Constraint Logic Programming

Sylvain Soliman
Sylvain.Soliman@inria.fr

Project-Team LIFEWARE

MPRI 2.35.1 Course - September-November 2017

Part I: CLP - Introduction and Logical Background

(1) The Constraint Programming paradigm

2 Examples and Applications
(3) First Order Logic
4. Models
(5) Logical Theories

Part II: Constraint Logic Programs

(6) Constraint Languages
(7) $\operatorname{CLP}(\mathcal{X})$
(8) $\operatorname{CLP}(\mathcal{H})$
(9) $\operatorname{CLP}(\mathcal{R}, \mathcal{F D}, \mathcal{B})$

Part III: CLP - Operational and Fixpoint Semantics

(10) Operational Semantics
(11) Fixpoint Semantics
(12) Program Analysis

Full abstraction

Theorem 1 ([JL87popl])

$T_{P}^{\mathcal{X}} \uparrow \omega=O_{g s}(P)$
$T_{P}^{\mathcal{X}} \uparrow \omega \subset O_{g s}(P)$ is proved by induction on the powers n of $T_{P}^{\mathcal{X}}$. $n=0$, i.e., \emptyset, is trivial. Let $A \rho \in T_{P}^{\mathcal{X}} \uparrow n$, there exists a rule $\left(A \leftarrow c \mid A_{1}, \ldots, A_{n}\right) \in P$, s.t. $\left\{A_{1} \rho, \ldots, A_{n} \rho\right\} \subset T_{P}^{\mathcal{X}} \uparrow n-1$ and $\mathcal{X} \mid=c \rho$. By induction $\left\{A_{1} \rho, \ldots, A_{n} \rho\right\} \subset O_{g s}(P)$. By definition of $O_{g s}$ and \wedge-compositionality. we get $A \rho \in O_{g s}(P)$.
$O_{g s}(P) \subset T_{P}^{\mathcal{X}} \uparrow \omega$ is proved by induction on the length of derivations. Successes with derivation of length 0 are ground facts in $T_{P}^{\mathcal{X}} \uparrow 1$. Let $A \rho \in O_{g s}(P)$ with a derivation of length n. By definition of $O_{g s}$ there exists $\left(A \leftarrow c \mid A_{1}, \ldots, A_{n}\right) \in P$ s.t. $\left\{A_{1} \rho, \ldots, A_{n} \rho\right\} \subset O_{g s}(P)$ and $\mathcal{X} \vDash c \rho$. By induction $\left\{A_{1} \rho, \ldots, A_{n} \rho\right\} \subset T_{P}^{\mathcal{X}} \uparrow \omega$. Hence by definition of $T_{P}^{\mathcal{X}}$ we get $A \rho \in T_{P}^{\mathcal{X}} \uparrow \omega$.

Part IV: Logical Semantics

(13) Logical Semantics of $\operatorname{CLP}(\mathcal{X})$
(14) Automated Deduction
(15) $\operatorname{CLP}(\lambda)$
(16) Negation as Failure

Soundness of CSLD Resolution

Theorem 2 ([JL87popl])

If c is a computed answer for the goal G then $M_{P}^{\mathcal{X}} \vDash c \supset G$, $P \vDash \mathcal{X} c \supset G$ and $P, \mathcal{T} \vDash c \supset G$.

If $G=\left(d \mid A_{1}, \ldots, A_{n}\right)$, we deduce from the \wedge-compositionality lemma, that there exist computed answers c_{1}, \ldots, c_{n} for the goals A_{1}, \ldots, A_{n} such that $c=d \wedge \bigwedge_{i=1}^{n} c_{i}$ is satisfiable. For every $1 \leq i \leq n$ $c_{i} \mid A_{i} \in S_{P}^{\mathcal{X}} \uparrow \omega$, $\left[c_{i} \mid A_{i}\right] \mathcal{X} \subset M_{P}^{\mathcal{X}}$, hence $M_{P}^{\mathcal{X}} \equiv \forall\left(c_{i} \supset A_{i}\right)$,
$P \neq \mathcal{X} \forall\left(c_{i} \supset A_{i}\right)$ as $M_{P}^{\mathcal{X}}$ is the least \mathcal{X}-model of P,
$P \vDash \mathcal{X} \forall\left(c \supset A_{i}\right)$ as $\mathcal{X} \mid=\forall\left(c \supset c_{i}\right)$ for all $i, 1 \leq i \leq n$.
Therefore we have $P \neq \mathcal{X} \forall\left(c \supset\left(d \wedge A_{1} \wedge \cdots \wedge A_{n}\right)\right)$, and as the same reasoning applies to any model \mathcal{X} of \mathcal{T}, $P, \mathcal{T} \vDash \forall\left(c \supset\left(d \wedge A_{1} \wedge \cdots \wedge A_{n}\right)\right)$

Completeness of CSLD resolution

Theorem 3 ([Maher87iclp])

If $M_{P}^{\mathcal{X}}=c \supset G$ then there exists a set $\left\{c_{i}\right\}_{\left.\right|_{\geq 0}}$ of computed answers for G, such that: $\mathcal{X} \vDash \forall\left(c \supset \underset{i \geq 0}{\bigvee} \exists Y_{i} c_{i}\right)$.

Proof.

For every solution ρ of c, for every atom A_{j} in G,
$M_{P}^{\mathcal{X}}=A_{j} \rho$ iff $A_{j} \rho \in T_{P}^{\mathcal{X}} \uparrow \omega$, iff $A_{j} \rho \in\left[S_{P}^{\mathcal{X}} \uparrow \omega\right]_{\mathcal{X}}$
iff $c_{j, \rho} \mid A_{j} \in S_{P}^{\mathcal{X}} \uparrow \omega$, for some constraint $c_{j, \rho}$ s.t. ρ is solution of $\exists Y_{j, \rho} c_{j, \rho}$, where $Y_{j, \rho}=V\left(c_{j, \rho}\right) \backslash V\left(A_{j}\right)$,
iff $c_{j, \rho}$ is a computed answer for A_{j} and $\mathcal{X} \vDash \exists Y_{j, \rho} c_{j, \rho} \rho$.
Let c_{ρ} be the conjunction of $c_{j, \rho}$ for all $j . c_{\rho}$ is a computed answer for G.
By taking the collection of c_{ρ} for all ρ we get $\mathcal{X} \mid=\forall\left(c \supset \bigvee_{c_{\rho}} \exists Y_{\rho} c_{\rho}\right)$

Completeness w.r.t. the theory of the structure

Theorem 4 ([Maher87iclp])

If $P, \mathcal{T}=c \supset G$ then there exists a finite set $\left\{c_{1}, \ldots, c_{n}\right\}$ of computed answers to G, such that:
$\mathcal{T} \vDash \forall\left(c \supset \exists Y_{1} c_{1} \vee \cdots \vee \exists Y_{n} c_{n}\right)$.

Proof.

If $P, \mathcal{T} \vDash c \supset G$ then for every model \mathcal{X} of \mathcal{T}, for every \mathcal{X}-solution ρ of c, there exists a computed constraint $c_{\mathcal{X}, \rho}$ for G s.t. $\mathcal{X} \mid=c_{\mathcal{X}, \rho} \rho$. Let $\left\{c_{i}\right\}_{i \geq 1}$ be the set of these computed answers. Then for every model \mathcal{X} and for every \mathcal{X}-valuation $\rho, \mathcal{X}=c \supset \bigvee_{i \geq 1} \exists Y_{i} c_{i}$, therefore $\mathcal{T} \vDash c \supset \bigvee_{i \geq 1} \exists Y_{i} c_{i}$, As $\mathcal{T} \cup\left\{\exists\left(c \wedge \neg \exists Y_{i} c_{i}\right)\right\}$ i is unsatisfiable, by applying the compactness theorem of first-order logic there exists a finite part $\left\{c_{i}\right\}_{1 \leq i \leq n,}$ s.t. $\mathcal{T} \vDash c \supset \bigvee_{i=1}^{n} \exists Y_{i} c_{i}$.

Part V: Constraint Solving

(17) Solving by Rewriting
(18) Solving by Domain Reduction

Reified constraints in $\operatorname{CLP}(\mathcal{B}, \mathcal{F D})$

The reified constraint $B \Leftrightarrow(X<Y)$
associates a boolean variable B to the satisfaction of the constraint $X<Y$

Arc consistency:
B is set to 1 when

Reified constraints in $\operatorname{CLP}(\mathcal{B}, \mathcal{F D})$

The reified constraint $B \Leftrightarrow(X<Y)$
associates a boolean variable B to the satisfaction of the constraint $X<Y$

Arc consistency:

B is set to 1 when domain $(X)<\operatorname{domain}(Y)$, B is set to 0 when domain $(Y) \leq \operatorname{domain}(X)$ domain (X) is set to

Reified constraints in $\operatorname{CLP}(\mathcal{B}, \mathcal{F D})$

The reified constraint $B \Leftrightarrow(X<Y)$
associates a boolean variable B to the satisfaction of the constraint $X<Y$

Arc consistency:

B is set to 1 when domain $(X)<\operatorname{domain}(Y)$,
B is set to 0 when domain $(Y) \leq$ domain (X)
domain (X) is set to $\{v \in$ domain $(X) \mid v<\max (Y)\}$ when $B=1$, domain (Y) is set to $\{v \in \operatorname{domain}(Y) \mid v>\min (X))\}$ when $B=1$, domain (X) is set to $\{v \in \operatorname{domain}(X) \mid v \geq \min (Y)\}$ when $B=0$, domain (Y) is set to $\{v \in \operatorname{domain}(Y) \mid v \leq \max (X))\}$ when $B=0$

Cardinality constraint

Cardinality constraint $\operatorname{card}\left(N,\left[C_{1}, \ldots, C_{m}\right]\right)$ is true iff there are exactly N constraints true in $\left[C_{1}, \ldots, C_{m}\right]$.

```
card(0, []).
card(N, [C | L]) :-
    B in 0..1,
    B #<=> C,
    N #= B + M,
    card(M, L).
```


Time Tabling

The organizers of a congress have 3 rooms and 2 days for eleven half-day sessions. Sessions AJ, JI, IE, CF, BHK, ABCH, DFJ can't be simultaneous, moreover $E<J, D<K, F<K$

Time Tabling

The organizers of a congress have 3 rooms and 2 days for eleven half-day sessions. Sessions AJ, JI, IE, CF, BHK, ABCH, DFJ can't be simultaneous, moreover $E<J, D<K, F<K$

```
| ?- [A,B,C,D,E,F,G,H,I,J,K] ins 1..4,
    all_different([A,J]),all_different([J,I]),
    all_different([I,E]),all_different([B,H,K]),
    all_different([A,B,C,H]),all_different([D,F,J]),
    J#>E, K#>D, K#>F,
    atmost(3,[A=1,B=1,C=1,D=1,E=1,F=1,G=1,H=1,I=1,J=1,K=1]),
    atmost(3,[A=2,B=2,C=2,D=2,E=2,F=2,G=2,H=2,I=2,J=2,K=2]),
    atmost (3,[A=3,B=3,C=3,D=3,E=3,F=3,G=3,H=3,I=3,J=3,K=3]),
    atmost(3,[A=4,B=4,C=4,D=4,E=4,F=4,G=4,H=4,I=4,J=4,K=4]),
    labeling([A, B, C, D, E, F, G, H, I, J, K]).
```

$A=1, B=2, C=4, D=1, E=2, F=2, G=4, H=3, I=1, J=3, K=4$?

Magic Series

Find a sequence of integers (i_{0}, \ldots, i_{n-1}) such that i_{j} is the number of occurrences of the integer j in the sequence

Magic Series

Find a sequence of integers (i_{0}, \ldots, i_{n-1}) such that i_{j} is the number of occurrences of the integer j in the sequence

$$
\bigwedge_{j=0}^{n-1} \operatorname{card}\left(i_{j},\left[i_{0}=j, \ldots, i_{n-1}=j\right]\right)
$$

- Constraint propagation with reified constraints $b_{k} \Leftrightarrow i_{k}=j$,

Magic Series

Find a sequence of integers (i_{0}, \ldots, i_{n-1}) such that i_{j} is the number of occurrences of the integer j in the sequence

$$
\bigwedge_{j=0}^{n-1} \operatorname{card}\left(i_{j},\left[i_{0}=j, \ldots, i_{n-1}=j\right]\right)
$$

- Constraint propagation with reified constraints $b_{k} \Leftrightarrow i_{k}=j$,
- Redundant constraints

Magic Series

Find a sequence of integers $\left(i_{0}, \ldots, i_{n-1}\right)$ such that i_{j} is the number of occurrences of the integer j in the sequence

$$
\bigwedge_{j=0}^{n-1} \operatorname{card}\left(i_{j},\left[i_{0}=j, \ldots, i_{n-1}=j\right]\right)
$$

- Constraint propagation with reified constraints $b_{k} \Leftrightarrow i_{k}=j$,
- Redundant constraints $n=\sum_{j=0}^{n-1} i_{j}$,
- Enumeration with first fail heuristics,
- Less than one second CPU for $n=50 \ldots$

Multiple Modeling in $\operatorname{CLP}(\mathcal{F D})$

N -queens with two concurrent models: by lines and by columns

```
queens2(N, L) :-
    length(Column, N), Column ins 1..N, safe(Column),
    length(Line, N), Line ins 1..N, safe(Line),
    linking(Line, 1, Column),
    append(Line, Column,L), labeling([ff], L).
linking([], _, _).
linking([X | L], I, C) :-
    equivalence(X, I, C, 1),
    I1 is I + 1,
    linking(L, I1, C).
equivalence(_, _' [], _).
equivalence(X, I, [Y | L], J) :-
    B #<=> (X#=J), B #<=> (Y#=I),
    J1 is J + 1,
equivalence(X, I, L, J1).
```


Lexicographic order constraint

```
lex([X1,...,Xn])
```

iff $X_{1}<X_{2}$ or $\left(X_{1}=X_{2}\right.$ and $\left(X_{2}<X_{3} \ldots\right.$ or $\left.\left.X_{n-1} \leq X_{n}\right)\right)$

Lexicographic order constraint

```
lex([X1,...,Xn])
iff }\mp@subsup{X}{1}{}<\mp@subsup{X}{2}{}\mathrm{ or ( }\mp@subsup{X}{1}{}=\mp@subsup{X}{2}{}\mathrm{ and ( }\mp@subsup{X}{2}{<}<\mp@subsup{X}{3}{}\ldots\mathrm{ or }\mp@subsup{X}{n-1}{}\leq\mp@subsup{X}{n}{})
lex(L):-
    lex(L, B),
    B = 1.
lex([], 1).
lex([_], 1).
lex([X, Y | L], R):-
    B #<=> (X #< Y),
    C #<=> (X #= Y),
    lex([Y | L], D),
    R #<=> B #\/ (C #/\ D).
```


Programming in $\operatorname{CLP}(\mathcal{H}, \mathcal{B}, \mathcal{F D}, \mathcal{R})$

- Basic constraints on domains of terms \mathcal{H}, bounded integers $\mathcal{F} \mathcal{D}$, reals \mathcal{R}, booleans \mathcal{B}, ontologies \mathcal{H}_{\leq}, etc.
- Relations defined extensionally by constrained facts:
precedence (X, D, Y) :- X + D \#< Y.
disjonctives(X, D, Y, E) :- X + D \#< Y.
disjonctives (X, D, Y, E) :- Y + E \#< X.
and intentionally by rules:
labeling([]).
labeling([X | L]) :-

```
    fd_dom(X, D), member(X, D), labeling(L).
```

- Programming of search procedures and heuristics: And-parallelism (variable choice): "first-fail" heuristics min domain
Or-parallelism (value choice): "best-first" heuristics min value

Part VI

Practical CLP Programming

Part VI: Practical CLP Programming

(19) CLP implementation, the WAM
(20) Optimizing CLP
(21) Symmetries
(22) Symmetry Breaking During Search

The Warren Abstract Machine

First Prolog implementation in the early 70's (by Colmerauer et al.).

In 1983, David H. Warren creates the Warren Abstract Machine.

Remains the state of the art (for term representation, basic instructions, ...)

Slightly extended for CLP
(C)SLD resolution seen as a call stack (with marks for choice points)

The Warren Abstract Machine

First Prolog implementation in the early 70's (by Colmerauer et al.).

In 1983, David H. Warren creates the Warren Abstract Machine.

Remains the state of the art (for term representation, basic instructions, ...)

Slightly extended for CLP (constraints instead of substitutions)
(C)SLD resolution seen as a call stack (with marks for choice points)

Optimizations from the WAM

Search for predicates should be almost in constant time
Use a hash table - indexing - for the predicate name/arity,

Each call normally adds a frame to the call stack (removed on backtracking)

As for other programming paradigms, not always necessary

Optimizations from the WAM

Search for predicates should be almost in constant time
Use a hash table - indexing - for the predicate name/arity, and the functor of the first argument

Each call normally adds a frame to the call stack (removed on backtracking)

As for other programming paradigms, not always necessary

Optimizations from the WAM

Search for predicates should be almost in constant time
Use a hash table - indexing - for the predicate name/arity, and the functor of the first argument

Each call normally adds a frame to the call stack (removed on backtracking)

As for other programming paradigms, not always necessary
Tail recursion can be optimized,

Optimizations from the WAM

Search for predicates should be almost in constant time
Use a hash table - indexing - for the predicate name/arity, and the functor of the first argument

Each call normally adds a frame to the call stack (removed on backtracking)

As for other programming paradigms, not always necessary
Tail recursion can be optimized, when calling and called contexts are deterministic.

Putting it all together

Naive sum

```
sum(0, []).
sum(S, [H | T]) :-
    sum(S1, T),
    S is S1 + H.
```


Putting it all together

Naive sum

```
sum(0, []).
sum(S, [H | T]) :-
    sum(S1, T),
    S is S1 + H.
```

Much better

```
sum(S, L) :-
    sum_aux(L, 0, S).
sum_aux([], S, S).
sum_aux([H | T], SO, S) :-
        S1 is SO + H,
        sum_aux(T, S1, S).
```


Putting it all together

If numbers are coded as the fact number (X) ?
sum (S) : - findall (X, number (X), L), sum (S, L).

Putting it all together

If numbers are coded as the fact number (X) ?

```
sum(S) :- findall(X, number(X), L), sum(S, L).
```

sum (S) :-
g_assign(sum, 0),
number (N),
g_read (sum, S1),
S2 is S1 + N,
g_assign(sum, S2),
fail
;
g_read (sum, S) \% nb_getval/retract
).

Cutting choice-points

```
try(S) :-
    stream_property(S,
                        input),
    (
        repeat,
        read_term(S, G),
        call(G),
        ground(G),
        !,
        write (G)
    ).
try(S) :-
```


Cutting choice-points

$\operatorname{try}(S) \quad:-$
stream_property $(S$,
input), (

repeat,

read_term (S, G),
call (G),
ground (G),
!,
write (G)

```
    ).
try(S) :-
```

...

```
try(S) :-
    stream_property(S,
    input),
        (
            repeat,
            read_term(S, G),
            call(G),
            ground(G)
    ->
    write(G)
    ).
try(S) :-
```

Symmetries in the N-queens problem

queens($N,[\mathrm{X} 1, \ldots \mathrm{XN}]$) iff

Symmetries in the N -queens problem

queens($\mathrm{N},[\mathrm{X} 1, \ldots \mathrm{XN}]$)
iff queens(N,[XN,...,X1]) vertical axis symmetry

Symmetries in the N -queens problem

queens($\mathrm{N},[\mathrm{X} 1, \ldots \mathrm{XN}]$)
iff queens(N,[XN,...,X1]) vertical axis symmetry variable symmetry

Symmetries in the N -queens problem

queens($\mathrm{N},[\mathrm{X} 1, \ldots \mathrm{XN}]$)
iff queens(N,[XN,...,X1]) vertical axis symmetry
variable symmetry
iff queens($\mathrm{N},[\mathrm{N}+1-\mathrm{X} 1, \ldots, \mathrm{~N}+1-\mathrm{XN}])$ horizontal axis symmetry

Symmetries in the N -queens problem

queens(N,[X1,...XN])
iff queens(N,[XN,...,X1]) vertical axis symmetry
variable symmetry
iff queens $(\mathrm{N},[\mathrm{N}+1-\mathrm{X} 1, \ldots, \mathrm{~N}+1-\mathrm{XN}])$ horizontal axis symmetry value symmetry

Symmetries in the N -queens problem

queens($\mathrm{N},[\mathrm{X} 1, \ldots \mathrm{XN}]$)
iff queens(N,[XN,...,X1]) vertical axis symmetry
variable symmetry
iff queens(N,[N+1-X1,.., N+1-XN]) horizontal axis symmetry value symmetry
iff queens($\mathrm{N},[\mathrm{Y} 1, \ldots, \mathrm{YN}]$) where $\mathrm{Xi}=\mathrm{j}$ iff $\mathrm{Yj}=\mathrm{N}+1$-i rotation symmetry
variable-value symmetry

Symmetries in the N -queens problem

queens($\mathrm{N},[\mathrm{X} 1, \ldots \mathrm{XN}]$)
iff queens(N,[XN,...,X1]) vertical axis symmetry
variable symmetry
iff queens(N,[N+1-X1,..,N+1-XN]) horizontal axis symmetry value symmetry
iff queens($\mathrm{N},[\mathrm{Y} 1, \ldots, \mathrm{YN}]$) where $\mathrm{Xi}=\mathrm{j}$ iff $\mathrm{Yj}=\mathrm{N}+1$-i rotation symmetry
variable-value symmetry
iff queens($\mathrm{N},[\mathrm{Y} 1, \ldots, \mathrm{YN}]$) where $\mathrm{Xi}=\mathrm{j}$ iff $\mathrm{Yj}=\mathrm{i}$ rotation
symmetry
variable-value symmetry

Symmetries in the N -queens problem

queens($\mathrm{N},[\mathrm{X} 1, \ldots \mathrm{XN}]$)
iff queens(N,[XN,...,X1]) vertical axis symmetry
variable symmetry broken by X1<XN
iff queens(N,[N+1-X1,...,N+1-XN]) horizontal axis symmetry value symmetry
iff queens($\mathrm{N},[\mathrm{Y} 1, \ldots, \mathrm{YN}]$) where $\mathrm{Xi}=\mathrm{j}$ iff $\mathrm{Yj}=\mathrm{N}+1$-i rotation symmetry
variable-value symmetry
iff queens($\mathrm{N},[\mathrm{Y} 1, \ldots, \mathrm{YN}]$) where $\mathrm{Xi}=\mathrm{j}$ iff $\mathrm{Yj}=\mathrm{i}$ rotation
symmetry
variable-value symmetry

Symmetries in the N -queens problem

queens($\mathrm{N},[\mathrm{X} 1, \ldots \mathrm{XN}]$)
iff queens(N,[XN,...,X1]) vertical axis symmetry
variable symmetry broken by X1<XN
iff queens(N,[N+1-X1,..,N+1-XN]) horizontal axis symmetry value symmetry broken by $\mathrm{X} 1<5$
iff queens($\mathrm{N},[\mathrm{Y} 1, \ldots, \mathrm{YN}]$) where $\mathrm{Xi}=\mathrm{j}$ iff $\mathrm{Yj}=\mathrm{N}+1$-i rotation symmetry
variable-value symmetry
iff queens($\mathrm{N},[\mathrm{Y} 1, \ldots, \mathrm{YN}]$) where $\mathrm{Xi}=\mathrm{j}$ iff $\mathrm{Yj}=\mathrm{i}$ rotation
symmetry
variable-value symmetry

Variable Symmetries

Given a Constraint Satisfaction Problem $c\left(x_{1}, \ldots, x_{n}\right)$ over \mathcal{X} a variable symmetry σ is a bijection on variables that preserves solutions:

$$
\mathcal{X} \vDash c\left(x_{1}, \ldots, x_{n}\right) \text { iff } \mathcal{X} \vDash c\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
$$

Proposition 5 ([Crawford96kr])

If (\mathcal{X}, \leq) is an order, all variable symmetries can be broken by the global constraint

$$
\bigwedge_{\sigma \in \Sigma}\left[x_{1}, \ldots, x_{n}\right] \leq_{\operatorname{lex}}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]
$$

Variable Symmetries

Given a Constraint Satisfaction Problem $c\left(x_{1}, \ldots, x_{n}\right)$ over \mathcal{X} a variable symmetry σ is a bijection on variables that preserves solutions:

$$
\mathcal{X} \vDash c\left(x_{1}, \ldots, x_{n}\right) \text { iff } \mathcal{X} \vDash c\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
$$

Proposition 5 ([Crawford96kr])

If (\mathcal{X}, \leq) is an order, all variable symmetries can be broken by the global constraint

$$
\bigwedge_{\sigma \in \Sigma}\left[x_{1}, \ldots, x_{n}\right] \leq \operatorname{lex}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]
$$

Proof.

This is one way to choose a unique member in each equivalence class of symmetric assignments.

Variable Symmetry Breaking

Global constraint $\left[x_{1}, \ldots, x_{n}\right] \leq_{\text {lex }}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]$ arc consistent (AC) if for every variable, every value in its domain belongs to a solution

Breaking Several Variable Symmetries

Proposition 6 ([Puget05cp,Walsh06cp])

$A C\left(\bigwedge_{\sigma \in \Sigma}\left[x_{1}, \ldots, x_{n}\right] \leq_{l e x}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]\right)$ is strictly stronger than
$\bigwedge_{\sigma \in \Sigma} A C\left(\left[x_{1}, \ldots, x_{n}\right] \leq_{\text {lex }}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]\right)$.

Proof.

Let $x_{1}, x_{2}, x_{4} \in\{0,1\}$ and $x_{3}=1$. Consider two symmetries (1243) and (1423), we have $\operatorname{AC}\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \leq_{\text {lex }}\left[x_{2}, x_{4}, x_{1}, x_{3}\right]\right)$ and $A C\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \leq_{\text {lex }}\left[x_{4}, x_{3}, x_{1}, x_{2}\right]\right)$.

```
\underset{c}{cases}
```


Breaking Several Variable Symmetries

Proposition 6 ([Puget05cp,Walsh06cp])

$A C\left(\bigwedge_{\sigma \in \Sigma}\left[x_{1}, \ldots, x_{n}\right] \leq_{\text {lex }}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]\right)$ is strictly stronger than
$\bigwedge_{\sigma \in \Sigma} A C\left(\left[x_{1}, \ldots, x_{n}\right] \leq_{\text {lex }}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]\right)$.

Proof.

Let $x_{1}, x_{2}, x_{4} \in\{0,1\}$ and $x_{3}=1$. Consider two symmetries (1243) and (1423), we have $\operatorname{AC}\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \leq_{\text {lex }}\left[x_{2}, x_{4}, x_{1}, x_{3}\right]\right)$ and $A C\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \leq_{\text {lex }}\left[x_{4}, x_{3}, x_{1}, x_{2}\right]\right)$.

```
l
```


Breaking Several Variable Symmetries

Proposition 6 ([Puget05cp,Walsh06cp])

$A C\left(\bigwedge_{\sigma \in \Sigma}\left[x_{1}, \ldots, x_{n}\right] \leq_{\text {lex }}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]\right)$ is strictly stronger than
$\bigwedge_{\sigma \in \Sigma} A C\left(\left[x_{1}, \ldots, x_{n}\right] \leq_{l e x}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]\right)$.

Proof.

Let $x_{1}, x_{2}, x_{4} \in\{0,1\}$ and $x_{3}=1$. Consider two symmetries (1243) and (1423), we have $\operatorname{AC}\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \leq_{\text {lex }}\left[x_{2}, x_{4}, x_{1}, x_{3}\right]\right)$ and $A C\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \leq_{\text {lex }}\left[x_{4}, x_{3}, x_{1}, x_{2}\right]\right)$.


```
x}=
```


Breaking Several Variable Symmetries

Proposition 6 ([Puget05cp,Walsh06cp])

$A C\left(\bigwedge_{\sigma \in \Sigma}\left[x_{1}, \ldots, x_{n}\right] \leq_{\text {lex }}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]\right)$ is strictly stronger than
$\bigwedge_{\sigma \in \Sigma} A C\left(\left[x_{1}, \ldots, x_{n}\right] \leq_{l e x}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]\right)$.

Proof.

Let $x_{1}, x_{2}, x_{4} \in\{0,1\}$ and $x_{3}=1$. Consider two symmetries (1243) and (1423), we have $\operatorname{AC}\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \leq_{\text {lex }}\left[x_{2}, x_{4}, x_{1}, x_{3}\right]\right)$ and $A C\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \leq_{\text {lex }}\left[x_{4}, x_{3}, x_{1}, x_{2}\right]\right)$.

Breaking Several Variable Symmetries

Proposition 6 ([Puget05cp,Walsh06cp])

$A C\left(\bigwedge_{\sigma \in \Sigma}\left[x_{1}, \ldots, x_{n}\right] \leq_{\text {lex }}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]\right)$ is strictly stronger than
$\bigwedge_{\sigma \in \Sigma} A C\left(\left[x_{1}, \ldots, x_{n}\right] \leq_{l e x}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]\right)$.

Proof.

Let $x_{1}, x_{2}, x_{4} \in\{0,1\}$ and $x_{3}=1$. Consider two symmetries (1243) and (1423), we have $\operatorname{AC}\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \leq_{\text {lex }}\left[x_{2}, x_{4}, x_{1}, x_{3}\right]\right)$ and $A C\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \leq_{\text {lex }}\left[x_{4}, x_{3}, x_{1}, x_{2}\right]\right)$.

$$
\begin{array}{lrrrrrrrrrrrrrr}
\text { cases } & {\left[x_{1}\right.} & x_{2} & x_{3} & \left.x_{4}\right] & \leq_{l e x}\left[x_{2}\right. & x_{4} & x_{1} & \left.x_{3}\right] & {\left[\begin{array}{llll}
x_{1} & x_{2} & x_{3} & \left.x_{4}\right]
\end{array}\right.} & \leq l e x & {\left[x_{4}\right.} & x_{3} & x_{1} & x_{2} \\
x_{1}=0 & 0 & 0 & & & 1 & & & 0 & 0 & & & 0 & 1 & 1 \\
x_{1}=1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & & & 1 \\
x_{2}=0 & & & & & & & & & & & & &
\end{array}
$$

Breaking Several Variable Symmetries

Proposition 6 ([Puget05cp,Walsh06cp])

$A C\left(\bigwedge_{\sigma \in \Sigma}\left[x_{1}, \ldots, x_{n}\right] \leq_{\text {lex }}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]\right)$ is strictly stronger than
$\bigwedge_{\sigma \in \Sigma} A C\left(\left[x_{1}, \ldots, x_{n}\right] \leq_{l e x}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]\right)$.

Proof.

Let $x_{1}, x_{2}, x_{4} \in\{0,1\}$ and $x_{3}=1$. Consider two symmetries (1243) and (1423), we have $\operatorname{AC}\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \leq_{\text {lex }}\left[x_{2}, x_{4}, x_{1}, x_{3}\right]\right)$ and $A C\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \leq_{\text {lex }}\left[x_{4}, x_{3}, x_{1}, x_{2}\right]\right)$.

$$
\begin{array}{lrrrrrrrrrrrr}
\text { cases } & {\left[x_{1}\right.} & x_{2} & x_{3} & \left.x_{4}\right] & \leq_{l e x}\left[x_{2}\right. & x_{4} & x_{1} & \left.x_{3}\right] & {\left[\begin{array}{llll}
x_{1} & x_{2} & x_{3} & \left.x_{4}\right]
\end{array}\right.} & \leq l e x & x_{4} & x_{3} \\
x_{1}=0 & 0 & 0 & & & x_{1} \\
x_{1}=1 & 1 & 1 & 1 & 1 & 1 & 1 & & & 0 & 0 & & 0 \\
x_{2}=0 & 0 & 0 & & & 0 & 1 & & 1 & 1 & 0 & & 1
\end{array}
$$

Breaking Several Variable Symmetries

Proposition 6 ([Puget05cp,Walsh06cp])

$A C\left(\bigwedge_{\sigma \in \Sigma}\left[x_{1}, \ldots, x_{n}\right] \leq_{\text {lex }}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]\right)$ is strictly stronger than
$\bigwedge_{\sigma \in \Sigma} A C\left(\left[x_{1}, \ldots, x_{n}\right] \leq_{l e x}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]\right)$.

Proof.

Let $x_{1}, x_{2}, x_{4} \in\{0,1\}$ and $x_{3}=1$. Consider two symmetries (1243) and (1423), we have $\operatorname{AC}\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \leq_{\text {lex }}\left[x_{2}, x_{4}, x_{1}, x_{3}\right]\right)$ and $A C\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \leq_{\text {lex }}\left[x_{4}, x_{3}, x_{1}, x_{2}\right]\right)$.

$$
\begin{aligned}
& x_{2}=1
\end{aligned}
$$

Breaking Several Variable Symmetries

Proposition 6 ([Puget05cp,Walsh06cp])

$A C\left(\bigwedge_{\sigma \in \Sigma}\left[x_{1}, \ldots, x_{n}\right] \leq_{\text {lex }}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]\right)$ is strictly stronger than
$\bigwedge_{\sigma \in \Sigma} A C\left(\left[x_{1}, \ldots, x_{n}\right] \leq_{l e x}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]\right)$.

Proof.

Let $x_{1}, x_{2}, x_{4} \in\{0,1\}$ and $x_{3}=1$. Consider two symmetries (1243) and (1423), we have $\operatorname{AC}\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \leq_{\text {lex }}\left[x_{2}, x_{4}, x_{1}, x_{3}\right]\right)$ and $A C\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \leq_{\text {lex }}\left[x_{4}, x_{3}, x_{1}, x_{2}\right]\right)$.

Breaking Several Variable Symmetries

Proposition 6 ([Puget05cp,Walsh06cp])

$A C\left(\bigwedge_{\sigma \in \Sigma}\left[x_{1}, \ldots, x_{n}\right] \leq_{\text {lex }}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]\right)$ is strictly stronger than
$\bigwedge_{\sigma \in \Sigma} A C\left(\left[x_{1}, \ldots, x_{n}\right] \leq_{l e x}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]\right)$.

Proof.

Let $x_{1}, x_{2}, x_{4} \in\{0,1\}$ and $x_{3}=1$. Consider two symmetries (1243) and (1423), we have $\operatorname{AC}\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \leq_{\text {lex }}\left[x_{2}, x_{4}, x_{1}, x_{3}\right]\right)$ and $A C\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \leq_{\text {lex }}\left[x_{4}, x_{3}, x_{1}, x_{2}\right]\right)$.

Breaking Several Variable Symmetries

Proposition 6 ([Puget05cp,Walsh06cp])

$A C\left(\bigwedge_{\sigma \in \Sigma}\left[x_{1}, \ldots, x_{n}\right] \leq_{\text {lex }}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]\right)$ is strictly stronger than
$\bigwedge_{\sigma \in \Sigma} A C\left(\left[x_{1}, \ldots, x_{n}\right] \leq_{l e x}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]\right)$.

Proof.

Let $x_{1}, x_{2}, x_{4} \in\{0,1\}$ and $x_{3}=1$. Consider two symmetries (1243) and (1423), we have $\operatorname{AC}\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \leq_{\text {lex }}\left[x_{2}, x_{4}, x_{1}, x_{3}\right]\right)$ and $A C\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \leq_{\text {lex }}\left[x_{4}, x_{3}, x_{1}, x_{2}\right]\right)$.

$$
\begin{array}{lrrrrrrrrrrrrr}
\text { cases } & {\left[x_{1}\right.} & x_{2} & x_{3} & \left.x_{4}\right] & \leq_{l e x}\left[x_{2}\right. & x_{4} & x_{1} & \left.x_{3}\right] & {\left[x_{1}\right.} & x_{2} & x_{3} & \left.x_{4}\right] & \leq l e x \\
x_{1}=0 & 0 & 0 & & & 1 & & & 0 & 0 & & & x_{4} & x_{3}
\end{array} x_{1} x_{2}
$$

Breaking Several Variable Symmetries

Proposition 6 ([Puget05cp,Walsh06cp])

$A C\left(\bigwedge_{\sigma \in \Sigma}\left[x_{1}, \ldots, x_{n}\right] \leq_{\text {lex }}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]\right)$ is strictly stronger than
$\bigwedge_{\sigma \in \Sigma} A C\left(\left[x_{1}, \ldots, x_{n}\right] \leq_{l e x}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]\right)$.

Proof.

Let $x_{1}, x_{2}, x_{4} \in\{0,1\}$ and $x_{3}=1$. Consider two symmetries (1243) and (1423), we have $\operatorname{AC}\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \leq_{\text {lex }}\left[x_{2}, x_{4}, x_{1}, x_{3}\right]\right)$ and $A C\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \leq_{\text {lex }}\left[x_{4}, x_{3}, x_{1}, x_{2}\right]\right)$.

Breaking Several Variable Symmetries

Proposition 6 ([Puget05cp,Walsh06cp])

$A C\left(\bigwedge_{\sigma \in \Sigma}\left[x_{1}, \ldots, x_{n}\right] \leq_{l e x}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]\right)$ is strictly stronger than
$\bigwedge_{\sigma \in \Sigma} A C\left(\left[x_{1}, \ldots, x_{n}\right] \leq_{l e x}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]\right)$.

Proof.

Let $x_{1}, x_{2}, x_{4} \in\{0,1\}$ and $x_{3}=1$. Consider two symmetries (1243) and (1423), we have $\operatorname{AC}\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \leq_{\text {lex }}\left[x_{2}, x_{4}, x_{1}, x_{3}\right]\right)$ and $A C\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \leq_{\text {lex }}\left[x_{4}, x_{3}, x_{1}, x_{2}\right]\right)$.

Breaking Several Variable Symmetries

Proposition 6 ([Puget05cp,Walsh06cp])

$A C\left(\bigwedge_{\sigma \in \Sigma}\left[x_{1}, \ldots, x_{n}\right] \leq_{l e x}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]\right)$ is strictly stronger than
$\bigwedge_{\sigma \in \Sigma} A C\left(\left[x_{1}, \ldots, x_{n}\right] \leq_{l e x}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]\right)$.

Proof.

Let $x_{1}, x_{2}, x_{4} \in\{0,1\}$ and $x_{3}=1$. Consider two symmetries (1243) and (1423), we have $\operatorname{AC}\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \leq_{\text {lex }}\left[x_{2}, x_{4}, x_{1}, x_{3}\right]\right)$ and $A C\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \leq_{\text {lex }}\left[x_{4}, x_{3}, x_{1}, x_{2}\right]\right)$.

cases	${ }^{1}{ }_{1}$	x_{2}	x_{3}	x_{4}]	$\leq_{\text {lex }}\left[x_{2}\right.$	x_{4}	x_{1}	x_{3}]	${ }^{1}{ }_{1}$	x_{2}	x_{3}	x_{4}]	$\leq_{\text {lex }}\left[x_{4}\right.$	x_{3}	x_{1}
$x_{1}=0$	0	0			0	1			0	0			0	1	
$x_{1}=1$	1	1	1	1	1	1	1	1	1	0			1	1	
$x_{2}=0$	0	0			0	1			0	0			1		
$x_{2}=1$	0	1			1				0	1			1		
$x_{4}=0$	0				1				0	0			0	1	
$x_{4}=1$	0				1				0				1		

However, their conjunction is not AC. Indeed, suppose that $x_{4}=0$,

Breaking Several Variable Symmetries

Proposition 6 ([Puget05cp,Walsh06cp])

$A C\left(\bigwedge_{\sigma \in \Sigma}\left[x_{1}, \ldots, x_{n}\right] \leq_{l e x}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]\right)$ is strictly stronger than
$\bigwedge_{\sigma \in \Sigma} A C\left(\left[x_{1}, \ldots, x_{n}\right] \leq_{l e x}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]\right)$.

Proof.

Let $x_{1}, x_{2}, x_{4} \in\{0,1\}$ and $x_{3}=1$. Consider two symmetries (1243) and (1423), we have $\operatorname{AC}\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \leq_{\text {lex }}\left[x_{2}, x_{4}, x_{1}, x_{3}\right]\right)$ and $A C\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \leq_{\text {lex }}\left[x_{4}, x_{3}, x_{1}, x_{2}\right]\right)$.

cases	${ }^{1}{ }_{1}$	x_{2}	x_{3}	x_{4}]	$\leq_{\text {lex }}\left[x_{2}\right.$	x_{4}	x_{1}	x_{3}]	${ }^{1}{ }_{1}$	x_{2}	x_{3}	x_{4}]	$\leq_{\text {lex }}\left[x_{4}\right.$	x_{3}	x_{1}
$x_{1}=0$	0	0			0	1			0	0			0	1	
$x_{1}=1$	1	1	1	1	1	1	1	1	1	0			1	1	
$x_{2}=0$	0	0			0	1			0	0			1		
$x_{2}=1$	0	1			1				0	1			1		
$x_{4}=0$	0				1				0	0			0	1	
$x_{4}=1$	0				1				0				1		

However, their conjunction is not AC. Indeed, suppose that $x_{4}=0$, we have $x_{1}=x_{2}=0$ and $x_{3}=0$, which is not possible.

Value Symmetry Breaking

A value symmetry is a bijection σ on values that preserves solutions.
$\left\{x_{i}=v_{i} \mid 1 \leq i \leq n\right\}$ is a solution iff $\left\{x_{i}=\sigma\left(v_{i}\right) \mid 1 \leq i \leq n\right\}$ is a solution

All value symmetries can be broken by posting for each value symmetry σ
$\left[x_{1}, \ldots, x_{n}\right] \leq_{\text {lex }}\left[\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{n}\right)\right][P S 03 c p]$

Example $7(\sigma(i)=n+1-i)$

The symmetry breaking constraint implies $x_{1} \leq n+1-x_{1}$ If n is even,

Value Symmetry Breaking

A value symmetry is a bijection σ on values that preserves solutions.
$\left\{x_{i}=v_{i} \mid 1 \leq i \leq n\right\}$ is a solution iff $\left\{x_{i}=\sigma\left(v_{i}\right) \mid 1 \leq i \leq n\right\}$ is a solution

All value symmetries can be broken by posting for each value symmetry σ
$\left[x_{1}, \ldots, x_{n}\right] \leq_{\text {lex }}\left[\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{n}\right)\right][P S 03 c p]$

Example $7(\sigma(i)=n+1-i)$

The symmetry breaking constraint implies $x_{1} \leq n+1-x_{1}$ If n is even, the constraint is thus equivalent to $x_{1} \leq \frac{n}{2}$
If n is odd, it is equivalent to $x_{1} \leq \frac{n+1}{2} \wedge x_{1}=\frac{n+1}{2} \Rightarrow x_{2} \leq \frac{n+1}{2} \wedge \ldots$

Breaking Variable and Value Symmetries

Theorem 8 ([Puget05cp,Walsh06cp])
The constraints $\left[x_{1}, \ldots, x_{n}\right] \leq_{l e x}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]$ for each variable symmetry $\sigma \in \Sigma$
and $\left[x_{1}, \ldots, x_{m}\right] \leq_{\text {lex }}\left[\sigma^{\prime}\left(x_{1}\right), \ldots, \sigma^{\prime}\left(x_{n}\right)\right]$ for each value symmetry $\sigma^{\prime} \in \Sigma^{\prime}$
leave at least one assignment in each equivalence class of solutions.

Proof.

For any assignment ν,

Breaking Variable and Value Symmetries

Theorem 8 ([Puget05cp,Walsh06cp])
The constraints $\left[x_{1}, \ldots, x_{n}\right] \leq_{l e x}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]$ for each variable symmetry $\sigma \in \Sigma$
and $\left[x_{1}, \ldots, x_{m}\right] \leq_{\text {lex }}\left[\sigma^{\prime}\left(x_{1}\right), \ldots, \sigma^{\prime}\left(x_{n}\right)\right]$ for each value symmetry $\sigma^{\prime} \in \Sigma^{\prime}$
leave at least one assignment in each equivalence class of solutions.

Proof.

For any assignment ν, one can pick the lex leader ν_{1} of ν under Σ

Breaking Variable and Value Symmetries

Theorem 8 ([Puget05cp,Walsh06cp])

The constraints $\left[x_{1}, \ldots, x_{n}\right] \leq_{l e x}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]$ for each variable symmetry $\sigma \in \Sigma$
and $\left[x_{1}, \ldots, x_{m}\right] \leq_{\text {lex }}\left[\sigma^{\prime}\left(x_{1}\right), \ldots, \sigma^{\prime}\left(x_{n}\right)\right]$ for each value symmetry $\sigma^{\prime} \in \Sigma^{\prime}$
leave at least one assignment in each equivalence class of solutions.

Proof.

For any assignment ν, one can pick the lex leader ν_{1} of ν under Σ and then the lex leader ν_{2} of ν_{1} under Σ^{\prime}

Breaking Variable and Value Symmetries

Theorem 8 ([Puget05cp,Walsh06cp])

The constraints $\left[x_{1}, \ldots, x_{n}\right] \leq_{l e x}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]$ for each variable symmetry $\sigma \in \Sigma$
and $\left[x_{1}, \ldots, x_{m}\right] \leq_{\text {lex }}\left[\sigma^{\prime}\left(x_{1}\right), \ldots, \sigma^{\prime}\left(x_{n}\right)\right]$ for each value symmetry $\sigma^{\prime} \in \Sigma^{\prime}$
leave at least one assignment in each equivalence class of solutions.

Proof.

For any assignment ν, one can pick the lex leader ν_{1} of ν under Σ and then the lex leader ν_{2} of ν_{1} under Σ^{\prime}
If ν_{2} does not satisfy the lex leader constraint under Σ, iterate. As the lexicographic orders are well-founded, the process terminates, with an assignment that satisfies all lex leader constraints.

Breaking Several Variable and Value Symmetries

The iterated lex leader may leave several symmetric assignments.

Example 9

Consider the composition of the reflection symmetries on both variables and boolean values.
The solutions $[0,1,1]$ and $[0,0,1]$ are symmetric but satisfy the lex constraints

$$
\begin{gathered}
{\left[x_{1}, x_{2}, x_{3}\right] \leq\left[x_{3}, x_{2}, x_{1}\right]} \\
{\left[x_{1}, x_{2}, x_{3}\right] \leq\left[\neg x_{1}, \neg x_{2}, \neg x_{3}\right]}
\end{gathered}
$$

Indeed $[0,1,1] \leq[1,1,0]$ and $[0,1,1] \leq[1,0,0]$ $[0,0,1] \leq[1,0,0]$ and $[0,0,1] \leq[1,1,0]$
hence both symmetric solutions $[0,1,1]$ and $[0,0,1]$ are lex leaders.

Variable-Value Symmetries

Definition A variable-value symmetry (or general symmetry) is a bijection σ on pairs (variable, value) that preserves solutions.

Definition A valuation $\left[x_{1}, \ldots, x_{n}\right]$ is admissible for σ iff $\left|\left\{k \mid x_{i}=j, \sigma(i, j)=(k, I)\right\}\right|=n$.
E.g. In the 4-queens, the assignment $[2,3,1,4]$ is admissible for r90 but not $[2,3,3,4]$.

If $\left[x_{1}, \ldots, x_{n}\right]$ is admissible for σ, let $\sigma\left[x_{1}, \ldots, x_{n}\right]$ be its image under $\sigma, \sigma\left[x_{1}, \ldots, x_{n}\right]=\left[y_{1}, \ldots, y_{n}\right]$ where $y_{k}=I$ whenever $x_{i}=j$ and $\sigma(i, j)=(k, l)$

Variable-Value Symmetry Breaking

Proposition 10

All variable-value symmetries can be broken by posting the constraints

$$
\bigwedge_{\sigma \in \Sigma} \operatorname{admissible}\left(\sigma,\left[x_{1}, \ldots, x_{n}\right]\right) \wedge\left[x_{1}, \ldots, x_{n}\right] \leq_{\text {lex }} \sigma\left[x_{1}, \ldots, x_{n}\right]
$$

Example 11

In the 4-queens, let $x_{1}=2, x_{2} \in\{1,3,4\}, x_{3}$ and $x_{4} \in\{1,2,3,4\}$ r90 $\left[x_{1}, \ldots, x_{4}\right]$ prunes $X_{3} \neq 2$ and $X_{4} \neq 2$ for admissibility, and $x_{4} \neq 1$ for lex.

SBDS

In 99, [BW99cp] proposed a completely different symmetry breaking technique, Symmetry Breaking During Search (SBDS).

It overcomes the main drawback of static symmetry breaking:

SBDS

In 99, [BW99cp] proposed a completely different symmetry breaking technique, Symmetry Breaking During Search (SBDS).

It overcomes the main drawback of static symmetry breaking: the choice of the representative element in each class of solutions

SBDS

In 99, [BW99cp] proposed a completely different symmetry breaking technique, Symmetry Breaking During Search (SBDS).

It overcomes the main drawback of static symmetry breaking: the choice of the representative element in each class of solutions is forced
breaking all trials at improving performance by

SBDS

In 99, [BW99cp] proposed a completely different symmetry breaking technique, Symmetry Breaking During Search (SBDS).

It overcomes the main drawback of static symmetry breaking: the choice of the representative element in each class of solutions is forced
breaking all trials at improving performance by clever search heuristics

Symmetric Constraints

Consider a set Σ of symmetries, such that for any constraint c and all $\sigma \in \Sigma$ one can find a constraint $\sigma(c)$ corresponding to the symmetric of c
$\mathcal{X}=\sigma(\mathcal{C}) \rho \Leftrightarrow \boldsymbol{C} \sigma(\rho)$

For example, if σ is the value symmetry that turns v into $N-v$ we have $\sigma(\mathrm{x}=\mathrm{v})$ is

Symmetric Constraints

Consider a set Σ of symmetries, such that for any constraint c and all $\sigma \in \Sigma$ one can find a constraint $\sigma(c)$ corresponding to the symmetric of c
$\mathcal{X} \mid=\sigma(\boldsymbol{C}) \rho \Leftrightarrow \boldsymbol{C} \sigma(\rho)$

For example, if σ is the value symmetry that turns v into $N-v$ we have $\sigma(\mathrm{X}=\mathrm{v})$ is $\mathrm{X}=(\mathrm{N}-\mathrm{v})$

We can now define a technique for removing symmetries adding constraints when choice-points are explored, à la branch and bound.

Enumerating Solutions

The general method of enumeration of solutions is, at each choice-point, to add

- on one branch the constraint c assigning a value to a variable;
- on the other branch the negation of this constraint $\neg c$

SBDS adds supplementary constraints on the second branch:
supposing a partial assignment \mathcal{A} at the choice-point, for all $\sigma \in \Sigma$ such that $\sigma(\mathcal{A})=\mathcal{A}$ one adds $\sigma(\neg C)$.

Example

Consider the 4 -queens problem over $X_{1}, X_{2}, X_{3}, X_{4} \in\{1,2,3,4\}$
with a single (value-)symmetry: $v \mapsto 5-v$
suppose that at the top of the search tree the leftmost branch corresponds to $X_{1}=1$
when backtracking at the top, the next branch to explore will correspond to the constraint:

$$
x_{1} \neq 1
$$

Example

Consider the 4 -queens problem over $X_{1}, X_{2}, X_{3}, X_{4} \in\{1,2,3,4\}$
with a single (value-)symmetry: $v \mapsto 5-v$
suppose that at the top of the search tree the leftmost branch corresponds to $X_{1}=1$
when backtracking at the top, the next branch to explore will correspond to the constraint:

$$
X_{1} \neq 1 \wedge X_{1} \neq 4
$$

Unicity

Theorem 12 (Non-symmetric Solutions)
If ρ_{1} and ρ_{2} are two solutions obtained by SBDS, then

$$
\forall \sigma \in \Sigma \quad \sigma\left(\rho_{1}\right) \neq \rho_{2}
$$

Unicity

Theorem 12 (Non-symmetric Solutions) If ρ_{1} and ρ_{2} are two solutions obtained by SBDS, then

$$
\forall \sigma \in \Sigma \quad \sigma\left(\rho_{1}\right) \neq \rho_{2}
$$

Proof.

Suppose that $\sigma_{0}\left(\rho_{1}\right)=\rho_{2}$ for some σ_{0}

Unicity

Theorem 12 (Non-symmetric Solutions)

 If ρ_{1} and ρ_{2} are two solutions obtained by SBDS, then$$
\forall \sigma \in \Sigma \quad \sigma\left(\rho_{1}\right) \neq \rho_{2}
$$

Proof.

Suppose that $\sigma_{0}\left(\rho_{1}\right)=\rho_{2}$ for some σ_{0} let \mathcal{A} be the partial assignment at the choice-point that differentiates the ρ_{1} and ρ_{2} branches, and c the constraint added on the ρ_{1} branch there.

Unicity

Theorem 12 (Non-symmetric Solutions)

 If ρ_{1} and ρ_{2} are two solutions obtained by SBDS, then$$
\forall \sigma \in \Sigma \quad \sigma\left(\rho_{1}\right) \neq \rho_{2}
$$

Proof.

Suppose that $\sigma_{0}\left(\rho_{1}\right)=\rho_{2}$ for some σ_{0} let \mathcal{A} be the partial assignment at the choice-point that differentiates the ρ_{1} and ρ_{2} branches, and c the constraint added on the ρ_{1} branch there.
We have $\sigma_{0}(\mathcal{A})=\mathcal{A}$

Unicity

Theorem 12 (Non-symmetric Solutions)

If ρ_{1} and ρ_{2} are two solutions obtained by SBDS, then

$$
\forall \sigma \in \Sigma \quad \sigma\left(\rho_{1}\right) \neq \rho_{2}
$$

Proof.

Suppose that $\sigma_{0}\left(\rho_{1}\right)=\rho_{2}$ for some σ_{0} let \mathcal{A} be the partial assignment at the choice-point that differentiates the ρ_{1} and ρ_{2} branches, and c the constraint added on the ρ_{1} branch there.
We have $\sigma_{0}(\mathcal{A})=\mathcal{A}$
since both are solutions, we get that c is true in ρ_{1}

Unicity

Theorem 12 (Non-symmetric Solutions)

If ρ_{1} and ρ_{2} are two solutions obtained by SBDS, then

$$
\forall \sigma \in \Sigma \quad \sigma\left(\rho_{1}\right) \neq \rho_{2}
$$

Proof.

Suppose that $\sigma_{0}\left(\rho_{1}\right)=\rho_{2}$ for some σ_{0} let \mathcal{A} be the partial assignment at the choice-point that differentiates the ρ_{1} and ρ_{2} branches, and c the constraint added on the ρ_{1} branch there.
We have $\sigma_{0}(\mathcal{A})=\mathcal{A}$
since both are solutions, we get that c is true in ρ_{1} and that $\sigma_{0}(\neg C)$ is true in ρ_{2}

Unicity

Theorem 12 (Non-symmetric Solutions)

If ρ_{1} and ρ_{2} are two solutions obtained by SBDS, then

$$
\forall \sigma \in \Sigma \quad \sigma\left(\rho_{1}\right) \neq \rho_{2}
$$

Proof.

Suppose that $\sigma_{0}\left(\rho_{1}\right)=\rho_{2}$ for some σ_{0} let \mathcal{A} be the partial assignment at the choice-point that differentiates the ρ_{1} and ρ_{2} branches, and c the constraint added on the ρ_{1} branch there.
We have $\sigma_{0}(\mathcal{A})=\mathcal{A}$
since both are solutions, we get that c is true in ρ_{1} and that $\sigma_{0}(\neg \mathrm{C})$ is true in ρ_{2} i.e., $\neg \mathrm{C}$ is true in ρ_{1}
\Rightarrow contradiction

