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Concurrent Constraint Programs

Class of programming languages CC(X ) introduced by
Saraswat [Saraswat93mit] as a merge of Constraint and
Concurrent Logic Programming.

Processes P ::= D.A
Declarations D ::= p(x⃗) = A,D | ϵ
Agents A ::= tell(c) |

∀x⃗(c → A)

| A ∥ A | A+ A | ∃xA | p(x⃗)

CC agent CC agent

Constraint Store

tellask te
llas
k

+

++
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CC(X ) Transitions

Interleaving semantics

Procedure call
(p(y⃗) = A) ∈ D

(x⃗; c;p(y⃗),Γ) −→ (x⃗; c;A,Γ)

Tell (x⃗; c; tell(d),Γ) −→ (x⃗; c ∧ d; Γ)

Ask

c ⊢X d[⃗t/y⃗]
(x⃗; c;∀y⃗(d → A),Γ) −→ (x⃗; c;A[⃗t/y⃗],Γ)

Blind choice (x⃗; c;A+ B,Γ) −→ (x⃗; c;A,Γ)
(local/internal) (x⃗; c;A+ B,Γ) −→ (x⃗; c;B,Γ)
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CC(X ) Operational Semanticssss

observing the set of success stores,

Oss(D.A; c) = {∃x⃗d ∈ X |(∅; c;A) −→∗ (x⃗;d; ϵ)}

observing the set of terminal stores (successes and
suspensions),

Ots(D.A; c) = {∃x⃗d ∈ X |(∅; c;A) −→∗ (x⃗;d; Γ) Y−→}

observing the set of accessible stores,

Oas(D.A; c) = {∃x⃗d ∈ X |(∅; c;A) −→∗ (x⃗;d; Γ)}

observing the set of limit stores?

O∞(D.A; c0) = {⊔?{∃x⃗ici}i≥0|(∅; c0;A) −→ (x⃗1; c1; Γ1) −→ . . . }
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Denotational semantics: input/output function

Input: initial store c0
Output: terminal store c or false for infinite computations

Order the lattice of constraints (C,≤) by the information
ordering:
∀c,d ∈ C c ≤ d iff d ⊢X c iff ↑ d ⊂↑ c where ↑ c = {d ∈ C | c ≤ d}.

JD.AK : C → C is
1 Extensive: ∀c c ≤ JD.AKc
2 Monotone: ∀c,d c ≤ d ⇒ JD.AKc ≤ JD.AKd
3 Idempotent: ∀c JD.AKc = JD.AK(JD.AKc)
i.e., JD.AK is a closure operator over (C,≤).
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Semantic Equations
Let JK : D × A → P(C) be a closure operator presented by the
set of its fixpoints, and defined as the least fixpoint set of:

JD.tell(c)K

=↑ c (≃ λs.s ∧ c)

JD.c → AK

= (C\ ↑ c) ∪ (↑ c ∩ JD.AK)
(≃ λs. if s ⊢C c then JD.AKs else s)

JD.A ∥ BK

= JD.AK ∩ JD.BK (≃ Y(λs.JD.AKJD.BKs))

JD.∃xAK

= {d | c ∈ JD.AK, ∃xc = ∃xd} (≃ λs.∃xJD.AK∃xs)

JD.p(x⃗)K

= JD.A[x⃗/y⃗]K

if p(y⃗) = A ∈ D

(≃ λs.JD.A[⃗x/⃗y]Ks)

Theorem 1 ([SRP91popl])
For any deterministic process D.A

Ots(D.A; c) =
{

{min(JD.AK∩ ↑ c)} if JD.AK ̸= ∅
∅ otherwise
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Non-deterministic CC(X ) with Local Choice (2)

Let JK : D × A → P(P(C)) be the least fixpoint (for ⊂) of

JD.cK = {↑ c}JD.c → AK = {C\ ↑ c} ∪ {↑ c ∩ X | X ∈ JD.AK}JD.A ∥ BK = {X ∩ Y | X ∈ JD.AK, Y ∈ JD.BK}JD.A+ BK = JD.AK ∪ JD.BKJD.∃xAK = {{d | ∃xc = ∃xd, c ∈ X} | X ∈ JD.AK}JD.p(x⃗)K = JD.A[x⃗/y⃗]K
Theorem 2 ([FGMP97tcs])
For any process D.A,
Ots(D.A; c) = {d| there exists X ∈ JD.AK s.t. d = min(↑ c ∩ X)}.
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Logical Semantics of CC?

CC calculus is sound but not complete
w.r.t. CLP logical semantics interpreting asks as tells
Interpreting ask(c → A) as logical implication leads to
identify CC transitions with logical deductions:

left → c ⊢C d
c ∧ (d → A†) ⊢ c ∧ A†

p(x⃗) ⊢D A†

c ∧ p(x⃗) ⊢ c ∧ A†

(reverses the arrow of CLP interpretation…)
To distinguish between successes and accessible stores
agents shouldn’t “disappear” by the

weakening

rule:

leftW
Γ ⊢ c

Γ,A† ⊢ c
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Linear Logic

Introduced by Jean-Yves Girard in 1986 as a new
constructive logic without the asymmetry of intuitionistic
logic (sequent calculus with symmetric left and right
sides)
Logic of resource consumption

A⊗ A ̸⊢LL A

A⊗ (A⊸ B) ⊢LL B

A⊗ (A⊸ B) ̸⊢LL A⊗ B

!A provides arbitrary duplication (unbounded throwable
resource)

!A⊗ (A⊸ B) ⊢LL !A⊗ B ⊢LL B

Sequent calculus without weakening and contraction

21



Intuitionistic Linear Logic
Multiplicatives

Γ,A,B ⊢ C
Γ,A⊗ B ⊢ C

Γ ⊢ A ∆ ⊢ B
Γ,∆ ⊢ A⊗ B

Γ ⊢ A ∆,B ⊢ C
∆,Γ,A⊸ B ⊢ C

Γ,A ⊢ B
Γ ⊢ A⊸ B

Additives

Γ,A ⊢ C
Γ,A & B ⊢ C

Γ,B ⊢ C
Γ,A & B ⊢ C

Γ ⊢ A Γ ⊢ B
Γ ⊢ A & B

Γ,A ⊢ C Γ,B ⊢ C
Γ,A⊕ B ⊢ C

Γ ⊢ A
Γ ⊢ A⊕ B

Γ ⊢ B
Γ ⊢ A⊕ B

Constants

Γ ⊢ A
Γ,1 ⊢ A

⊢ 1 ⊥ ⊢ Γ ⊢
Γ ⊢ ⊥

Γ ⊢ ⊤ Γ,0 ⊢ A
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Intuitionistic Linear Logic (cont.)
Axiom - Cut

A ⊢ A
Γ ⊢ A ∆,A ⊢ B

∆,Γ ⊢ B

Bang

Γ,A ⊢ B
Γ, !A ⊢ B

Γ, !A, !A ⊢ B
Γ, !A ⊢ B

Γ ⊢ B
Γ, !A ⊢ B

!Γ ⊢ A
!Γ ⊢!A

Quantifiers

Γ,A[t/x] ⊢ B
Γ, ∀xA ⊢ B

Γ ⊢ A
Γ ⊢ ∀xA

x ̸∈ fv(Γ)

Γ,A ⊢ B
Γ,∃xA ⊢ B

x ̸∈ fv(Γ,B)
Γ ⊢ A[t/x]
Γ ⊢ ∃xA
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ILL = the Logic of CC agents

Translation:
(A ∥ B)† = A† ⊗ B† (c → A)† =

c⊸ A† tell(c)† = !c
(A+ B)† = A† & B† (∃xA)† = ∃xA† p(x⃗)† = p(x⃗)

(X; c; Γ)† = ∃X(!c⊗ Γ†)

Axioms: !c ⊢!d for all c ⊢C d p(x⃗) ⊢ A† for all p(x⃗) = A ∈ D

Soundness and Completeness
If (c; Γ) −→CC (d;∆) then c† ⊗ Γ† ⊢ILL(C,D) d† ⊗∆†

If A† ⊢ILL(C,D) c then there exists a success store d such that
(true;A) −→CC (d; ∅) and d ⊢C c
If A† ⊢ILL(C,D) c⊗⊤ then there exists an accessible store d such
that (true;A) −→CC (d; Γ) and d ⊢C c
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Soundness

Theorem 3 (Soundness of transitions)

Let (X; c; Γ) and (Y;d;∆) be CC configurations.
If (X; c; Γ) ≡ (Y;d;∆) then (X; c; Γ)†⊣⊢ILL(C,D)(Y;d;∆)†.
If (X; c; Γ) −→ (Y;d;∆) then (X; c; Γ)† ⊢ILL(C,D) (Y;d;∆)†.

Proof.

By case on ≡, immediate.
By case on −→
The choice operator + is translated by the additive
conjunction & , which expresses “may” properties: A & B ⊢ A
and A & B ⊢ B.
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Completeness I

Theorem 4 (Observation of successes)

Let A be a CC agent and c be a constraint.
If A† ⊢ILL(C,D) c, then there exists a constraint d such that
(∅; 1;A) −→ (X;d; ∅) and ∃Xd ⊢C c.

Proof.

By induction on a sequent calculus proof π of

A1
†, . . . ,An

† ⊢ILL(C,D) ϕ

where the Ai’s are agents and ϕ is either a constraint or a
procedure name.
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Completeness II

Recall that ⊤ is the additive true constant neutral for & .

Theorem 5 (Observation of accessible stores)

Let A be a CC agent and c be a constraint.
If A† ⊢ILL(C,D) c⊗⊤, then c is a store accessible from A,
i.e., there exist a constraint d and a multiset Γ of agents such
that (∅; 1;A) −→ (X;d; Γ) and ∃Xd ⊢C c.

Proof.
The proof uses the first completeness theorem, and proceeds
by induction for the right introduction of the tensor
connective in c⊗⊤.
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Observing “must” Properties
Properties true on all branches on the derivation tree.
Redefine the operational semantics by a rewriting relation on
frontiers, i.e., multisets of configurations
Blind choice

⟨(X; c;A+ B),Φ⟩⇝ ⟨(X; c;A), (X; c;B),Φ⟩

Tell
⟨(X; c; tell(d),Γ),Φ⟩⇝ ⟨(X; c ∧ d; Γ),Φ⟩

Ask
c ⊢C d

⟨(X; c;d → A,Γ),Φ⟩⇝ ⟨(X; c;A,Γ),Φ⟩
Procedure calls

(p(y⃗) = A) ∈ D
⟨(X; c;p(y⃗),Γ),Φ⟩⇝ ⟨(X; c;A,Γ),Φ⟩
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Translating the Frontier Calculus in LL with

⊕

Translate
(A+ B)‡ =

A‡ ⊕ B‡

⟨(X; c;A),Φ⟩‡ =

∃X(c‡ ⊗ A‡)⊕ Φ‡

same translation for the other operations

Theorem 6 (Soundness of transitions)

Let Φ and Ψ be two frontiers.
If Φ ≡ Ψ then (Φ)‡⊣⊢ILL(C,D)(Ψ)‡.
If Φ⇝ Ψ then Φ‡ ⊢ILL(C,D) Ψ

‡.
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Completeness III for “must” Properties

Theorem 7 (Observation of frontiers’ accessible stores)

Let A be a CC agent and c be a constraint.
If A‡ ⊢ILL(C,D) c⊗⊤
then ⟨(∅; 1;A)⟩⇝ ⟨(X1;d1; Γ1), . . . , (Xn;dn; Γn)⟩ with ∀j ∃Xjdj ⊢C c

Theorem 8 (Observation of frontiers’ success stores)

Let A be an CC agent and c be a constraint.
If A‡ ⊢ILL(C,D) c
then ⟨(∅; 1;A)⟩⇝ ⟨(X1;d1; ∅), . . . , (Xn;dn; ∅)⟩ with ∀j ∃Xjdj ⊢C c
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Logical Equivalence of CC programs

Let P and P′ be two CC(C) processes

Corollary 9

If P†⊣⊢ILL(C,D,D′)P′†

then ↓ Oss(P) =↓ Oss(P′) (same set of success stores)
and ↓ Oas(P) =↓ Oas(P′) (same set of accessible stores).

Corollary 10

If P‡⊣⊢ILL(C,D,D′)P′‡

then P and P′ have the same set of accessible stores on all
branches
and the same success frontiers.
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Proving Properties of CC Programs

Proving logical equivalence of CC programs with the
sequent calculus of LL:

▶ focusing proofs (deterministic rules for the additives first)
▶ lazy splitting (input/output contexts for the multiplicatives)

Proving safety properties of CC programs with the phase
semantics of LL [FRS98lics]
Soundness gives Γ ⊢ILL A implies ∀P∀η P, η |= (Γ ⊢ A).
∃P, η, s.t. P, η ̸|= (Γ ⊢ A) implies Γ ̸⊢ILLC,D A.

Proposition 11
To prove a safety property (c,A) Y−→ (d,B), it is enough to
show that ∃ a phase space P, a valuation η , and an element
a ∈ η((c,A)†) such that a ̸∈ η((d,B)†).
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Implementations of LL Sequent Calculi
Forum [Miller&al.] specification languages based on LL
LO [Andreoli] Property of “focusing proofs” in LL
Lolli [Cervesato Hodas Pfenning] Search for “Uniform
proofs”
Lygon [Harland Winikoff] Linear Logic Programming
language

Problem of lazy splitting:

⊢ A,Γ ⊢ B,∆
⊢ A⊗ B,Γ,∆

(⊗)

First idea:
⊢ A− (Γ,∆);∆ ⊢ B,∆

⊢ A⊗ B,Γ,∆
(⊗)

problems with the rules for ! and for ⊤…
stacks are necessary
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Linear Constraint Systems (C,⊢C)

C is a set of formulas built from V, Σ with logical operators: 1,
⊗, ∃ and !;

⊩C⊂ C × C defines the non-logical axioms of the constraint
system.

⊢C is the least subset of C⋆ × C containing ⊩C and closed by:

c ⊢ c
Γ, c ⊢ d ∆ ⊢ c

Γ,∆ ⊢ d
⊢ 1

Γ ⊢ c
Γ, 1 ⊢ c

Γ ⊢ c1 ∆ ⊢ c2
Γ,∆ ⊢ c1 ⊗ c2

Γ, c1, c2 ⊢ c
Γ, c1 ⊗ c2 ⊢ c

Γ ⊢ c[t/x]
Γ ⊢ ∃x c

Γ, c ⊢ d
Γ,∃x c ⊢ d

x ̸∈ fv(Γ,d)

Γ, c ⊢ d
Γ, !c ⊢ d

!Γ ⊢ d
!Γ ⊢!d

Γ ⊢ d
Γ, !c ⊢ d

Γ, !c, !c ⊢ d
Γ, !c ⊢ d

A synchronization constraint is a constraint not appearing in
⊩C
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Same agents and observables as CC

Processes P ::= D.A
Declarations D ::= p(x⃗) = A,D | ϵ
Agents A ::= tell(c) | ∀x⃗(c → A) | A ∥ A | A+ A | ∃xA | p(x⃗)

observing the set of success stores,

Oss(D.A; c) = {∃x⃗d ∈ C |(∅; c;A) −→∗ (x⃗;d; ϵ)}

observing the set of terminal stores (successes and
suspensions),

Ots(D.A; c) = {∃x⃗d ∈ C |(∅; c;A) −→∗ (x⃗;d; Γ) Y−→}

observing the set of accessible stores,

Oas(D.A; c) = {∃x⃗d ∈ C |(∅; c;A) −→∗ (x⃗;d; Γ)}
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Linear-CC(C) Transitions

Tell (X; c; tell(d),Γ) −→ (X; c⊗ d; Γ)

Ask
c ⊢C d⊗ e[⃗t/y⃗]

(X; c;∀y⃗(e → A),Γ) −→ (X;d;A[⃗t/y⃗],Γ)

Hiding
y ̸∈ X ∪ fv(c,Γ)

(X; c;∃yA,Γ) −→ (X ∪ {y}; c;A,Γ)

Call
(p(y⃗) = A) ∈ D

(X; c;p(y⃗),Γ) −→ (X; c;A,Γ)

Choice (X; c;A+ B,Γ) −→ (X; c;A,Γ)
(X; c;A+ B,Γ) −→ (X; c;B,Γ)

Congr.
z ̸∈ fv(A)

∃yA ≡ ∃zA[z/y]
A ∥ B ≡ B ∥ A A ∥ (B ∥ C) ≡ (A ∥ B) ∥ C
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An LCC(FD) program for the dining
philosophers

Goal(N) = RecPhil(1,N).
RecPhil(M,P) =

M ̸= P → (Philo(M,P) ∥ fork(M) ∥ RecPhil(M+1,P))
∥

M = P → (Philo(M,P) ∥ fork(M)).
Philo(I,N) =

(fork(I) ⊗ fork(I+1 mod N)) →
(eat(I) ∥
eat(I) →

(fork(I) ∥ fork(I+1 mod N) ∥ Philo(I,N))).

Safety properties: deadlock freeness, two neighbors don’t
eat at the same time, etc.
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Encoding Linda in LCC(H)

Shared tuple space

Asynchronous communication (through tuple space)

input consumes the tuple, read doesn’t

One-step guarded choice

Conditional with else case (check the absence of tuple)
not encodable in LCC

transitions are still monotonic!
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Encoding the π-calculus in LCC(H)

Direct encoding of the asynchronous π-calculus:
[0] = 1
[(y)P] = ∃y[P]
[xy.0] =

tell(msg(x,y))

[x(y).P] =

∀y msg(x,y) → [P]

[P|Q] = [P] ∥ [Q]
[[x = y]P] = (x = y) → [P]
[P+Q] = [P] + [Q]

The usual (synchronous) π-calculus can be simulated with
a synchronous communication protocol.

41



Encoding the π-calculus in LCC(H)

Direct encoding of the asynchronous π-calculus:
[0] = 1
[(y)P] = ∃y[P]
[xy.0] = tell(msg(x,y))
[x(y).P] =

∀y msg(x,y) → [P]

[P|Q] = [P] ∥ [Q]
[[x = y]P] = (x = y) → [P]
[P+Q] = [P] + [Q]

The usual (synchronous) π-calculus can be simulated with
a synchronous communication protocol.

41



Encoding the π-calculus in LCC(H)

Direct encoding of the asynchronous π-calculus:
[0] = 1
[(y)P] = ∃y[P]
[xy.0] = tell(msg(x,y))
[x(y).P] = ∀y msg(x,y) → [P]
[P|Q] = [P] ∥ [Q]
[[x = y]P] = (x = y) → [P]
[P+Q] = [P] + [Q]

The usual (synchronous) π-calculus can be simulated with
a synchronous communication protocol.

41



Producer Consumer Protocol in LCC
P = dem → (pro ∥ P)
C = pro → (dem ∥ C)
init = demn ∥ Pm ∥ Ck

Deadlock-freeness: init Y−→LCC demn
′ ∥ Pm′ ∥ Ck′ ∥ prol′, with

either n′ = l′ = 0 or m′ = 0 or k′ = 0

Number of units consumed always < number of units
produced:
P = dem → (pro ∥ P ∥

∀X (count(np,X) → count(np,X+1)))
C = pro → (dem ∥ C ∥

∀X (count(nc,X) → count(nc,X+1)))
init = demn ∥ Pm ∥ Ck ∥ np=0 ∥ nc=0
init Y−→LCC demn

′ ∥ prol′ ∥ Pm ∥ Ck ∥ np=np0 ∥ nc=nc0
with nc0 > np0
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