
Introduction The Cream Type System Hindley-Milner Conclusion

The Cream Type System

Thierry Martinez
Acknowledgments to Julien Martin

Contraintes Project–Team
INRIA Paris–Rocquencourt Research Centre

Wednesday 18th November 2009

1 Introduction

2 The Cream Type System

3 A Hindley-Milner based type inference algorithm

4 Conclusion

Thierry Martinez (INRIA) The Cream Type System 2009-11-18 1 / 13

Introduction The Cream Type System Hindley-Milner Conclusion

The Cream Modelling Language

A rule-based language for modelling satisfaction and optimisation problems.
[RAC’09]

The language enjoys directives for the declarative specification of search-heuristics.
[CPAIOR’09]

Very few data structures: fd variables, integer constants, lists and records.
Aggregators over lists. No recursion.

[RAC’09] François Fages, Julien Martin, From Rules to Constraint Programs with
the Rules2CP Modelling Language, In Proceedings of Recent Advances
in Constraints, Revised Selected Papers of CSCLP’08, volume 5655 of
LNAI, pages 66-83. Springer, 2008.

[CPAIOR’09] François Fages, Julien Martin, Modelling Search Strategies in Rules2CP,
In Proceedings of CPAIOR’09, volume 5547 of LNCS, pages 321-322.
Springer, 2009.

Thierry Martinez (INRIA) The Cream Type System 2009-11-18 2 / 13

Introduction The Cream Type System Hindley-Milner Conclusion

The Cream Modelling Language

Object definitionsqueen(I) = { row = I, column = _ }.
board(N) = map(I, [1 .. N], queen(I)).

Rule declarationsno_attack(Q0, Q1) -->
Q0:column # Q1:column

and Q0:row - Q0:column # Q0:row - Q1:column
and Q0:row + Q0:column # Q0:row + Q1:column.

no_attack(L) -->
f o r a l l (Q0 i n L,

f o r a l l (Q1 i n L,
Q0:row < Q1:row => no_attack(Q0 , Q1))).

Query? l e t (N = 10,
Board = board(N),
domain(Board , 1, N) and no_attack(Board)

and l a b e l l i n g (Board)).

Thierry Martinez (INRIA) The Cream Type System 2009-11-18 3 / 13

Introduction The Cream Type System Hindley-Milner Conclusion

Cream Type Constructors
int the type of integer constants and finite domain variables

I 1, 10, I, N :: int

bool the type of constraints and rules (truth values)

I Q0:column # Q1:column :: bool
I Q0:row # Q1:row => no_attack(Q0, Q1) :: bool
I 1 :: bool

[τ] the type of lists with elements of type τ (homogeneous lists)

I [1 .. N] :: [int]

{ f1: τ1, ..., fn: τn} the type of records with
a field f1 carrying a value of type τ1, ...,
a field fn carrying a value of type τn

I queen(I) = { row = I, column = _ }.
queen(α) :: { row: α, column: β}

I board(N) = map(I, [1 .. N], queen(I))
board(int) :: [{ row: int, column: α}]

Thierry Martinez (INRIA) The Cream Type System 2009-11-18 4 / 13

Introduction The Cream Type System Hindley-Milner Conclusion

What Kind Of Guarantees Could Be Expected?

Type consistency in a call:
board(int) :: [{ row: int, column: α}]
board([1 .. 10]) should fail to type.

Projection validity: queen(α) :: { row: α, column: β}
queen(N):colunm should fail to type.

Object construction validity:
no_attack([{ row: int, column: int }]) :: bool
no_attack([{line = 4, column = 2}]) should fail.
But: a well-typed Cream program can go wrong (with respect to the
rewriting system →)
nth(1, []) is well-typed but nth(1, []) 6→.

Thierry Martinez (INRIA) The Cream Type System 2009-11-18 5 / 13

Introduction The Cream Type System Hindley-Milner Conclusion

What is a type judgement?
The type system associates a type to every (well-typed) expression
(e.g. 1 + 1 :: int).

Expressions may depend on a context of bound variables (arguments of a
definition, let-binding, iterators). In the general case, a type judgment is a
relation between:

a type environment Γ: a mapping between bound variables and their
type. (e.g. I :: int, L :: [int])
an expression e
the type t of e under Γ

A type judgement is denoted:

Γ ` e :: t

e.g. I :: int ` [I] :: [int]

Thierry Martinez (INRIA) The Cream Type System 2009-11-18 6 / 13

Introduction The Cream Type System Hindley-Milner Conclusion

Cream Typing Rules

Basis:

Integer constants

Γ ` n :: int>2
n ∈ N

Γ ` 0 :: bool Γ ` 1 :: bool

Bound variables, FD variables, empty lists.

X :: τ , Γ ` X :: τ Γ ` X :: int
X /∈ Γ

Γ ` [] :: [τ]
τ type

Inductive steps: hypotheses are on top of the line, conclusions on bottom

Γ ` X1 :: τ · · · Γ ` Xn :: τ
Γ ` [X1, ...,Xn] :: [τ]

Γ ` X1 :: τ1 · · · Γ ` Xn :: τn
Γ ` {f1 = X1, ..., fn = Xn} :: {f1 : τ1, ..., fn : τn, uid : int}

Γ ` e1 :: int Γ ` e2 :: int
Γ ` [e1..e2] :: [int]

Γ ` e :: {f1 : τ1, ..., fn : τn}
Γ ` e : fi :: τi

Thierry Martinez (INRIA) The Cream Type System 2009-11-18 7 / 13

Introduction The Cream Type System Hindley-Milner Conclusion

Type Coercions

We make coercions explicit with a new syntactic construction: µ

Reification: bool is a subtype of int

Γ ` e :: bool
Γ ` µbool→int(e) :: int

Projection: {f: τ} is a subtype of {f: τ , g: τ ′}

Γ ` e :: {f1 : τ1, ..., fn : τn}
Γ ` µπ(e) :: {fπ1 : τπ1 , ..., fπk : τπk}

Thierry Martinez (INRIA) The Cream Type System 2009-11-18 8 / 13

Introduction The Cream Type System Hindley-Milner Conclusion

Typing Definitions and Calls
Typing a call should be equivalent to type the body of the definition given the
arguments as environment:

Γ ` e1 :: τ1 · · · Γ ` en :: τn (f (X1, . . . ,Xn) = e) ∈ P X1: τ1, . . . ,Xn: τn ` e :: τ
Γ ` f (e1, . . . , en) :: τ

Goal: associate to the definition “f (X1, . . . ,Xn) = e" a principal type, that is to say a
type valid for this definition that is more general than any other valid type.
With subtyping, the principal type between bool and int is int. But there are definitions
which can take either int, or [int], or...: “id(X) = X".
Principality comes from the fact that if Cream Typing Rules are such that if a definition
can be called with two unrelated type (e.g. int, or [int]), it can be called with any type τ .

Let α, β, ... be a countable set of type variable.
A type schema is of the form:

∀αβ...(f (τ1, . . . , τn) :: τ)

Since Cream definition are top-level, all type schema are closed.

Identity definition has type: ∀α, (id(α) :: α)

Thierry Martinez (INRIA) The Cream Type System 2009-11-18 9 / 13

Introduction The Cream Type System Hindley-Milner Conclusion

Rule declarations and object definition

Rule declarations (and queries) define constraints, the type system
enforces that they return bool.

Object definition define data structure, the type system enforces that
they don’t return bool.

Consequence: f = 1 has type f :: int (by coercion) whereas p --> 1 has
type p :: bool. p is usable as a predicate, f isn’t.

Thierry Martinez (INRIA) The Cream Type System 2009-11-18 10 / 13

Introduction The Cream Type System Hindley-Milner Conclusion

Type Unification
Goal: Guess the type of the arguments of a definition.

Use type variable as (yet) unknown type.

X1: α1, . . . ,Xn: αn ` e ::α
Γ ` f (X1, . . . ,Xn) = e :: f (α1, . . . , αn) : α

Typing rules enforce equality between types.

Row variables: for (yet) unknown fields of a record.

Γ ` e :: {f : τ, ρ}
Γ ` e : f :: τ

Generalization to type schema for definitions.

Thierry Martinez (INRIA) The Cream Type System 2009-11-18 11 / 13

Introduction The Cream Type System Hindley-Milner Conclusion

bool → int Coercion in a Hindley-Milner framework

Type constructors value(bool) and value(int).

Generalization of value(bool) to value(α) in type schema.

µbool→int only introduced on predicate arguments and value-let.
let(X = (1 = 1), X and X = 1) is ill-typed: the first usage of X has
type value(bool) whereas the second has type value(int).

Thierry Martinez (INRIA) The Cream Type System 2009-11-18 12 / 13

Introduction The Cream Type System Hindley-Milner Conclusion

Conclusion

Early detection of errors
Coding discipline:

I Homogeneous data structures
I Enforces separation between rule declarations and object definitions

Type inference could be less restrictive on coercions with a
Cardelli/Mitchell algorithm.

Thierry Martinez (INRIA) The Cream Type System 2009-11-18 13 / 13

	Introduction
	The Cream Type System
	A Hindley-Milner based type inference algorithm
	Conclusion

