i.e., ∅, is trivial. Let Aρ ∈ TX

P ↑ n, there exists a rule
(A← c|A1, . . . ,An) ∈ P, s.t. {A1ρ, . . . ,Anρ} ⊂ TX

P ↑ n− 1 and X |= cρ. By
induction {A1ρ, . . . ,Anρ} ⊂ Ogs(P). By definition of Ogs and
∧-compositionality. we get Aρ ∈ Ogs(P).
Ogs(P) ⊂ TX

P ↑ ω is proved by induction on the length of derivations.
Successes with derivation of length 0 are ground facts in TX

P ↑ 1.
Let Aρ ∈ Ogs(P) with a derivation of length n. By definition of Ogs

there exists (A← c|A1, . . . ,An) ∈ P s.t. {A1ρ, . . . ,Anρ} ⊂ Ogs(P) and
X |= cρ. By induction {A1ρ, . . . ,Anρ} ⊂ TX

P ↑ ω. Hence by definition of
TX
P we get Aρ ∈ TX

P ↑ ω.

5

Part IV: Logical Semantics

13 Logical Semantics of CLP(X)

14 Automated Deduction

15 CLP(λ)

16 Negation as Failure

6

Soundness of CSLD Resolution

Theorem 2 ([JL87popl])

If c is a computed answer for the goal G then MX
P |= c ⊃ G,

P |=X c ⊃ G and P, T |= c ⊃ G.

If G = (d|A1, . . . ,An), we deduce from the ∧-compositionality lemma,
that there exist computed answers c1, . . . , cn for the goals A1, . . . ,An
such that c = d ∧

∧n
i=1 ci is satisfiable. For every 1 ≤ i ≤ n

ci|Ai ∈ SX
P ↑ ω,

[ci|Ai]X ⊂ MX
P , hence M

X
P |= ∀(ci ⊃ Ai),

P |=X ∀(ci ⊃ Ai) as MX
P is the least X -model of P,

P |=X ∀(c ⊃ Ai) as X |= ∀(c ⊃ ci) for all i, 1 ≤ i ≤ n.
Therefore we have P |=X ∀(c ⊃ (d ∧ A1 ∧ · · · ∧ An)),
and as the same reasoning applies to any model X of T ,
P, T |= ∀(c ⊃ (d ∧ A1 ∧ · · · ∧ An))

7

Completeness of CSLD resolution

Theorem 3 ([Maher87iclp])

If MX
P |= c ⊃ G then there exists a set {ci}i≥0 of computed

answers for G, such that: X |= ∀(c ⊃
∨
i≥0

∃Yici).

Proof.
For every solution ρ of c, for every atom Aj in G,
MX

P |= Ajρ iff Ajρ ∈ TX
P ↑ ω, iff Ajρ ∈ [SX

P ↑ ω]X
iff cj,ρ|Aj ∈ SX

P ↑ ω, for some constraint cj,ρ s.t. ρ is solution of ∃Yj,ρcj,ρ,
where Yj,ρ = V(cj,ρ) \ V(Aj),
iff cj,ρ is a computed answer for Aj and X |= ∃Yj,ρcj,ρρ.
Let cρ be the conjunction of cj,ρ for all j. cρ is a computed answer
for G.
By taking the collection of cρ for all ρ we get X |= ∀(c ⊃

∨
cρ ∃Yρcρ)

8

Completeness w.r.t. the theory of the structure

Theorem 4 ([Maher87iclp])

If P, T |= c ⊃ G then there exists a finite set {c1, . . . , cn} of
computed answers to G, such that:
T |= ∀(c ⊃ ∃Y1c1 ∨ · · · ∨ ∃Yncn).

Proof.
If P, T |= c ⊃ G then for every model X of T , for every X -solution ρ
of c, there exists a computed constraint cX ,ρ for G s.t. X |= cX ,ρρ.
Let {ci}i≥1 be the set of these computed answers. Then for every
model X and for every X -valuation ρ, X |= c ⊃

∨
i≥1 ∃Yici,

therefore T |= c ⊃
∨
i≥1 ∃Yici,

As T ∪ {∃(c ∧ ¬∃Yici)}i is unsatisfiable, by applying the compactness
theorem of first-order logic there exists a finite part {ci}1≤i≤n,
s.t. T |= c ⊃

∨n
i=1 ∃Yici.

9

Part V: Constraint Solving

17 Solving by Rewriting

18 Solving by Domain Reduction

10

Reified constraints in CLP(B,FD)

The reified constraint B⇔ (X < Y)
associates a boolean variable B to the satisfaction of the
constraint X < Y

Arc consistency:
B is set to 1 when

domain(X) < domain(Y),
B is set to 0 when domain(Y) ≤ domain(X)
domain(X) is set to {v ∈ domain(X) | v < max(Y)} when B = 1,
domain(Y) is set to {v ∈ domain(Y) | v > min(X))} when B = 1,
domain(X) is set to {v ∈ domain(X) | v ≥min(Y)} when B = 0,
domain(Y) is set to {v ∈ domain(Y) | v ≤max(X))} when B = 0

11

Reified constraints in CLP(B,FD)

The reified constraint B⇔ (X < Y)
associates a boolean variable B to the satisfaction of the
constraint X < Y

Arc consistency:
B is set to 1 when domain(X) < domain(Y),
B is set to 0 when domain(Y) ≤ domain(X)
domain(X) is set to

{v ∈ domain(X) | v < max(Y)} when B = 1,
domain(Y) is set to {v ∈ domain(Y) | v > min(X))} when B = 1,
domain(X) is set to {v ∈ domain(X) | v ≥min(Y)} when B = 0,
domain(Y) is set to {v ∈ domain(Y) | v ≤max(X))} when B = 0

11

Reified constraints in CLP(B,FD)

The reified constraint B⇔ (X < Y)
associates a boolean variable B to the satisfaction of the
constraint X < Y

Arc consistency:
B is set to 1 when domain(X) < domain(Y),
B is set to 0 when domain(Y) ≤ domain(X)
domain(X) is set to {v ∈ domain(X) | v < max(Y)} when B = 1,
domain(Y) is set to {v ∈ domain(Y) | v > min(X))} when B = 1,
domain(X) is set to {v ∈ domain(X) | v ≥min(Y)} when B = 0,
domain(Y) is set to {v ∈ domain(Y) | v ≤max(X))} when B = 0

11

Cardinality constraint

Cardinality constraint card(N, [C1, . . . ,Cm]) is true iff there are
exactly N constraints true in [C1, . . . ,Cm].

card(0, []).
card(N, [C | L]) :-

B in 0..1,
B #<=> C,
N #= B + M,
card(M, L).

12

Time Tabling

The organizers of a congress have 3 rooms and 2 days for
eleven half-day sessions. Sessions AJ, JI, IE, CF, BHK, ABCH,
DFJ can’t be simultaneous, moreover E < J, D < K, F < K

| ?- [A,B,C,D,E,F,G,H,I,J,K] ins 1..4,
all_different([A,J]),all_different([J,I]),
all_different([I,E]),all_different([B,H,K]),
all_different([A,B,C,H]),all_different([D,F,J]),
J#>E, K#>D, K#>F,
atmost(3,[A=1,B=1,C=1,D=1,E=1,F=1,G=1,H=1,I=1,J=1,K=1]),
atmost(3,[A=2,B=2,C=2,D=2,E=2,F=2,G=2,H=2,I=2,J=2,K=2]),
atmost(3,[A=3,B=3,C=3,D=3,E=3,F=3,G=3,H=3,I=3,J=3,K=3]),
atmost(3,[A=4,B=4,C=4,D=4,E=4,F=4,G=4,H=4,I=4,J=4,K=4]),
labeling([A,B,C,D,E,F,G,H,I,J,K]).

A=1, B=2, C=4, D=1, E=2, F=2, G=4, H=3, I=1, J=3, K=4 ?

13

Time Tabling

The organizers of a congress have 3 rooms and 2 days for
eleven half-day sessions. Sessions AJ, JI, IE, CF, BHK, ABCH,
DFJ can’t be simultaneous, moreover E < J, D < K, F < K

| ?- [A,B,C,D,E,F,G,H,I,J,K] ins 1..4,
all_different([A,J]),all_different([J,I]),
all_different([I,E]),all_different([B,H,K]),
all_different([A,B,C,H]),all_different([D,F,J]),
J#>E, K#>D, K#>F,
atmost(3,[A=1,B=1,C=1,D=1,E=1,F=1,G=1,H=1,I=1,J=1,K=1]),
atmost(3,[A=2,B=2,C=2,D=2,E=2,F=2,G=2,H=2,I=2,J=2,K=2]),
atmost(3,[A=3,B=3,C=3,D=3,E=3,F=3,G=3,H=3,I=3,J=3,K=3]),
atmost(3,[A=4,B=4,C=4,D=4,E=4,F=4,G=4,H=4,I=4,J=4,K=4]),
labeling([A,B,C,D,E,F,G,H,I,J,K]).

A=1, B=2, C=4, D=1, E=2, F=2, G=4, H=3, I=1, J=3, K=4 ?

13

Magic Series

Find a sequence of integers (i0, . . . , in−1) such that
ij is the number of occurrences of the integer j in the
sequence

n−1∧
j=0

card(ij, [i0 = j, . . . , in−1 = j])

- Constraint propagation with reified constraints bk ⇔ ik = j,
- Redundant constraints n =

∑n−1
j=0 ij,

- Enumeration with first fail heuristics,
- Less than one second CPU for n = 50…

14

Magic Series

Find a sequence of integers (i0, . . . , in−1) such that
ij is the number of occurrences of the integer j in the
sequence

n−1∧
j=0

card(ij, [i0 = j, . . . , in−1 = j])

- Constraint propagation with reified constraints bk ⇔ ik = j,

- Redundant constraints n =
∑n−1

j=0 ij,
- Enumeration with first fail heuristics,
- Less than one second CPU for n = 50…

14

Magic Series

Find a sequence of integers (i0, . . . , in−1) such that
ij is the number of occurrences of the integer j in the
sequence

n−1∧
j=0

card(ij, [i0 = j, . . . , in−1 = j])

- Constraint propagation with reified constraints bk ⇔ ik = j,
- Redundant constraints

n =
∑n−1

j=0 ij,
- Enumeration with first fail heuristics,
- Less than one second CPU for n = 50…

14

Magic Series

Find a sequence of integers (i0, . . . , in−1) such that
ij is the number of occurrences of the integer j in the
sequence

n−1∧
j=0

card(ij, [i0 = j, . . . , in−1 = j])

- Constraint propagation with reified constraints bk ⇔ ik = j,
- Redundant constraints n =

∑n−1
j=0 ij,

- Enumeration with first fail heuristics,
- Less than one second CPU for n = 50…

14

Multiple Modeling in CLP(FD)
N-queens with two concurrent models: by lines and by
columns

queens2(N, L) :-
length(Column, N), Column ins 1..N, safe(Column),
length(Line, N), Line ins 1..N, safe(Line),
linking(Line, 1, Column),
append(Line, Column,L), labeling([ff], L).

linking([], _, _).
linking([X | L], I, C) :-

equivalence(X, I, C, 1),
I1 is I + 1,
linking(L, I1, C).

equivalence(_, _, [], _).
equivalence(X, I, [Y | L], J) :-

B #<=> (X#=J), B #<=> (Y#=I),
J1 is J + 1,

equivalence(X, I, L, J1).

15

Lexicographic order constraint
lex([X1,...,Xn])
iff X1 < X2 or (X1 = X2 and (X2 < X3 ... or Xn−1 ≤ Xn))

lex(L):-
lex(L, B),
B = 1.

lex([], 1).

lex([_], 1).

lex([X, Y | L], R):-
B #<=> (X #< Y),
C #<=> (X #= Y),
lex([Y | L], D),
R #<=> B #\/ (C #/\ D).

16

Lexicographic order constraint
lex([X1,...,Xn])
iff X1 < X2 or (X1 = X2 and (X2 < X3 ... or Xn−1 ≤ Xn))

lex(L):-
lex(L, B),
B = 1.

lex([], 1).

lex([_], 1).

lex([X, Y | L], R):-
B #<=> (X #< Y),
C #<=> (X #= Y),
lex([Y | L], D),
R #<=> B #\/ (C #/\ D).

16

Programming in CLP(H,B,FD,R)
Basic constraints on domains of terms H, bounded
integers FD, reals R, booleans B, ontologies H≤, etc.
Relations defined extensionally by constrained facts:

precedence(X, D, Y) :- X + D #< Y.
disjonctives(X, D, Y, E) :- X + D #< Y.
disjonctives(X, D, Y, E) :- Y + E #< X.

and intentionally by rules:

labeling([]).
labeling([X | L]) :-

fd_dom(X, D), member(X, D), labeling(L).

Programming of search procedures and heuristics:
And-parallelism (variable choice): “first-fail” heuristics
min domain
Or-parallelism (value choice): “best-first” heuristics min
value

17

Part VI

Practical CLP Programming

18

Part VI: Practical CLP Programming

19 CLP implementation, the WAM

20 Optimizing CLP

21 Symmetries

22 Symmetry Breaking During Search

19

The Warren Abstract Machine

First Prolog implementation in the early 70’s (by Colmerauer
et al.).

In 1983, David H. Warren creates the Warren Abstract
Machine.

Remains the state of the art (for term representation, basic
instructions, …)

Slightly extended for CLP

(constraints instead of
substitutions)

(C)SLD resolution seen as a call stack (with marks for choice
points)

20

The Warren Abstract Machine

First Prolog implementation in the early 70’s (by Colmerauer
et al.).

In 1983, David H. Warren creates the Warren Abstract
Machine.

Remains the state of the art (for term representation, basic
instructions, …)

Slightly extended for CLP (constraints instead of
substitutions)

(C)SLD resolution seen as a call stack (with marks for choice
points)

20

Optimizations from the WAM

Search for predicates should be almost in constant time

Use a hash table - indexing - for the predicate name/arity,

and the functor of the first argument

Each call normally adds a frame to the call stack (removed on
backtracking)

As for other programming paradigms, not always necessary

Tail recursion can be optimized, when calling and called
contexts are deterministic.

21

Optimizations from the WAM

Search for predicates should be almost in constant time

Use a hash table - indexing - for the predicate name/arity,
and the functor of the first argument

Each call normally adds a frame to the call stack (removed on
backtracking)

As for other programming paradigms, not always necessary

Tail recursion can be optimized, when calling and called
contexts are deterministic.

21

Optimizations from the WAM

Search for predicates should be almost in constant time

Use a hash table - indexing - for the predicate name/arity,
and the functor of the first argument

Each call normally adds a frame to the call stack (removed on
backtracking)

As for other programming paradigms, not always necessary

Tail recursion can be optimized,

when calling and called
contexts are deterministic.

21

Optimizations from the WAM

Search for predicates should be almost in constant time

Use a hash table - indexing - for the predicate name/arity,
and the functor of the first argument

Each call normally adds a frame to the call stack (removed on
backtracking)

As for other programming paradigms, not always necessary

Tail recursion can be optimized, when calling and called
contexts are deterministic.

21

Putting it all together
Naive sum

sum(0, []).
sum(S, [H | T]) :-

sum(S1, T),
S is S1 + H.

Much better

sum(S, L) :-
sum_aux(L, 0, S).

sum_aux([], S, S).
sum_aux([H | T], S0, S) :-

S1 is S0 + H,
sum_aux(T, S1, S).

22

Putting it all together
Naive sum

sum(0, []).
sum(S, [H | T]) :-

sum(S1, T),
S is S1 + H.

Much better

sum(S, L) :-
sum_aux(L, 0, S).

sum_aux([], S, S).
sum_aux([H | T], S0, S) :-

S1 is S0 + H,
sum_aux(T, S1, S).

22

Putting it all together

If numbers are coded as the fact number(X)?

sum(S) :- findall(X, number(X), L), sum(S, L).

sum(S) :-
g_assign(sum, 0), % nb_setval/assert
(

number(N),
g_read(sum, S1),
S2 is S1 + N,
g_assign(sum, S2),
fail

;
g_read(sum, S) % nb_getval/retract

).

23

Putting it all together

If numbers are coded as the fact number(X)?

sum(S) :- findall(X, number(X), L), sum(S, L).

sum(S) :-
g_assign(sum, 0), % nb_setval/assert
(

number(N),
g_read(sum, S1),
S2 is S1 + N,
g_assign(sum, S2),
fail

;
g_read(sum, S) % nb_getval/retract

).

23

Cutting choice-points

try(S) :-
stream_property(S,

input),
(

repeat,
read_term(S, G),
call(G),
ground(G),
!,
write(G)

).
try(S) :-

...

try(S) :-
stream_property(S,

input),
(

repeat,
read_term(S, G),
call(G),
ground(G)

->
write(G)

).
try(S) :-

...

24

Cutting choice-points

try(S) :-
stream_property(S,

input),
(

repeat,
read_term(S, G),
call(G),
ground(G),
!,
write(G)

).
try(S) :-

...

try(S) :-
stream_property(S,

input),
(

repeat,
read_term(S, G),
call(G),
ground(G)

->
write(G)

).
try(S) :-

...

24

Symmetries in the N-queens problem

queens(N,[X1,...XN])
iff

queens(N,[XN,...,X1]) vertical axis symmetry
variable symmetry

broken by X1<XN

iff queens(N,[N+1-X1,...,N+1-XN]) horizontal axis symmetry
value symmetry

broken by X1<5

iff queens(N,[Y1,...,YN]) where Xi=j iff Yj=N+1-i rotation
symmetry
variable-value symmetry

iff queens(N,[Y1,...,YN]) where Xi=j iff Yj=i rotation
symmetry
variable-value symmetry

25

Symmetries in the N-queens problem

queens(N,[X1,...XN])
iff queens(N,[XN,...,X1]) vertical axis symmetry

variable symmetry

broken by X1<XN

iff queens(N,[N+1-X1,...,N+1-XN]) horizontal axis symmetry
value symmetry

broken by X1<5

iff queens(N,[Y1,...,YN]) where Xi=j iff Yj=N+1-i rotation
symmetry
variable-value symmetry

iff queens(N,[Y1,...,YN]) where Xi=j iff Yj=i rotation
symmetry
variable-value symmetry

25

Symmetries in the N-queens problem

queens(N,[X1,...XN])
iff queens(N,[XN,...,X1]) vertical axis symmetry
variable symmetry

broken by X1<XN

iff queens(N,[N+1-X1,...,N+1-XN]) horizontal axis symmetry
value symmetry

broken by X1<5

iff queens(N,[Y1,...,YN]) where Xi=j iff Yj=N+1-i rotation
symmetry
variable-value symmetry

iff queens(N,[Y1,...,YN]) where Xi=j iff Yj=i rotation
symmetry
variable-value symmetry

25

Symmetries in the N-queens problem

queens(N,[X1,...XN])
iff queens(N,[XN,...,X1]) vertical axis symmetry
variable symmetry

broken by X1<XN

iff queens(N,[N+1-X1,...,N+1-XN]) horizontal axis symmetry

value symmetry

broken by X1<5

iff queens(N,[Y1,...,YN]) where Xi=j iff Yj=N+1-i rotation
symmetry
variable-value symmetry

iff queens(N,[Y1,...,YN]) where Xi=j iff Yj=i rotation
symmetry
variable-value symmetry

25

Symmetries in the N-queens problem

queens(N,[X1,...XN])
iff queens(N,[XN,...,X1]) vertical axis symmetry
variable symmetry

broken by X1<XN

iff queens(N,[N+1-X1,...,N+1-XN]) horizontal axis symmetry
value symmetry

broken by X1<5

iff queens(N,[Y1,...,YN]) where Xi=j iff Yj=N+1-i rotation
symmetry
variable-value symmetry

iff queens(N,[Y1,...,YN]) where Xi=j iff Yj=i rotation
symmetry
variable-value symmetry

25

Symmetries in the N-queens problem

queens(N,[X1,...XN])
iff queens(N,[XN,...,X1]) vertical axis symmetry
variable symmetry

broken by X1<XN

iff queens(N,[N+1-X1,...,N+1-XN]) horizontal axis symmetry
value symmetry

broken by X1<5

iff queens(N,[Y1,...,YN]) where Xi=j iff Yj=N+1-i rotation
symmetry
variable-value symmetry

iff queens(N,[Y1,...,YN]) where Xi=j iff Yj=i rotation
symmetry
variable-value symmetry

25

Symmetries in the N-queens problem

queens(N,[X1,...XN])
iff queens(N,[XN,...,X1]) vertical axis symmetry
variable symmetry

broken by X1<XN

iff queens(N,[N+1-X1,...,N+1-XN]) horizontal axis symmetry
value symmetry

broken by X1<5

iff queens(N,[Y1,...,YN]) where Xi=j iff Yj=N+1-i rotation
symmetry
variable-value symmetry

iff queens(N,[Y1,...,YN]) where Xi=j iff Yj=i rotation
symmetry
variable-value symmetry

25

Symmetries in the N-queens problem

queens(N,[X1,...XN])
iff queens(N,[XN,...,X1]) vertical axis symmetry
variable symmetry broken by X1<XN

iff queens(N,[N+1-X1,...,N+1-XN]) horizontal axis symmetry
value symmetry

broken by X1<5

iff queens(N,[Y1,...,YN]) where Xi=j iff Yj=N+1-i rotation
symmetry
variable-value symmetry

iff queens(N,[Y1,...,YN]) where Xi=j iff Yj=i rotation
symmetry
variable-value symmetry

25

Symmetries in the N-queens problem

queens(N,[X1,...XN])
iff queens(N,[XN,...,X1]) vertical axis symmetry
variable symmetry broken by X1<XN

iff queens(N,[N+1-X1,...,N+1-XN]) horizontal axis symmetry
value symmetry broken by X1<5

iff queens(N,[Y1,...,YN]) where Xi=j iff Yj=N+1-i rotation
symmetry
variable-value symmetry

iff queens(N,[Y1,...,YN]) where Xi=j iff Yj=i rotation
symmetry
variable-value symmetry

25

Variable Symmetries
Given a Constraint Satisfaction Problem c(x1, ...,xn) over X
a variable symmetry σ is a bijection on variables that
preserves solutions:

X |= c(x1, ...,xn) iff X |= c(xσ(1), ...,xσ(n))

Proposition 5 ([Crawford96kr])
If (X ,≤) is an order, all variable symmetries can be broken by
the global constraint∧

σ∈Σ
[x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]

Proof.
This is one way to choose a unique member in each
equivalence class of symmetric assignments.

26

Variable Symmetries
Given a Constraint Satisfaction Problem c(x1, ...,xn) over X
a variable symmetry σ is a bijection on variables that
preserves solutions:

X |= c(x1, ...,xn) iff X |= c(xσ(1), ...,xσ(n))

Proposition 5 ([Crawford96kr])
If (X ,≤) is an order, all variable symmetries can be broken by
the global constraint∧

σ∈Σ
[x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]

Proof.
This is one way to choose a unique member in each
equivalence class of symmetric assignments.

26

Variable Symmetry Breaking

Global constraint [x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]
arc consistent (AC) if for every variable, every value in its
domain belongs to a solution

lex(L, M):-
lex(L, M, B),
B #= 1.

lex([], [], 1).
lex([X | L], [Y | M] R):-

B #<=> (X #< Y),
C #<=> (X #= Y),
lex(L, M, D),
R #<=> B #\/ (C #/\ D).

O(mn) where m is the maximum domain size [CB02sics]

27

Breaking Several Variable Symmetries
Proposition 6 ([Puget05cp,Walsh06cp])
AC(

∧
σ∈Σ[x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]) is strictly stronger than∧

σ∈Σ AC([x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]).

Proof.
Let x1,x2,x4 ∈ {0, 1} and x3 = 1. Consider two symmetries
(1243) and (1423), we have AC([x1,x2,x3,x4] ≤lex [x2,x4,x1,x3])
and AC([x1,x2,x3,x4] ≤lex [x4,x3,x1,x2]).

cases [x1 x2 x3 x4] ≤lex [x2 x4 x1 x3] [x1 x2 x3 x4] ≤lex [x4 x3 x1 x2]
x1 = 0

0 0 0 1 0 0 0 1
x1 = 1 1 1 1 1 1 1 1 1 1 0 1 1
x2 = 0 0 0 0 1 0 0 1
x2 = 1 0 1 1 0 1 1
x4 = 0 0 1 0 0 0 1
x4 = 1 0 1 0 1

However, their conjunction is not AC. Indeed, suppose that
x4 = 0, we have x1 = x2 = 0 and x3 = 0, which is not possible.

28

Breaking Several Variable Symmetries
Proposition 6 ([Puget05cp,Walsh06cp])
AC(

∧
σ∈Σ[x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]) is strictly stronger than∧

σ∈Σ AC([x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]).

Proof.
Let x1,x2,x4 ∈ {0, 1} and x3 = 1. Consider two symmetries
(1243) and (1423), we have AC([x1,x2,x3,x4] ≤lex [x2,x4,x1,x3])
and AC([x1,x2,x3,x4] ≤lex [x4,x3,x1,x2]).

cases [x1 x2 x3 x4] ≤lex [x2 x4 x1 x3] [x1 x2 x3 x4] ≤lex [x4 x3 x1 x2]
x1 = 0 0 0 0 1

0 0 0 1
x1 = 1 1 1 1 1 1 1 1 1 1 0 1 1
x2 = 0 0 0 0 1 0 0 1
x2 = 1 0 1 1 0 1 1
x4 = 0 0 1 0 0 0 1
x4 = 1 0 1 0 1

However, their conjunction is not AC. Indeed, suppose that
x4 = 0, we have x1 = x2 = 0 and x3 = 0, which is not possible.

28

Breaking Several Variable Symmetries
Proposition 6 ([Puget05cp,Walsh06cp])
AC(

∧
σ∈Σ[x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]) is strictly stronger than∧

σ∈Σ AC([x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]).

Proof.
Let x1,x2,x4 ∈ {0, 1} and x3 = 1. Consider two symmetries
(1243) and (1423), we have AC([x1,x2,x3,x4] ≤lex [x2,x4,x1,x3])
and AC([x1,x2,x3,x4] ≤lex [x4,x3,x1,x2]).

cases [x1 x2 x3 x4] ≤lex [x2 x4 x1 x3] [x1 x2 x3 x4] ≤lex [x4 x3 x1 x2]
x1 = 0 0 0 0 1 0 0 0 1
x1 = 1

1 1 1 1 1 1 1 1 1 0 1 1
x2 = 0 0 0 0 1 0 0 1
x2 = 1 0 1 1 0 1 1
x4 = 0 0 1 0 0 0 1
x4 = 1 0 1 0 1

However, their conjunction is not AC. Indeed, suppose that
x4 = 0, we have x1 = x2 = 0 and x3 = 0, which is not possible.

28

Breaking Several Variable Symmetries
Proposition 6 ([Puget05cp,Walsh06cp])
AC(

∧
σ∈Σ[x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]) is strictly stronger than∧

σ∈Σ AC([x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]).

Proof.
Let x1,x2,x4 ∈ {0, 1} and x3 = 1. Consider two symmetries
(1243) and (1423), we have AC([x1,x2,x3,x4] ≤lex [x2,x4,x1,x3])
and AC([x1,x2,x3,x4] ≤lex [x4,x3,x1,x2]).

cases [x1 x2 x3 x4] ≤lex [x2 x4 x1 x3] [x1 x2 x3 x4] ≤lex [x4 x3 x1 x2]
x1 = 0 0 0 0 1 0 0 0 1
x1 = 1 1 1 1 1 1 1 1 1

1 0 1 1
x2 = 0 0 0 0 1 0 0 1
x2 = 1 0 1 1 0 1 1
x4 = 0 0 1 0 0 0 1
x4 = 1 0 1 0 1

However, their conjunction is not AC. Indeed, suppose that
x4 = 0, we have x1 = x2 = 0 and x3 = 0, which is not possible.

28

Breaking Several Variable Symmetries
Proposition 6 ([Puget05cp,Walsh06cp])
AC(

∧
σ∈Σ[x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]) is strictly stronger than∧

σ∈Σ AC([x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]).

Proof.
Let x1,x2,x4 ∈ {0, 1} and x3 = 1. Consider two symmetries
(1243) and (1423), we have AC([x1,x2,x3,x4] ≤lex [x2,x4,x1,x3])
and AC([x1,x2,x3,x4] ≤lex [x4,x3,x1,x2]).

cases [x1 x2 x3 x4] ≤lex [x2 x4 x1 x3] [x1 x2 x3 x4] ≤lex [x4 x3 x1 x2]
x1 = 0 0 0 0 1 0 0 0 1
x1 = 1 1 1 1 1 1 1 1 1 1 0 1 1
x2 = 0

0 0 0 1 0 0 1
x2 = 1 0 1 1 0 1 1
x4 = 0 0 1 0 0 0 1
x4 = 1 0 1 0 1

However, their conjunction is not AC. Indeed, suppose that
x4 = 0, we have x1 = x2 = 0 and x3 = 0, which is not possible.

28

Breaking Several Variable Symmetries
Proposition 6 ([Puget05cp,Walsh06cp])
AC(

∧
σ∈Σ[x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]) is strictly stronger than∧

σ∈Σ AC([x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]).

Proof.
Let x1,x2,x4 ∈ {0, 1} and x3 = 1. Consider two symmetries
(1243) and (1423), we have AC([x1,x2,x3,x4] ≤lex [x2,x4,x1,x3])
and AC([x1,x2,x3,x4] ≤lex [x4,x3,x1,x2]).

cases [x1 x2 x3 x4] ≤lex [x2 x4 x1 x3] [x1 x2 x3 x4] ≤lex [x4 x3 x1 x2]
x1 = 0 0 0 0 1 0 0 0 1
x1 = 1 1 1 1 1 1 1 1 1 1 0 1 1
x2 = 0 0 0 0 1

0 0 1
x2 = 1 0 1 1 0 1 1
x4 = 0 0 1 0 0 0 1
x4 = 1 0 1 0 1

However, their conjunction is not AC. Indeed, suppose that
x4 = 0, we have x1 = x2 = 0 and x3 = 0, which is not possible.

28

Breaking Several Variable Symmetries
Proposition 6 ([Puget05cp,Walsh06cp])
AC(

∧
σ∈Σ[x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]) is strictly stronger than∧

σ∈Σ AC([x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]).

Proof.
Let x1,x2,x4 ∈ {0, 1} and x3 = 1. Consider two symmetries
(1243) and (1423), we have AC([x1,x2,x3,x4] ≤lex [x2,x4,x1,x3])
and AC([x1,x2,x3,x4] ≤lex [x4,x3,x1,x2]).

cases [x1 x2 x3 x4] ≤lex [x2 x4 x1 x3] [x1 x2 x3 x4] ≤lex [x4 x3 x1 x2]
x1 = 0 0 0 0 1 0 0 0 1
x1 = 1 1 1 1 1 1 1 1 1 1 0 1 1
x2 = 0 0 0 0 1 0 0 1
x2 = 1

0 1 1 0 1 1
x4 = 0 0 1 0 0 0 1
x4 = 1 0 1 0 1

However, their conjunction is not AC. Indeed, suppose that
x4 = 0, we have x1 = x2 = 0 and x3 = 0, which is not possible.

28

Breaking Several Variable Symmetries
Proposition 6 ([Puget05cp,Walsh06cp])
AC(

∧
σ∈Σ[x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]) is strictly stronger than∧

σ∈Σ AC([x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]).

Proof.
Let x1,x2,x4 ∈ {0, 1} and x3 = 1. Consider two symmetries
(1243) and (1423), we have AC([x1,x2,x3,x4] ≤lex [x2,x4,x1,x3])
and AC([x1,x2,x3,x4] ≤lex [x4,x3,x1,x2]).

cases [x1 x2 x3 x4] ≤lex [x2 x4 x1 x3] [x1 x2 x3 x4] ≤lex [x4 x3 x1 x2]
x1 = 0 0 0 0 1 0 0 0 1
x1 = 1 1 1 1 1 1 1 1 1 1 0 1 1
x2 = 0 0 0 0 1 0 0 1
x2 = 1 0 1 1

0 1 1
x4 = 0 0 1 0 0 0 1
x4 = 1 0 1 0 1

However, their conjunction is not AC. Indeed, suppose that
x4 = 0, we have x1 = x2 = 0 and x3 = 0, which is not possible.

28

Breaking Several Variable Symmetries
Proposition 6 ([Puget05cp,Walsh06cp])
AC(

∧
σ∈Σ[x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]) is strictly stronger than∧

σ∈Σ AC([x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]).

Proof.
Let x1,x2,x4 ∈ {0, 1} and x3 = 1. Consider two symmetries
(1243) and (1423), we have AC([x1,x2,x3,x4] ≤lex [x2,x4,x1,x3])
and AC([x1,x2,x3,x4] ≤lex [x4,x3,x1,x2]).

cases [x1 x2 x3 x4] ≤lex [x2 x4 x1 x3] [x1 x2 x3 x4] ≤lex [x4 x3 x1 x2]
x1 = 0 0 0 0 1 0 0 0 1
x1 = 1 1 1 1 1 1 1 1 1 1 0 1 1
x2 = 0 0 0 0 1 0 0 1
x2 = 1 0 1 1 0 1 1
x4 = 0

0 1 0 0 0 1
x4 = 1 0 1 0 1

However, their conjunction is not AC. Indeed, suppose that
x4 = 0, we have x1 = x2 = 0 and x3 = 0, which is not possible.

28

Breaking Several Variable Symmetries
Proposition 6 ([Puget05cp,Walsh06cp])
AC(

∧
σ∈Σ[x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]) is strictly stronger than∧

σ∈Σ AC([x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]).

Proof.
Let x1,x2,x4 ∈ {0, 1} and x3 = 1. Consider two symmetries
(1243) and (1423), we have AC([x1,x2,x3,x4] ≤lex [x2,x4,x1,x3])
and AC([x1,x2,x3,x4] ≤lex [x4,x3,x1,x2]).

cases [x1 x2 x3 x4] ≤lex [x2 x4 x1 x3] [x1 x2 x3 x4] ≤lex [x4 x3 x1 x2]
x1 = 0 0 0 0 1 0 0 0 1
x1 = 1 1 1 1 1 1 1 1 1 1 0 1 1
x2 = 0 0 0 0 1 0 0 1
x2 = 1 0 1 1 0 1 1
x4 = 0 0 1

0 0 0 1
x4 = 1 0 1 0 1

However, their conjunction is not AC. Indeed, suppose that
x4 = 0, we have x1 = x2 = 0 and x3 = 0, which is not possible.

28

Breaking Several Variable Symmetries
Proposition 6 ([Puget05cp,Walsh06cp])
AC(

∧
σ∈Σ[x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]) is strictly stronger than∧

σ∈Σ AC([x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]).

Proof.
Let x1,x2,x4 ∈ {0, 1} and x3 = 1. Consider two symmetries
(1243) and (1423), we have AC([x1,x2,x3,x4] ≤lex [x2,x4,x1,x3])
and AC([x1,x2,x3,x4] ≤lex [x4,x3,x1,x2]).

cases [x1 x2 x3 x4] ≤lex [x2 x4 x1 x3] [x1 x2 x3 x4] ≤lex [x4 x3 x1 x2]
x1 = 0 0 0 0 1 0 0 0 1
x1 = 1 1 1 1 1 1 1 1 1 1 0 1 1
x2 = 0 0 0 0 1 0 0 1
x2 = 1 0 1 1 0 1 1
x4 = 0 0 1 0 0 0 1
x4 = 1

0 1 0 1

However, their conjunction is not AC. Indeed, suppose that
x4 = 0, we have x1 = x2 = 0 and x3 = 0, which is not possible.

28

Breaking Several Variable Symmetries
Proposition 6 ([Puget05cp,Walsh06cp])
AC(

∧
σ∈Σ[x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]) is strictly stronger than∧

σ∈Σ AC([x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]).

Proof.
Let x1,x2,x4 ∈ {0, 1} and x3 = 1. Consider two symmetries
(1243) and (1423), we have AC([x1,x2,x3,x4] ≤lex [x2,x4,x1,x3])
and AC([x1,x2,x3,x4] ≤lex [x4,x3,x1,x2]).

cases [x1 x2 x3 x4] ≤lex [x2 x4 x1 x3] [x1 x2 x3 x4] ≤lex [x4 x3 x1 x2]
x1 = 0 0 0 0 1 0 0 0 1
x1 = 1 1 1 1 1 1 1 1 1 1 0 1 1
x2 = 0 0 0 0 1 0 0 1
x2 = 1 0 1 1 0 1 1
x4 = 0 0 1 0 0 0 1
x4 = 1 0 1

0 1

However, their conjunction is not AC. Indeed, suppose that
x4 = 0, we have x1 = x2 = 0 and x3 = 0, which is not possible.

28

Breaking Several Variable Symmetries
Proposition 6 ([Puget05cp,Walsh06cp])
AC(

∧
σ∈Σ[x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]) is strictly stronger than∧

σ∈Σ AC([x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]).

Proof.
Let x1,x2,x4 ∈ {0, 1} and x3 = 1. Consider two symmetries
(1243) and (1423), we have AC([x1,x2,x3,x4] ≤lex [x2,x4,x1,x3])
and AC([x1,x2,x3,x4] ≤lex [x4,x3,x1,x2]).

cases [x1 x2 x3 x4] ≤lex [x2 x4 x1 x3] [x1 x2 x3 x4] ≤lex [x4 x3 x1 x2]
x1 = 0 0 0 0 1 0 0 0 1
x1 = 1 1 1 1 1 1 1 1 1 1 0 1 1
x2 = 0 0 0 0 1 0 0 1
x2 = 1 0 1 1 0 1 1
x4 = 0 0 1 0 0 0 1
x4 = 1 0 1 0 1

However, their conjunction is not AC. Indeed, suppose that
x4 = 0,

we have x1 = x2 = 0 and x3 = 0, which is not possible.

28

Breaking Several Variable Symmetries
Proposition 6 ([Puget05cp,Walsh06cp])
AC(

∧
σ∈Σ[x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]) is strictly stronger than∧

σ∈Σ AC([x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)]).

Proof.
Let x1,x2,x4 ∈ {0, 1} and x3 = 1. Consider two symmetries
(1243) and (1423), we have AC([x1,x2,x3,x4] ≤lex [x2,x4,x1,x3])
and AC([x1,x2,x3,x4] ≤lex [x4,x3,x1,x2]).

cases [x1 x2 x3 x4] ≤lex [x2 x4 x1 x3] [x1 x2 x3 x4] ≤lex [x4 x3 x1 x2]
x1 = 0 0 0 0 1 0 0 0 1
x1 = 1 1 1 1 1 1 1 1 1 1 0 1 1
x2 = 0 0 0 0 1 0 0 1
x2 = 1 0 1 1 0 1 1
x4 = 0 0 1 0 0 0 1
x4 = 1 0 1 0 1

However, their conjunction is not AC. Indeed, suppose that
x4 = 0, we have x1 = x2 = 0 and x3 = 0, which is not possible.

28

Value Symmetry Breaking

A value symmetry is a bijection σ on values that preserves
solutions.
{xi = vi|1 ≤ i ≤ n} is a solution iff {xi = σ(vi)|1 ≤ i ≤ n} is a
solution

All value symmetries can be broken by posting for each value
symmetry σ
[x1, ...,xn] ≤lex [σ(x1), ..., σ(xn)] [PS03cp]

Example 7 (σ(i) = n+ 1− i)
The symmetry breaking constraint implies x1 ≤ n+ 1− x1
If n is even,

the constraint is thus equivalent to x1 ≤ n
2

If n is odd, it is equivalent to x1 ≤ n+1
2 ∧ x1 =

n+1
2 ⇒ x2 ≤ n+1

2 ∧ ...

29

Value Symmetry Breaking

A value symmetry is a bijection σ on values that preserves
solutions.
{xi = vi|1 ≤ i ≤ n} is a solution iff {xi = σ(vi)|1 ≤ i ≤ n} is a
solution

All value symmetries can be broken by posting for each value
symmetry σ
[x1, ...,xn] ≤lex [σ(x1), ..., σ(xn)] [PS03cp]

Example 7 (σ(i) = n+ 1− i)
The symmetry breaking constraint implies x1 ≤ n+ 1− x1
If n is even, the constraint is thus equivalent to x1 ≤ n

2
If n is odd, it is equivalent to x1 ≤ n+1

2 ∧ x1 =
n+1
2 ⇒ x2 ≤ n+1

2 ∧ ...

29

Breaking Variable and Value Symmetries

Theorem 8 ([Puget05cp,Walsh06cp])
The constraints [x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)] for each variable
symmetry σ ∈ Σ
and [x1, ...,xm] ≤lex [σ′(x1), ..., σ′(xn)] for each value symmetry
σ′ ∈ Σ′

leave at least one assignment in each equivalence class of
solutions.

Proof.
For any assignment ν,

one can pick the lex leader ν1 of ν
under Σ and then the lex leader ν2 of ν1 under Σ′

If ν2 does not satisfy the lex leader constraint under Σ, iterate.
As the lexicographic orders are well-founded, the process
terminates, with an assignment that satisfies all lex leader
constraints.

30

Breaking Variable and Value Symmetries

Theorem 8 ([Puget05cp,Walsh06cp])
The constraints [x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)] for each variable
symmetry σ ∈ Σ
and [x1, ...,xm] ≤lex [σ′(x1), ..., σ′(xn)] for each value symmetry
σ′ ∈ Σ′

leave at least one assignment in each equivalence class of
solutions.

Proof.
For any assignment ν, one can pick the lex leader ν1 of ν
under Σ

and then the lex leader ν2 of ν1 under Σ′

If ν2 does not satisfy the lex leader constraint under Σ, iterate.
As the lexicographic orders are well-founded, the process
terminates, with an assignment that satisfies all lex leader
constraints.

30

Breaking Variable and Value Symmetries

Theorem 8 ([Puget05cp,Walsh06cp])
The constraints [x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)] for each variable
symmetry σ ∈ Σ
and [x1, ...,xm] ≤lex [σ′(x1), ..., σ′(xn)] for each value symmetry
σ′ ∈ Σ′

leave at least one assignment in each equivalence class of
solutions.

Proof.
For any assignment ν, one can pick the lex leader ν1 of ν
under Σ and then the lex leader ν2 of ν1 under Σ′

If ν2 does not satisfy the lex leader constraint under Σ, iterate.
As the lexicographic orders are well-founded, the process
terminates, with an assignment that satisfies all lex leader
constraints.

30

Breaking Variable and Value Symmetries

Theorem 8 ([Puget05cp,Walsh06cp])
The constraints [x1, ...,xn] ≤lex [xσ(1), ...,xσ(n)] for each variable
symmetry σ ∈ Σ
and [x1, ...,xm] ≤lex [σ′(x1), ..., σ′(xn)] for each value symmetry
σ′ ∈ Σ′

leave at least one assignment in each equivalence class of
solutions.

Proof.
For any assignment ν, one can pick the lex leader ν1 of ν
under Σ and then the lex leader ν2 of ν1 under Σ′

If ν2 does not satisfy the lex leader constraint under Σ, iterate.
As the lexicographic orders are well-founded, the process
terminates, with an assignment that satisfies all lex leader
constraints.

30

Breaking Several Variable and Value
Symmetries
The iterated lex leader may leave several symmetric
assignments.

Example 9
Consider the composition of the reflection symmetries on
both variables and boolean values.
The solutions [0, 1, 1] and [0, 0, 1] are symmetric but satisfy the
lex constraints

[x1,x2,x3] ≤ [x3,x2,x1]

[x1,x2,x3] ≤ [¬x1,¬x2,¬x3]

Indeed [0, 1, 1] ≤ [1, 1, 0] and [0, 1, 1] ≤ [1, 0, 0]
[0, 0, 1] ≤ [1, 0, 0] and [0, 0, 1] ≤ [1, 1, 0]

hence both symmetric solutions [0, 1, 1] and [0, 0, 1] are lex
leaders.

31

Variable-Value Symmetries

Definition A variable-value symmetry (or general symmetry)
is a bijection σ on pairs (variable,value) that preserves
solutions.

Definition A valuation [x1, ...,xn] is admissible for σ iff
|{k | xi = j, σ(i, j) = (k, l)}| = n.

E.g. In the 4-queens, the assignment [2, 3, 1, 4] is admissible
for r90 but not [2, 3, 3, 4].

If [x1, ...,xn] is admissible for σ, let σ[x1, ...,xn] be its image
under σ, σ[x1, ...,xn] = [y1, ...,yn] where yk = l whenever xi = j
and σ(i, j) = (k, l)

32

Variable-Value Symmetry Breaking

Proposition 10
All variable-value symmetries can be broken by posting the
constraints∧

σ∈Σ
admissible(σ, [x1, ...,xn]) ∧ [x1, ...,xn] ≤lex σ[x1, ...,xn]

Example 11
In the 4-queens, let x1 = 2, x2 ∈ {1, 3, 4}, x3 and x4 ∈ {1, 2, 3, 4}
r90[x1, ...,x4] prunes X3 ̸= 2 and X4 ̸= 2 for admissibility, and
x4 ̸= 1 for lex.

33

SBDS

In 99, [BW99cp] proposed a completely different symmetry
breaking technique, Symmetry Breaking During Search
(SBDS).

It overcomes the main drawback of static symmetry breaking:

the choice of the representative element in each class of
solutions is forced

breaking all trials at improving performance by clever search
heuristics

34

SBDS

In 99, [BW99cp] proposed a completely different symmetry
breaking technique, Symmetry Breaking During Search
(SBDS).

It overcomes the main drawback of static symmetry breaking:
the choice of the representative element in each class of
solutions

is forced

breaking all trials at improving performance by clever search
heuristics

34

SBDS

In 99, [BW99cp] proposed a completely different symmetry
breaking technique, Symmetry Breaking During Search
(SBDS).

It overcomes the main drawback of static symmetry breaking:
the choice of the representative element in each class of
solutions is forced

breaking all trials at improving performance by

clever search
heuristics

34

SBDS

In 99, [BW99cp] proposed a completely different symmetry
breaking technique, Symmetry Breaking During Search
(SBDS).

It overcomes the main drawback of static symmetry breaking:
the choice of the representative element in each class of
solutions is forced

breaking all trials at improving performance by clever search
heuristics

34

Symmetric Constraints

Consider a set Σ of symmetries, such that for any constraint c
and all σ ∈ Σ one can find a constraint σ(c) corresponding to
the symmetric of c
X |= σ(c)ρ⇔ cσ(ρ)

For example, if σ is the value symmetry that turns v into N− v
we have σ(X = v) is

X = (N - v)

We can now define a technique for removing symmetries
adding constraints when choice-points are explored, à la
branch and bound.

35

Symmetric Constraints

Consider a set Σ of symmetries, such that for any constraint c
and all σ ∈ Σ one can find a constraint σ(c) corresponding to
the symmetric of c
X |= σ(c)ρ⇔ cσ(ρ)

For example, if σ is the value symmetry that turns v into N− v
we have σ(X = v) is X = (N - v)

We can now define a technique for removing symmetries
adding constraints when choice-points are explored, à la
branch and bound.

35

Enumerating Solutions

The general method of enumeration of solutions is, at each
choice-point, to add

on one branch the constraint c assigning a value to a
variable;
on the other branch the negation of this constraint ¬c

SBDS adds supplementary constraints on the second branch:

supposing a partial assignment A at the choice-point,
for all σ ∈ Σ such that σ(A) = A one adds σ(¬c).

36

Example

Consider the 4-queens problem over X1,X2,X3,X4 ∈ {1, 2, 3, 4}

with a single (value-)symmetry: v 7→ 5− v

suppose that at the top of the search tree the leftmost branch
corresponds to X1 = 1

when backtracking at the top, the next branch to explore will
correspond to the constraint:

X1 ̸= 1

∧ X1 ̸= 4

37

Example

Consider the 4-queens problem over X1,X2,X3,X4 ∈ {1, 2, 3, 4}

with a single (value-)symmetry: v 7→ 5− v

suppose that at the top of the search tree the leftmost branch
corresponds to X1 = 1

when backtracking at the top, the next branch to explore will
correspond to the constraint:

X1 ̸= 1 ∧ X1 ̸= 4

37

Unicity

Theorem 12 (Non-symmetric Solutions)
If ρ1 and ρ2 are two solutions obtained by SBDS, then

∀σ ∈ Σ σ(ρ1) ̸= ρ2

Proof.
Suppose that σ0(ρ1) = ρ2 for some σ0
let A be the partial assignment at the choice-point that
differentiates the ρ1 and ρ2 branches, and c the constraint
added on the ρ1 branch there.
We have σ0(A) = A
since both are solutions, we get that c is true in ρ1
and that σ0(¬c) is true in ρ2 i.e., ¬c is true in ρ1
⇒ contradiction

38

Unicity

Theorem 12 (Non-symmetric Solutions)
If ρ1 and ρ2 are two solutions obtained by SBDS, then

∀σ ∈ Σ σ(ρ1) ̸= ρ2

Proof.
Suppose that σ0(ρ1) = ρ2 for some σ0

let A be the partial assignment at the choice-point that
differentiates the ρ1 and ρ2 branches, and c the constraint
added on the ρ1 branch there.
We have σ0(A) = A
since both are solutions, we get that c is true in ρ1
and that σ0(¬c) is true in ρ2 i.e., ¬c is true in ρ1
⇒ contradiction

38

Unicity

Theorem 12 (Non-symmetric Solutions)
If ρ1 and ρ2 are two solutions obtained by SBDS, then

∀σ ∈ Σ σ(ρ1) ̸= ρ2

Proof.
Suppose that σ0(ρ1) = ρ2 for some σ0
let A be the partial assignment at the choice-point that
differentiates the ρ1 and ρ2 branches, and c the constraint
added on the ρ1 branch there.

We have σ0(A) = A
since both are solutions, we get that c is true in ρ1
and that σ0(¬c) is true in ρ2 i.e., ¬c is true in ρ1
⇒ contradiction

38

Unicity

Theorem 12 (Non-symmetric Solutions)
If ρ1 and ρ2 are two solutions obtained by SBDS, then

∀σ ∈ Σ σ(ρ1) ̸= ρ2

Proof.
Suppose that σ0(ρ1) = ρ2 for some σ0
let A be the partial assignment at the choice-point that
differentiates the ρ1 and ρ2 branches, and c the constraint
added on the ρ1 branch there.
We have σ0(A) = A

since both are solutions, we get that c is true in ρ1
and that σ0(¬c) is true in ρ2 i.e., ¬c is true in ρ1
⇒ contradiction

38

Unicity

Theorem 12 (Non-symmetric Solutions)
If ρ1 and ρ2 are two solutions obtained by SBDS, then

∀σ ∈ Σ σ(ρ1) ̸= ρ2

Proof.
Suppose that σ0(ρ1) = ρ2 for some σ0
let A be the partial assignment at the choice-point that
differentiates the ρ1 and ρ2 branches, and c the constraint
added on the ρ1 branch there.
We have σ0(A) = A
since both are solutions, we get that c is true in ρ1

and that σ0(¬c) is true in ρ2 i.e., ¬c is true in ρ1
⇒ contradiction

38

Unicity

Theorem 12 (Non-symmetric Solutions)
If ρ1 and ρ2 are two solutions obtained by SBDS, then

∀σ ∈ Σ σ(ρ1) ̸= ρ2

Proof.
Suppose that σ0(ρ1) = ρ2 for some σ0
let A be the partial assignment at the choice-point that
differentiates the ρ1 and ρ2 branches, and c the constraint
added on the ρ1 branch there.
We have σ0(A) = A
since both are solutions, we get that c is true in ρ1
and that σ0(¬c) is true in ρ2

i.e., ¬c is true in ρ1
⇒ contradiction

38

Unicity

Theorem 12 (Non-symmetric Solutions)
If ρ1 and ρ2 are two solutions obtained by SBDS, then

∀σ ∈ Σ σ(ρ1) ̸= ρ2

Proof.
Suppose that σ0(ρ1) = ρ2 for some σ0
let A be the partial assignment at the choice-point that
differentiates the ρ1 and ρ2 branches, and c the constraint
added on the ρ1 branch there.
We have σ0(A) = A
since both are solutions, we get that c is true in ρ1
and that σ0(¬c) is true in ρ2 i.e., ¬c is true in ρ1
⇒ contradiction

38

	CLP - Introduction and Logical Background
	The Constraint Programming paradigm
	Examples and Applications
	First Order Logic
	Models
	Logical Theories
	Constraint Languages
	CLP(X)
	CLP(H)
	CLP(R,FD,B)
	Operational Semantics
	Fixpoint Semantics
	Program Analysis
	Logical Semantics of CLP(X)
	Automated Deduction
	CLP()
	Negation as Failure
	Solving by Rewriting
	Solving by Domain Reduction
	CLP implementation, the WAM
	Optimizing CLP
	Symmetries
	Symmetry Breaking During Search

