
Constraint Logic Programming

Sylvain Soliman
Sylvain.Soliman@inria.fr

Project-Team LIFEWARE

MPRI 2.35.1 Course – September–November 2017

1

mailto:Sylvain.Soliman@inria.fr

Part I: CLP - Introduction and Logical
Background

1 The Constraint Programming paradigm

2 Examples and Applications

3 First Order Logic

4 Models

5 Logical Theories

2

Part II: Constraint Logic Programs

6 Constraint Languages

7 CLP(X)

8 CLP(H)

9 CLP(R,FD,B)

3

Part III: CLP - Operational and Fixpoint
Semantics

10 Operational Semantics

11 Fixpoint Semantics

12 Program Analysis

4

Part IV: Logical Semantics

13 Logical Semantics of CLP(X)

14 Automated Deduction

15 CLP(λ)

16 Negation as Failure

5

Part V: Constraint Solving

17 Solving by Rewriting

18 Solving by Domain Reduction

6

Part VI: Practical CLP Programming

19 CLP implementation, the WAM

20 Optimizing CLP

21 Symmetries

22 Symmetry Breaking During Search

23 Detecting Symmetries

7

Part VII: More Constraint Programming

24 Typing CLP

25 CHR

8

Part VIII: Programming Project

26 check_dice

27 dice

28 Optimizing

29 Theory

9

Part IX: Concurrent Constraint Programming

30 Introduction

31 Operational Semantics

32 Examples

10

Concurrent Constraint Programs

Class of programming languages CC(X) introduced by
Saraswat [Saraswat93mit] as a merge of Constraint and
Concurrent Logic Programming.

Processes P ::= D.A
Declarations D ::= p(x⃗) = A,D | ϵ
Agents A ::= tell(c) |

∀x⃗(c → A)

| A ∥ A | A+ A | ∃xA | p(x⃗)

CC agent CC agent

Constraint Store

tellask te
llas
k

+

++

11

Concurrent Constraint Programs

Class of programming languages CC(X) introduced by
Saraswat [Saraswat93mit] as a merge of Constraint and
Concurrent Logic Programming.

Processes P ::= D.A
Declarations D ::= p(x⃗) = A,D | ϵ
Agents A ::= tell(c) | ∀x⃗(c → A) | A ∥ A | A+ A | ∃xA | p(x⃗)

CC agent CC agent

Constraint Store

tellask te
llas
k

+

++

11

CC(X) Transitions

Interleaving semantics

Procedure call
(p(y⃗) = A) ∈ D

(x⃗; c;p(y⃗),Γ) −→ (x⃗; c;A,Γ)

Tell (x⃗; c; tell(d),Γ) −→ (x⃗; c ∧ d; Γ)

Ask

c ⊢X d[⃗t/y⃗]
(x⃗; c;∀y⃗(d → A),Γ) −→ (x⃗; c;A[⃗t/y⃗],Γ)

Blind choice (x⃗; c;A+ B,Γ) −→ (x⃗; c;A,Γ)
(local/internal) (x⃗; c;A+ B,Γ) −→ (x⃗; c;B,Γ)

12

CC(X) Transitions

Interleaving semantics

Procedure call
(p(y⃗) = A) ∈ D

(x⃗; c;p(y⃗),Γ) −→ (x⃗; c;A,Γ)

Tell (x⃗; c; tell(d),Γ) −→ (x⃗; c ∧ d; Γ)

Ask
c ⊢X d[⃗t/y⃗]

(x⃗; c; ∀y⃗(d → A),Γ) −→ (x⃗; c;A[⃗t/y⃗],Γ)

Blind choice (x⃗; c;A+ B,Γ) −→ (x⃗; c;A,Γ)
(local/internal) (x⃗; c;A+ B,Γ) −→ (x⃗; c;B,Γ)

12

CC(X) Operational Semanticssss

observing the set of success stores,

Oss(D.A; c) = {∃x⃗d ∈ X |(∅; c;A) −→∗ (x⃗;d; ϵ)}

observing the set of terminal stores (successes and
suspensions),

Ots(D.A; c) = {∃x⃗d ∈ X |(∅; c;A) −→∗ (x⃗;d; Γ) Y−→}

observing the set of accessible stores,

Oas(D.A; c) = {∃x⃗d ∈ X |(∅; c;A) −→∗ (x⃗;d; Γ)}

observing the set of limit stores?

O∞(D.A; c0) = {⊔?{∃x⃗ici}i≥0|(∅; c0;A) −→ (x⃗1; c1; Γ1) −→ . . . }

13

Part X: CC - Denotational Semantics

33 Deterministic Case

34 Constraint Propagation

35 Non-deterministic Case

36 Sequentiality

14

Denotational semantics: input/output function

Input: initial store c0
Output: terminal store c or false for infinite computations

Order the lattice of constraints (C,≤) by the information
ordering:
∀c,d ∈ C c ≤ d iff d ⊢X c iff ↑ d ⊂↑ c where ↑ c = {d ∈ C | c ≤ d}.

JD.AK : C → C is
1 Extensive: ∀c c ≤ JD.AKc
2 Monotone: ∀c,d c ≤ d ⇒ JD.AKc ≤ JD.AKd
3 Idempotent: ∀c JD.AKc = JD.AK(JD.AKc)
i.e., JD.AK is a closure operator over (C,≤).

15

Semantic Equations
Let JK : D × A → P(C) be a closure operator presented by the
set of its fixpoints, and defined as the least fixpoint set of:

JD.tell(c)K

=↑ c (≃ λs.s ∧ c)

JD.c → AK

= (C\ ↑ c) ∪ (↑ c ∩ JD.AK)
(≃ λs. if s ⊢C c then JD.AKs else s)

JD.A ∥ BK

= JD.AK ∩ JD.BK (≃ Y(λs.JD.AKJD.BKs))

JD.∃xAK

= {d | c ∈ JD.AK, ∃xc = ∃xd} (≃ λs.∃xJD.AK∃xs)

JD.p(x⃗)K

= JD.A[x⃗/y⃗]K

if p(y⃗) = A ∈ D

(≃ λs.JD.A[⃗x/⃗y]Ks)

Theorem 1 ([SRP91popl])
For any deterministic process D.A

Ots(D.A; c) =
{

{min(JD.AK∩ ↑ c)} if JD.AK ̸= ∅
∅ otherwise

16

Semantic Equations
Let JK : D × A → P(C) be a closure operator presented by the
set of its fixpoints, and defined as the least fixpoint set of:

JD.tell(c)K =↑ c (≃ λs.s ∧ c)JD.c → AK

= (C\ ↑ c) ∪ (↑ c ∩ JD.AK)
(≃ λs. if s ⊢C c then JD.AKs else s)

JD.A ∥ BK

= JD.AK ∩ JD.BK (≃ Y(λs.JD.AKJD.BKs))

JD.∃xAK

= {d | c ∈ JD.AK, ∃xc = ∃xd} (≃ λs.∃xJD.AK∃xs)

JD.p(x⃗)K

= JD.A[x⃗/y⃗]K

if p(y⃗) = A ∈ D

(≃ λs.JD.A[⃗x/⃗y]Ks)

Theorem 1 ([SRP91popl])
For any deterministic process D.A

Ots(D.A; c) =
{

{min(JD.AK∩ ↑ c)} if JD.AK ̸= ∅
∅ otherwise

16

Semantic Equations
Let JK : D × A → P(C) be a closure operator presented by the
set of its fixpoints, and defined as the least fixpoint set of:

JD.tell(c)K =↑ c (≃ λs.s ∧ c)JD.c → AK = (C\ ↑ c) ∪ (↑ c ∩ JD.AK)
(≃ λs. if s ⊢C c then JD.AKs else s)JD.A ∥ BK

= JD.AK ∩ JD.BK (≃ Y(λs.JD.AKJD.BKs))

JD.∃xAK

= {d | c ∈ JD.AK, ∃xc = ∃xd} (≃ λs.∃xJD.AK∃xs)

JD.p(x⃗)K

= JD.A[x⃗/y⃗]K

if p(y⃗) = A ∈ D

(≃ λs.JD.A[⃗x/⃗y]Ks)

Theorem 1 ([SRP91popl])
For any deterministic process D.A

Ots(D.A; c) =
{

{min(JD.AK∩ ↑ c)} if JD.AK ̸= ∅
∅ otherwise

16

Semantic Equations
Let JK : D × A → P(C) be a closure operator presented by the
set of its fixpoints, and defined as the least fixpoint set of:

JD.tell(c)K =↑ c (≃ λs.s ∧ c)JD.c → AK = (C\ ↑ c) ∪ (↑ c ∩ JD.AK)
(≃ λs. if s ⊢C c then JD.AKs else s)JD.A ∥ BK = JD.AK ∩ JD.BK (≃ Y(λs.JD.AKJD.BKs))JD.∃xAK

= {d | c ∈ JD.AK, ∃xc = ∃xd} (≃ λs.∃xJD.AK∃xs)

JD.p(x⃗)K

= JD.A[x⃗/y⃗]K

if p(y⃗) = A ∈ D

(≃ λs.JD.A[⃗x/⃗y]Ks)

Theorem 1 ([SRP91popl])
For any deterministic process D.A

Ots(D.A; c) =
{

{min(JD.AK∩ ↑ c)} if JD.AK ̸= ∅
∅ otherwise

16

Semantic Equations
Let JK : D × A → P(C) be a closure operator presented by the
set of its fixpoints, and defined as the least fixpoint set of:

JD.tell(c)K =↑ c (≃ λs.s ∧ c)JD.c → AK = (C\ ↑ c) ∪ (↑ c ∩ JD.AK)
(≃ λs. if s ⊢C c then JD.AKs else s)JD.A ∥ BK = JD.AK ∩ JD.BK (≃ Y(λs.JD.AKJD.BKs))JD.∃xAK = {d | c ∈ JD.AK, ∃xc = ∃xd} (≃ λs.∃xJD.AK∃xs)JD.p(x⃗)K

= JD.A[x⃗/y⃗]K

if p(y⃗) = A ∈ D

(≃ λs.JD.A[⃗x/⃗y]Ks)

Theorem 1 ([SRP91popl])
For any deterministic process D.A

Ots(D.A; c) =
{

{min(JD.AK∩ ↑ c)} if JD.AK ̸= ∅
∅ otherwise

16

Semantic Equations
Let JK : D × A → P(C) be a closure operator presented by the
set of its fixpoints, and defined as the least fixpoint set of:

JD.tell(c)K =↑ c (≃ λs.s ∧ c)JD.c → AK = (C\ ↑ c) ∪ (↑ c ∩ JD.AK)
(≃ λs. if s ⊢C c then JD.AKs else s)JD.A ∥ BK = JD.AK ∩ JD.BK (≃ Y(λs.JD.AKJD.BKs))JD.∃xAK = {d | c ∈ JD.AK, ∃xc = ∃xd} (≃ λs.∃xJD.AK∃xs)JD.p(x⃗)K = JD.A[x⃗/y⃗]K if p(y⃗) = A ∈ D (≃ λs.JD.A[⃗x/⃗y]Ks)

Theorem 1 ([SRP91popl])
For any deterministic process D.A

Ots(D.A; c) =
{

{min(JD.AK∩ ↑ c)} if JD.AK ̸= ∅
∅ otherwise

16

Non-deterministic CC(X) with Local Choice (2)

Let JK : D × A → P(P(C)) be the least fixpoint (for ⊂) of

JD.cK = {↑ c}JD.c → AK = {C\ ↑ c} ∪ {↑ c ∩ X | X ∈ JD.AK}JD.A ∥ BK = {X ∩ Y | X ∈ JD.AK, Y ∈ JD.BK}JD.A+ BK = JD.AK ∪ JD.BKJD.∃xAK = {{d | ∃xc = ∃xd, c ∈ X} | X ∈ JD.AK}JD.p(x⃗)K = JD.A[x⃗/y⃗]K
Theorem 2 ([FGMP97tcs])
For any process D.A,
Ots(D.A; c) = {d| there exists X ∈ JD.AK s.t. d = min(↑ c ∩ X)}.

17

Part XI

CC and Linear Logic

18

Part XI: CC and Linear Logic

37 CC - Logical Semantics

38 Must Properties

39 Program Analysis

19

Logical Semantics of CC?

CC calculus is sound but not complete
w.r.t. CLP logical semantics interpreting asks as tells
Interpreting ask(c → A) as logical implication leads to
identify CC transitions with logical deductions:

left → c ⊢C d
c ∧ (d → A†) ⊢ c ∧ A†

p(x⃗) ⊢D A†

c ∧ p(x⃗) ⊢ c ∧ A†

(reverses the arrow of CLP interpretation…)
To distinguish between successes and accessible stores
agents shouldn’t “disappear” by the

weakening

rule:

leftW
Γ ⊢ c

Γ,A† ⊢ c

20

Logical Semantics of CC?

CC calculus is sound but not complete
w.r.t. CLP logical semantics interpreting asks as tells
Interpreting ask(c → A) as logical implication leads to
identify CC transitions with logical deductions:

left → c ⊢C d
c ∧ (d → A†) ⊢ c ∧ A†

p(x⃗) ⊢D A†

c ∧ p(x⃗) ⊢ c ∧ A†

(reverses the arrow of CLP interpretation…)
To distinguish between successes and accessible stores
agents shouldn’t “disappear” by the weakening rule:

leftW
Γ ⊢ c

Γ,A† ⊢ c

20

Linear Logic

Introduced by Jean-Yves Girard in 1986 as a new
constructive logic without the asymmetry of intuitionistic
logic (sequent calculus with symmetric left and right
sides)
Logic of resource consumption

A⊗ A ̸⊢LL A

A⊗ (A⊸ B) ⊢LL B

A⊗ (A⊸ B) ̸⊢LL A⊗ B

!A provides arbitrary duplication (unbounded throwable
resource)

!A⊗ (A⊸ B) ⊢LL !A⊗ B ⊢LL B

Sequent calculus without weakening and contraction

21

Intuitionistic Linear Logic
Multiplicatives

Γ,A,B ⊢ C
Γ,A⊗ B ⊢ C

Γ ⊢ A ∆ ⊢ B
Γ,∆ ⊢ A⊗ B

Γ ⊢ A ∆,B ⊢ C
∆,Γ,A⊸ B ⊢ C

Γ,A ⊢ B
Γ ⊢ A⊸ B

Additives

Γ,A ⊢ C
Γ,A & B ⊢ C

Γ,B ⊢ C
Γ,A & B ⊢ C

Γ ⊢ A Γ ⊢ B
Γ ⊢ A & B

Γ,A ⊢ C Γ,B ⊢ C
Γ,A⊕ B ⊢ C

Γ ⊢ A
Γ ⊢ A⊕ B

Γ ⊢ B
Γ ⊢ A⊕ B

Constants

Γ ⊢ A
Γ,1 ⊢ A

⊢ 1 ⊥ ⊢ Γ ⊢
Γ ⊢ ⊥

Γ ⊢ ⊤ Γ,0 ⊢ A

22

Intuitionistic Linear Logic (cont.)
Axiom - Cut

A ⊢ A
Γ ⊢ A ∆,A ⊢ B

∆,Γ ⊢ B

Bang

Γ,A ⊢ B
Γ, !A ⊢ B

Γ, !A, !A ⊢ B
Γ, !A ⊢ B

Γ ⊢ B
Γ, !A ⊢ B

!Γ ⊢ A
!Γ ⊢!A

Quantifiers

Γ,A[t/x] ⊢ B
Γ, ∀xA ⊢ B

Γ ⊢ A
Γ ⊢ ∀xA

x ̸∈ fv(Γ)

Γ,A ⊢ B
Γ,∃xA ⊢ B

x ̸∈ fv(Γ,B)
Γ ⊢ A[t/x]
Γ ⊢ ∃xA

23

ILL = the Logic of CC agents

Translation:
(A ∥ B)† = A† ⊗ B† (c → A)† =

c⊸ A† tell(c)† = !c
(A+ B)† = A† & B† (∃xA)† = ∃xA† p(x⃗)† = p(x⃗)

(X; c; Γ)† = ∃X(!c⊗ Γ†)

Axioms: !c ⊢!d for all c ⊢C d p(x⃗) ⊢ A† for all p(x⃗) = A ∈ D

Soundness and Completeness
If (c; Γ) −→CC (d;∆) then c† ⊗ Γ† ⊢ILL(C,D) d† ⊗∆†

If A† ⊢ILL(C,D) c then there exists a success store d such that
(true;A) −→CC (d; ∅) and d ⊢C c
If A† ⊢ILL(C,D) c⊗⊤ then there exists an accessible store d such
that (true;A) −→CC (d; Γ) and d ⊢C c

24

ILL = the Logic of CC agents

Translation:
(A ∥ B)† = A† ⊗ B† (c → A)† = c⊸ A† tell(c)† =

!c
(A+ B)† = A† & B† (∃xA)† = ∃xA† p(x⃗)† = p(x⃗)

(X; c; Γ)† = ∃X(!c⊗ Γ†)

Axioms: !c ⊢!d for all c ⊢C d p(x⃗) ⊢ A† for all p(x⃗) = A ∈ D

Soundness and Completeness
If (c; Γ) −→CC (d;∆) then c† ⊗ Γ† ⊢ILL(C,D) d† ⊗∆†

If A† ⊢ILL(C,D) c then there exists a success store d such that
(true;A) −→CC (d; ∅) and d ⊢C c
If A† ⊢ILL(C,D) c⊗⊤ then there exists an accessible store d such
that (true;A) −→CC (d; Γ) and d ⊢C c

24

ILL = the Logic of CC agents

Translation:
(A ∥ B)† = A† ⊗ B† (c → A)† = c⊸ A† tell(c)† = !c
(A+ B)† =

A† & B† (∃xA)† = ∃xA† p(x⃗)† = p(x⃗)
(X; c; Γ)† = ∃X(!c⊗ Γ†)

Axioms: !c ⊢!d for all c ⊢C d p(x⃗) ⊢ A† for all p(x⃗) = A ∈ D

Soundness and Completeness
If (c; Γ) −→CC (d;∆) then c† ⊗ Γ† ⊢ILL(C,D) d† ⊗∆†

If A† ⊢ILL(C,D) c then there exists a success store d such that
(true;A) −→CC (d; ∅) and d ⊢C c
If A† ⊢ILL(C,D) c⊗⊤ then there exists an accessible store d such
that (true;A) −→CC (d; Γ) and d ⊢C c

24

ILL = the Logic of CC agents

Translation:
(A ∥ B)† = A† ⊗ B† (c → A)† = c⊸ A† tell(c)† = !c
(A+ B)† = A† & B† (∃xA)† = ∃xA† p(x⃗)† = p(x⃗)

(X; c; Γ)† = ∃X(!c⊗ Γ†)

Axioms: !c ⊢!d for all c ⊢C d p(x⃗) ⊢ A† for all p(x⃗) = A ∈ D

Soundness and Completeness
If (c; Γ) −→CC (d;∆) then c† ⊗ Γ† ⊢ILL(C,D) d† ⊗∆†

If A† ⊢ILL(C,D) c then there exists a success store d such that
(true;A) −→CC (d; ∅) and d ⊢C c
If A† ⊢ILL(C,D) c⊗⊤ then there exists an accessible store d such
that (true;A) −→CC (d; Γ) and d ⊢C c

24

ILL = the Logic of CC agents

Translation:
(A ∥ B)† = A† ⊗ B† (c → A)† = c⊸ A† tell(c)† = !c
(A+ B)† = A† & B† (∃xA)† = ∃xA† p(x⃗)† = p(x⃗)

(X; c; Γ)† = ∃X(!c⊗ Γ†)

Axioms: !c ⊢!d for all c ⊢C d p(x⃗) ⊢ A† for all p(x⃗) = A ∈ D

Soundness and Completeness
If (c; Γ) −→CC (d;∆) then c† ⊗ Γ† ⊢ILL(C,D) d† ⊗∆†

If A† ⊢ILL(C,D) c then there exists a success store d such that
(true;A) −→CC (d; ∅) and d ⊢C c
If A† ⊢ILL(C,D) c⊗⊤ then there exists an accessible store d such
that (true;A) −→CC (d; Γ) and d ⊢C c

24

Soundness

Theorem 3 (Soundness of transitions)

Let (X; c; Γ) and (Y;d;∆) be CC configurations.
If (X; c; Γ) ≡ (Y;d;∆) then (X; c; Γ)†⊣⊢ILL(C,D)(Y;d;∆)†.
If (X; c; Γ) −→ (Y;d;∆) then (X; c; Γ)† ⊢ILL(C,D) (Y;d;∆)†.

Proof.

By case on ≡, immediate.
By case on −→
The choice operator + is translated by the additive
conjunction & , which expresses “may” properties: A & B ⊢ A
and A & B ⊢ B.

25

Soundness

Theorem 3 (Soundness of transitions)

Let (X; c; Γ) and (Y;d;∆) be CC configurations.
If (X; c; Γ) ≡ (Y;d;∆) then (X; c; Γ)†⊣⊢ILL(C,D)(Y;d;∆)†.
If (X; c; Γ) −→ (Y;d;∆) then (X; c; Γ)† ⊢ILL(C,D) (Y;d;∆)†.

Proof.
By case on ≡, immediate.

By case on −→
The choice operator + is translated by the additive
conjunction & , which expresses “may” properties: A & B ⊢ A
and A & B ⊢ B.

25

Soundness

Theorem 3 (Soundness of transitions)

Let (X; c; Γ) and (Y;d;∆) be CC configurations.
If (X; c; Γ) ≡ (Y;d;∆) then (X; c; Γ)†⊣⊢ILL(C,D)(Y;d;∆)†.
If (X; c; Γ) −→ (Y;d;∆) then (X; c; Γ)† ⊢ILL(C,D) (Y;d;∆)†.

Proof.
By case on ≡, immediate.
By case on −→

The choice operator + is translated by the additive
conjunction & , which expresses “may” properties: A & B ⊢ A
and A & B ⊢ B.

25

Soundness

Theorem 3 (Soundness of transitions)

Let (X; c; Γ) and (Y;d;∆) be CC configurations.
If (X; c; Γ) ≡ (Y;d;∆) then (X; c; Γ)†⊣⊢ILL(C,D)(Y;d;∆)†.
If (X; c; Γ) −→ (Y;d;∆) then (X; c; Γ)† ⊢ILL(C,D) (Y;d;∆)†.

Proof.
By case on ≡, immediate.
By case on −→
The choice operator + is translated by the additive
conjunction & , which expresses “may” properties: A & B ⊢ A
and A & B ⊢ B.

25

Completeness I

Theorem 4 (Observation of successes)

Let A be a CC agent and c be a constraint.
If A† ⊢ILL(C,D) c, then there exists a constraint d such that
(∅; 1;A) −→ (X;d; ∅) and ∃Xd ⊢C c.

Proof.

By induction on a sequent calculus proof π of

A1
†, . . . ,An

† ⊢ILL(C,D) ϕ

where the Ai’s are agents and ϕ is either a constraint or a
procedure name.

26

Completeness I

Theorem 4 (Observation of successes)

Let A be a CC agent and c be a constraint.
If A† ⊢ILL(C,D) c, then there exists a constraint d such that
(∅; 1;A) −→ (X;d; ∅) and ∃Xd ⊢C c.

Proof.
By induction on a sequent calculus proof π of

A1
†, . . . ,An

† ⊢ILL(C,D) ϕ

where the Ai’s are agents and ϕ is either a constraint or a
procedure name.

26

Completeness II

Recall that ⊤ is the additive true constant neutral for & .

Theorem 5 (Observation of accessible stores)

Let A be a CC agent and c be a constraint.
If A† ⊢ILL(C,D) c⊗⊤, then c is a store accessible from A,
i.e., there exist a constraint d and a multiset Γ of agents such
that (∅; 1;A) −→ (X;d; Γ) and ∃Xd ⊢C c.

Proof.
The proof uses the first completeness theorem, and proceeds
by induction for the right introduction of the tensor
connective in c⊗⊤.

27

Observing “must” Properties
Properties true on all branches on the derivation tree.
Redefine the operational semantics by a rewriting relation on
frontiers, i.e., multisets of configurations
Blind choice

⟨(X; c;A+ B),Φ⟩⇝ ⟨(X; c;A), (X; c;B),Φ⟩

Tell
⟨(X; c; tell(d),Γ),Φ⟩⇝ ⟨(X; c ∧ d; Γ),Φ⟩

Ask
c ⊢C d

⟨(X; c;d → A,Γ),Φ⟩⇝ ⟨(X; c;A,Γ),Φ⟩
Procedure calls

(p(y⃗) = A) ∈ D
⟨(X; c;p(y⃗),Γ),Φ⟩⇝ ⟨(X; c;A,Γ),Φ⟩

28

Translating the Frontier Calculus in LL with

⊕

Translate
(A+ B)‡ =

A‡ ⊕ B‡

⟨(X; c;A),Φ⟩‡ =

∃X(c‡ ⊗ A‡)⊕ Φ‡

same translation for the other operations

Theorem 6 (Soundness of transitions)

Let Φ and Ψ be two frontiers.
If Φ ≡ Ψ then (Φ)‡⊣⊢ILL(C,D)(Ψ)‡.
If Φ⇝ Ψ then Φ‡ ⊢ILL(C,D) Ψ

‡.

29

Translating the Frontier Calculus in LL with ⊕

Translate
(A+ B)‡ = A‡ ⊕ B‡

⟨(X; c;A),Φ⟩‡ = ∃X(c‡ ⊗ A‡)⊕ Φ‡

same translation for the other operations

Theorem 6 (Soundness of transitions)

Let Φ and Ψ be two frontiers.
If Φ ≡ Ψ then (Φ)‡⊣⊢ILL(C,D)(Ψ)‡.
If Φ⇝ Ψ then Φ‡ ⊢ILL(C,D) Ψ

‡.

29

Completeness III for “must” Properties

Theorem 7 (Observation of frontiers’ accessible stores)

Let A be a CC agent and c be a constraint.
If A‡ ⊢ILL(C,D) c⊗⊤
then ⟨(∅; 1;A)⟩⇝ ⟨(X1;d1; Γ1), . . . , (Xn;dn; Γn)⟩ with ∀j ∃Xjdj ⊢C c

Theorem 8 (Observation of frontiers’ success stores)

Let A be an CC agent and c be a constraint.
If A‡ ⊢ILL(C,D) c
then ⟨(∅; 1;A)⟩⇝ ⟨(X1;d1; ∅), . . . , (Xn;dn; ∅)⟩ with ∀j ∃Xjdj ⊢C c

30

Logical Equivalence of CC programs

Let P and P′ be two CC(C) processes

Corollary 9

If P†⊣⊢ILL(C,D,D′)P′†

then ↓ Oss(P) =↓ Oss(P′) (same set of success stores)
and ↓ Oas(P) =↓ Oas(P′) (same set of accessible stores).

Corollary 10

If P‡⊣⊢ILL(C,D,D′)P′‡

then P and P′ have the same set of accessible stores on all
branches
and the same success frontiers.

31

Proving Properties of CC Programs

Proving logical equivalence of CC programs with the
sequent calculus of LL:

▶ focusing proofs (deterministic rules for the additives first)
▶ lazy splitting (input/output contexts for the multiplicatives)

Proving safety properties of CC programs with the phase
semantics of LL [FRS98lics]
Soundness gives Γ ⊢ILL A implies ∀P∀η P, η |= (Γ ⊢ A).
∃P, η, s.t. P, η ̸|= (Γ ⊢ A) implies Γ ̸⊢ILLC,D A.

Proposition 11
To prove a safety property (c,A) Y−→ (d,B), it is enough to
show that ∃ a phase space P, a valuation η , and an element
a ∈ η((c,A)†) such that a ̸∈ η((d,B)†).

32

Implementations of LL Sequent Calculi
Forum [Miller&al.] specification languages based on LL
LO [Andreoli] Property of “focusing proofs” in LL
Lolli [Cervesato Hodas Pfenning] Search for “Uniform
proofs”
Lygon [Harland Winikoff] Linear Logic Programming
language

Problem of lazy splitting:

⊢ A,Γ ⊢ B,∆
⊢ A⊗ B,Γ,∆

(⊗)

First idea:
⊢ A− (Γ,∆);∆ ⊢ B,∆

⊢ A⊗ B,Γ,∆
(⊗)

problems with the rules for ! and for ⊤…
stacks are necessary

33

Part XII

LCC

34

Part XII: LCC

40 LCC

41 Examples

35

Linear Constraint Systems (C,⊢C)

C is a set of formulas built from V, Σ with logical operators: 1,
⊗, ∃ and !;

⊩C⊂ C × C defines the non-logical axioms of the constraint
system.

⊢C is the least subset of C⋆ × C containing ⊩C and closed by:

c ⊢ c
Γ, c ⊢ d ∆ ⊢ c

Γ,∆ ⊢ d
⊢ 1

Γ ⊢ c
Γ, 1 ⊢ c

Γ ⊢ c1 ∆ ⊢ c2
Γ,∆ ⊢ c1 ⊗ c2

Γ, c1, c2 ⊢ c
Γ, c1 ⊗ c2 ⊢ c

Γ ⊢ c[t/x]
Γ ⊢ ∃x c

Γ, c ⊢ d
Γ,∃x c ⊢ d

x ̸∈ fv(Γ,d)

Γ, c ⊢ d
Γ, !c ⊢ d

!Γ ⊢ d
!Γ ⊢!d

Γ ⊢ d
Γ, !c ⊢ d

Γ, !c, !c ⊢ d
Γ, !c ⊢ d

A synchronization constraint is a constraint not appearing in
⊩C

36

Same agents and observables as CC

Processes P ::= D.A
Declarations D ::= p(x⃗) = A,D | ϵ
Agents A ::= tell(c) | ∀x⃗(c → A) | A ∥ A | A+ A | ∃xA | p(x⃗)

observing the set of success stores,

Oss(D.A; c) = {∃x⃗d ∈ C |(∅; c;A) −→∗ (x⃗;d; ϵ)}

observing the set of terminal stores (successes and
suspensions),

Ots(D.A; c) = {∃x⃗d ∈ C |(∅; c;A) −→∗ (x⃗;d; Γ) Y−→}

observing the set of accessible stores,

Oas(D.A; c) = {∃x⃗d ∈ C |(∅; c;A) −→∗ (x⃗;d; Γ)}

37

Same agents and observables as CC

Processes P ::= D.A
Declarations D ::= p(x⃗) = A,D | ϵ
Agents A ::= tell(c) | ∀x⃗(c → A) | A ∥ A | A+ A | ∃xA | p(x⃗)

observing the set of success stores,

Oss(D.A; c) = {∃x⃗d ∈ C |(∅; c;A) −→∗ (x⃗;d; ϵ)}

observing the set of terminal stores (successes and
suspensions),

Ots(D.A; c) = {∃x⃗d ∈ C |(∅; c;A) −→∗ (x⃗;d; Γ) Y−→}

observing the set of accessible stores,

Oas(D.A; c) = {∃x⃗d ∈ C |(∅; c;A) −→∗ (x⃗;d; Γ)}

37

Same agents and observables as CC

Processes P ::= D.A
Declarations D ::= p(x⃗) = A,D | ϵ
Agents A ::= tell(c) | ∀x⃗(c → A) | A ∥ A | A+ A | ∃xA | p(x⃗)

observing the set of success stores,

Oss(D.A; c) = {∃x⃗d ∈ C |(∅; c;A) −→∗ (x⃗;d; ϵ)}

observing the set of terminal stores (successes and
suspensions),

Ots(D.A; c) = {∃x⃗d ∈ C |(∅; c;A) −→∗ (x⃗;d; Γ) Y−→}

observing the set of accessible stores,

Oas(D.A; c) = {∃x⃗d ∈ C |(∅; c;A) −→∗ (x⃗;d; Γ)}

37

Same agents and observables as CC

Processes P ::= D.A
Declarations D ::= p(x⃗) = A,D | ϵ
Agents A ::= tell(c) | ∀x⃗(c → A) | A ∥ A | A+ A | ∃xA | p(x⃗)

observing the set of success stores,

Oss(D.A; c) = {∃x⃗d ∈ C |(∅; c;A) −→∗ (x⃗;d; ϵ)}

observing the set of terminal stores (successes and
suspensions),

Ots(D.A; c) = {∃x⃗d ∈ C |(∅; c;A) −→∗ (x⃗;d; Γ) Y−→}

observing the set of accessible stores,

Oas(D.A; c) = {∃x⃗d ∈ C |(∅; c;A) −→∗ (x⃗;d; Γ)}

37

Linear-CC(C) Transitions

Tell (X; c; tell(d),Γ) −→ (X; c⊗ d; Γ)

Ask
c ⊢C d⊗ e[⃗t/y⃗]

(X; c;∀y⃗(e → A),Γ) −→ (X;d;A[⃗t/y⃗],Γ)

Hiding
y ̸∈ X ∪ fv(c,Γ)

(X; c;∃yA,Γ) −→ (X ∪ {y}; c;A,Γ)

Call
(p(y⃗) = A) ∈ D

(X; c;p(y⃗),Γ) −→ (X; c;A,Γ)

Choice (X; c;A+ B,Γ) −→ (X; c;A,Γ)
(X; c;A+ B,Γ) −→ (X; c;B,Γ)

Congr.
z ̸∈ fv(A)

∃yA ≡ ∃zA[z/y]
A ∥ B ≡ B ∥ A A ∥ (B ∥ C) ≡ (A ∥ B) ∥ C

38

An LCC(FD) program for the dining
philosophers

Goal(N) = RecPhil(1,N).
RecPhil(M,P) =

M ̸= P → (Philo(M,P) ∥ fork(M) ∥ RecPhil(M+1,P))
∥

M = P → (Philo(M,P) ∥ fork(M)).
Philo(I,N) =

(fork(I) ⊗ fork(I+1 mod N)) →
(eat(I) ∥
eat(I) →

(fork(I) ∥ fork(I+1 mod N) ∥ Philo(I,N))).

Safety properties: deadlock freeness, two neighbors don’t
eat at the same time, etc.

39

An LCC(FD) program for the dining
philosophers

Goal(N) = RecPhil(1,N).
RecPhil(M,P) =

M ̸= P → (Philo(M,P) ∥ fork(M) ∥ RecPhil(M+1,P))
∥

M = P → (Philo(M,P) ∥ fork(M)).
Philo(I,N) =

(fork(I) ⊗ fork(I+1 mod N)) →

(eat(I) ∥
eat(I) →

(fork(I) ∥ fork(I+1 mod N) ∥ Philo(I,N))).

Safety properties: deadlock freeness, two neighbors don’t
eat at the same time, etc.

39

An LCC(FD) program for the dining
philosophers

Goal(N) = RecPhil(1,N).
RecPhil(M,P) =

M ̸= P → (Philo(M,P) ∥ fork(M) ∥ RecPhil(M+1,P))
∥

M = P → (Philo(M,P) ∥ fork(M)).
Philo(I,N) =

(fork(I) ⊗ fork(I+1 mod N)) →
(eat(I) ∥

eat(I) →
(fork(I) ∥ fork(I+1 mod N) ∥ Philo(I,N))).

Safety properties: deadlock freeness, two neighbors don’t
eat at the same time, etc.

39

An LCC(FD) program for the dining
philosophers

Goal(N) = RecPhil(1,N).
RecPhil(M,P) =

M ̸= P → (Philo(M,P) ∥ fork(M) ∥ RecPhil(M+1,P))
∥

M = P → (Philo(M,P) ∥ fork(M)).
Philo(I,N) =

(fork(I) ⊗ fork(I+1 mod N)) →
(eat(I) ∥
eat(I) →

(fork(I) ∥ fork(I+1 mod N) ∥ Philo(I,N))).

Safety properties: deadlock freeness, two neighbors don’t
eat at the same time, etc.

39

Encoding Linda in LCC(H)

Shared tuple space

Asynchronous communication (through tuple space)

input consumes the tuple, read doesn’t

One-step guarded choice

Conditional with else case (check the absence of tuple)
not encodable in LCC

transitions are still monotonic!

40

Encoding Linda in LCC(H)

Shared tuple space

Asynchronous communication (through tuple space)

input consumes the tuple, read doesn’t

One-step guarded choice

Conditional with else case (check the absence of tuple)
not encodable in LCC transitions are still monotonic!

40

Encoding the π-calculus in LCC(H)

Direct encoding of the asynchronous π-calculus:
[0] = 1
[(y)P] = ∃y[P]
[xy.0] =

tell(msg(x,y))

[x(y).P] =

∀y msg(x,y) → [P]

[P|Q] = [P] ∥ [Q]
[[x = y]P] = (x = y) → [P]
[P+Q] = [P] + [Q]

The usual (synchronous) π-calculus can be simulated with
a synchronous communication protocol.

41

Encoding the π-calculus in LCC(H)

Direct encoding of the asynchronous π-calculus:
[0] = 1
[(y)P] = ∃y[P]
[xy.0] = tell(msg(x,y))
[x(y).P] =

∀y msg(x,y) → [P]

[P|Q] = [P] ∥ [Q]
[[x = y]P] = (x = y) → [P]
[P+Q] = [P] + [Q]

The usual (synchronous) π-calculus can be simulated with
a synchronous communication protocol.

41

Encoding the π-calculus in LCC(H)

Direct encoding of the asynchronous π-calculus:
[0] = 1
[(y)P] = ∃y[P]
[xy.0] = tell(msg(x,y))
[x(y).P] = ∀y msg(x,y) → [P]
[P|Q] = [P] ∥ [Q]
[[x = y]P] = (x = y) → [P]
[P+Q] = [P] + [Q]

The usual (synchronous) π-calculus can be simulated with
a synchronous communication protocol.

41

Producer Consumer Protocol in LCC
P = dem → (pro ∥ P)
C = pro → (dem ∥ C)
init = demn ∥ Pm ∥ Ck

Deadlock-freeness: init Y−→LCC demn
′ ∥ Pm′ ∥ Ck′ ∥ prol′, with

either n′ = l′ = 0 or m′ = 0 or k′ = 0

Number of units consumed always < number of units
produced:
P = dem → (pro ∥ P ∥

∀X (count(np,X) → count(np,X+1)))
C = pro → (dem ∥ C ∥

∀X (count(nc,X) → count(nc,X+1)))
init = demn ∥ Pm ∥ Ck ∥ np=0 ∥ nc=0
init Y−→LCC demn

′ ∥ prol′ ∥ Pm ∥ Ck ∥ np=np0 ∥ nc=nc0
with nc0 > np0

42

	CLP - Introduction and Logical Background
	The Constraint Programming paradigm
	Examples and Applications
	First Order Logic
	Models
	Logical Theories
	Constraint Languages
	CLP(X)
	CLP(H)
	CLP(R,FD,B)
	Operational Semantics
	Fixpoint Semantics
	Program Analysis
	Logical Semantics of CLP(X)
	Automated Deduction
	CLP()
	Negation as Failure
	Solving by Rewriting
	Solving by Domain Reduction
	CLP implementation, the WAM
	Optimizing CLP
	Symmetries
	Symmetry Breaking During Search
	Detecting Symmetries

	More Constraint Programming
	Typing CLP
	CHR

	Programming Project
	check_dice
	dice
	Optimizing
	Theory

	Concurrent Constraint Programming
	Introduction
	Operational Semantics
	Examples
	Deterministic Case
	Constraint Propagation
	Non-deterministic Case
	Sequentiality

	CC and Linear Logic
	CC - Logical Semantics
	Must Properties
	Program Analysis
	LCC
	Examples

