
A Scalable Sweep Algorithm for the cumulative

and bin-packing constraints

Arnaud Letort

TASC team, (EMN-INRIA,LINA) Mines de Nantes, France
arnaud.letort@mines-nantes.fr

Abstract. This paper presents a new sweep based algorithm for the
cumulative constraint that combines filtering with a greedy mode. The
algorithm has a worst case complexity of O(n2 log n) in the context of
cumulative and O(n log n) in the context of bin-packing, where n is the
number of tasks (items). It can handle up to 256000 tasks (items) in less
than 15 minutes within a single cumulative constraint.

Keywords: cumulative, bin-packing, filtering, greedy

1 Introduction

In the 2011 Panel of the Future of CP [4], one of the identified challenges for
CP was the need to handle large scale problems. A typical problem class given
as an example were problems taken from the cloud and more specially multi-
dimensional bin-packing problems [7]. Indeed the importance of bin-packing
problems was recently highlighted in [8] and is the topic of the 2012 Roadef
Challenge [9]. Till now, dedicated algorithms and metaheuristics were used to
deal with large instances. Our main objective is to provide an efficient generic
solution to solve such problems with a CP solver. Typically, filtering algorithms
focus on having the best possible deductions [6], [11] and often reach their worst
time complexity and use a lot of memory which prevent scalability.
The Cumulative Scheduling Problem (CuSP) is a satisfaction problem involving
a unique resource with a given capacity and a set of tasks. The goal is to find
a start time for each task such that the amount of resource needed is always
less than or equal to the capacity of the resource. Nowadays, many real world
scheduling problems are hard to solve just because of the number of tasks in-
volved. To solve them, we need to design fast and light propagation algorithms
that can handle hundreds thousands of tasks (items) within a single constraint.
Originally, the cumulative constraint was introduced in [1] to tackle resource
scheduling problems. The sweep algorithm introduced in [3] performs a pruning
for this constraint, based on the aggregation of compulsory parts (i.e. the com-

pulsory part of a task is the intersection of all its feasible instances).
In this paper, we introduce a new filtering algorithm for the cumulative con-
straint based on a dynamic sweep which brings the following contributions :

– from a practical point of view, a substantial gain in performance compared
to the original sweep algorithm [3].

– a better worst case complexity on bin packing problems (O(n log n)).
– a greedy propagation mode for large instances that is directly derived from

the filtering, combining a classical greedy algorithm with a filtering algo-
rithm.

Section 2 recalls the original sweep algorithm for the cumulative constraint,
highlighting its weak points. Then, section 3 presents key elements of our new
sweep based filtering algorithm and its greedy propagation mode.

2 The Original Sweep Algorithm

The sweep algorithm was originally introduced as a generic pruning technique
in [2]. In 2 dimensions, the sweep moves a vertical line, called the sweep line,
from left to right over discrete locations called event points. The algorithm uses
two data structures:

– A data structure called the sweep-line status, which contains information
related to the current position δ of the sweep line : (1) the height of compul-
sory parts sum height , (2) the list of tasks prune, i.e. the tasks which can
overlap the current sweep-line position.

– An array named the event point series, which holds the events to process,
sorted in increasing order according to the abscissa. These events correspond
to the start and the end of compulsory parts as well as to the earliest starts
of tasks.

After the initialization of the two data structures, the sweep-line reads events
in increasing order and incrementally updates the sweep-line status. In our con-
text, the cumulative constraint, the sweep-line scans the time axis in order to
build the cumulated profile and to perform a pruning of the task origins w.r.t.
this profile and the capacity capa of the resource.

At each position δ of the sweep-line, all events associated to this position
are read and processed. As a consequence, we know the height of the cumulated
profile on the interval [δ, δ′) where δ′ is the next sweep line position. Then, all
tasks overlapping that interval (i.e. tasks in prune) are scanned and pruned if
their height is strictly greater than the available resource.

The sweep algorithm removes intervals of consecutive values from domain
variables. This is a first weakness that prevents handling large instances since
a variable cannot just be compactly represented by its minimum and maximum
values. The second weakness is that it needs to rescan all tasks which overlap
the current position of the sweep line each time the sweep line moves, which
often leads in practice to a quadratic time complexity.

Saturation In order to reach the fixpoint at each node of the search tree, the
sweep algorithm is successively re-run until no pruning occurs any more. This
is due to the fact that the potential increase of the cumulated profile during a
single sweep is not dynamically taken into account. In other words, creations and
extensions of compulsory parts during a sweep are not directly used to perform
more pruning while sweeping.

Complexity The complexity of the original sweep algorithm [3] is O(n2) where
n is the number of tasks. This complexity is often reached in practice when
tasks can be placed everywhere on the time line. Note that the complexity of
the algorithm for the bin packing case (i.e. all tasks duration are set to 1) is left
unchanged.

3 The Dynamic Sweep Algorithm

We now introduce our contribution, a dynamic sweep based filtering algorithm
for the cumulative, and a greedy mode for large instances completely relaying
on this dynamic sweep.
The first major difference with the original sweep is that our algorithm only
deals with variables bounds, which is a good way to reduce the memory con-
sumption attached to the variables. The dynamic sweep algorithm tries to solve
the problem by pruning lower and upper bounds of variables in two distinct
sweep stages. The first stage, called sweep min, tries to prune lower bounds of
the start variables by performing a sweep from left to right whereas the second
stage tries to prune upper bounds by performing a sweep from right to left.
Without loss of generality, we focus on sweep min since the other part is strictly
symmetric.
As we said before, the original sweep has to be re-run to reach its fixpoint, due to
the fact that during a same run, restrictions of the origins are not directly taken
into account. Our sweep min algorithm dynamically uses these deductions to
reach its fixpoint in one single run. This permits to derive a greedy mode using
the sweep min part of the filtering algorithm.

The two main difficulties of sweep min are the following: (1) how to handle
on the fly, pruning of variables bounds during a single sweep, since adjusting
the earliest start of a task may increase its compulsory part which may trigger
extra deductions ? (2) how to avoid rescanning all the tasks at each position
of the sweep-line ? Difficulty (1) will be addressed by introducing the notion
of conditional events, while difficulty (2) will be addressed by introducing a
dedicated data structure.

Data Structures In order to catch on the fly adjustments performed by the
current sweep, we need a data structure to handle events. Indeed, during the
sweep, for each task for which the earliest start is adjusted, we have to update
its associated events. That is why, instead of a sorted array of events, we use the
following data structure:

– A heap hevents for storing the events. We use a heap rather than an array
since new events can be dynamically added during the sweep, and we al-
ways need to know the minimal event date (i.e. the next event date). A a
consequence, events are recorded in the heap by their increasing date.

Once all events on a given position δ are handled and the next event date
δ′ is known, the filtering procedure scans each task which overlaps the interval
[δ, δ′) (i.e. tasks in prune). For each task, it checks that its height is less or equal

than the gap (i.e. the capacity of the resource minus the height of the cumulated
profile), if not, the start variable of the task is pruned. Based on the fact that, if
the start variable of task t needs to be pruned on the current sweep-line position,
start variable of all tasks with a greater height than ht need to be pruned too.
And symmetrically, if start variable of task t does not need to be pruned, start
variable of all tasks in prune with a less or equal height don’t need to be pruned.
We introduce the two following data structures :

– A heap hcheck for storing tasks for which the current tested position is fea-
sible. The tasks are recorded in the heap by decreasing height.

– A heap hconflict for storing tasks for which we know that we will have to
update their earliest start since the current tested position is infeasible. The
tasks are recorded in the heap by increasing height.

These two heaps avoid a pitfall of the original sweep which consists in rescanning
all tasks of prune at each sweep-line position.

Dynamic Events Like the original sweep algorithm, each task generates a list of
events which are inserted into hevents . The fact that we need during the sweep to
dynamically take into account the filtering performed, forces us to introduce new
dynamic events. According to its type, an event points to: the earliest starting
time of the task (i.e. PR type), the start of a compulsory part (i.e. SCP type),
the end of a compulsory part (i.e. ECP type). We introduce a new event type
(compared to the original sweep) called CCP event, standing for Conditional

Compulsory Part. This event is generated for each task which initially has no
compulsory part and is set to its latest starting time. Since sweep min algorithm
sweeps and prunes lower bounds of start variables, it denotes the first time point
where the compulsory part of the task can start, iff the task is pruned enough.

Synchronize Data Structures The introduction of dynamic events in our
algorithm brings synchronization problems between the real current state of
tasks and the information stored into the data structures. For instance, before
each extraction from the heap hevents , we must check that the top event is
always valid. Since the compulsory part of a task can dynamically be extended or
created, some events generated during the initialization step and always present
in the heap, can be de-synchronized. There are two cases where an event is
desynchronized.
The first one is the case where a task t initially without compulsory part is
pruned enough to have one. When the sweep-line reads the CPP event of task t,
it checks that t still does not have a compulsory part. If it does, it adds the two
events corresponding to the start and the end of the compulsory part (i.e. SCP
and ECP) in hevents . Since we only adjust lower bounds, the date of the SCP

event type is the same that the de-synchronized CCP event.
The second case involves a task t which initially has a compulsory part. If its
earliest starting time is pruned, the end of its compulsory part is pushed to the
the right, so its initial ECP event is de-synchronized and need to be updated.

Property For a task t, st denotes its start variable, et its end variable and ht

its height. For a given variable v, v denotes its lower bound, v its upper bound.
T denotes the set of tasks of the problem and C the capacity of the resource.
The sweep min algorithm ensures the following property:

∀t ∈ T, ∀i ∈ [st, et) : ht +
∑

t
′∈T\{t}

s
t′
≤i<e

t′

ht′ ≤ C (1)

The property ensured by the sweep min algorithm is that for any task t of the
problem scheduled to its earliest position, the cumulated profile of compulsory
parts (including task t) does not exceed the capacity of the resource C.

Complexity In a cumulative problem, the overall complexity of the dynamic
sweep algorithm is O(n2 logn). This worst case can be reached when tasks are
often switched between hcheck and hconflict . This can occur when the cumulated
profile consists of a succession of peaks and valleys. Despite all, the introduction
of new data structures permits to avoid this worst case in practice. For the
bin-packing problem, our new data structures permit to reduce the complexity
to O(n log n). Indeed, the earliest start of the tasks of duration one that exit
hconflict can directly be adjusted (i.e. hcheck is unused).

Greedy Mode The main motivation for a greedy propagation mode is to handle
large instances in a CP solver. This propagation mode is closely related to the
sweep min part of the filtering algorithm in the sense that once the minimum
value of a start variable is found, the greedy mode directly fixes the task to its
earliest start rather than adjusting it. Intuitively, the greedy is an opportunistic
mode of the sweep min algorithm which tries to build a solution in a single
sweep.

4 Evaluation

We implement the dynamic sweep algorithm on Choco [10] and run large random
instances of cumulative and bin packing problems. For cumulative problems we
have compared the time needed to find a first solution with the three follow-
ing algorithms, the original sweep (denoted by sweep) which is already present
in Choco, the new dynamic sweep (denoted by dynamic) and the greedy mode
(denoted by greedy). For bin packing problems, we also test a dedicated fil-
tering algorithm (denoted by fastbp) coming from entropy [5], an open-source
autonomous virtual machines manager. Benchmarks were run with an Intel i7
720QM processor, a memory limited to 2.5GB under Windows 7 64 bits.

We observe that the dynamic sweep algorithm is clearly faster than the origi-
nal sweep algorithm in Choco. This difference is partially due to an inappropriate
design of the code for large scale instances. Anyways, we can see that the greedy
mode has a better scalability than the two other algorithms. For bin-packing
problems, the dedicated constraint (fastbp) is faster than the dynamic sweep
(even if it does not scale as well), but always beaten by the greedy.

of cumulative instances bin-packing instances
tasks sweep dynamic greedy sweep dynamic fastbp greedy

1000 16.1 2.2 0.4 4.6 1.9 0.3 0.4
2000 168.3 6.4 0.8 34.8 6.2 0.8 0.5
4000 1284 26.3 2.1 269.1 26.0 3.4 0.6
8000 to 128.8 4.6 to 143.6 27.3 1.0
16000 to 588.2 13.9 to 605.0 175.9 2.0
32000 to to 38.7 to to m.o. 6.6
64000 to to 124.9 to to m.o. 23.5
128000 to to 388.9 to to m.o. 83.9
256000 to to 1309 to to m.o. 832.3

Table 1. Average time in seconds to find a first solution to the problem with the
heuristic first-fail. Timeout is fixed to 1800s. (to stands for timeout, m.o. for memory

overflow))

5 Conclusion

We have presented a new sweep based filtering algorithm which dynamically
handle deductions during a unique sweep stage. It reaches its fixpoint in only
one run which permits to design an efficient greedy mode. Future work will focus
on the adaptation of this algorithm to multiple resources.

Acknowledgments The author would like to thank Nicolas Beldiceanu for
his valuable contribution, Mats Carlsson for his help with the code and Sophie
Demassey for providing the constraint fastbp.

References

1. Aggoun, A., Beldiceanu, N.: Extending CHIP in order to Solve Complex Scheduling
and Placement Problems. Mathl. Comput. Modelling 17(7), 57–73 (1993)

2. Beldiceanu, N., Carlsson, M.: Sweep as a generic pruning technique applied to the
non-overlapping rectangles constraint. In: CP. pp. 377–391 (2001)

3. Beldiceanu, N., Carlsson, M.: A New Multi-Resource cumulatives Constraint with
Negative Heights. In: CP 2002. LNCS, vol. 2470, pp. 63–79. Springer-Verlag (2002)

4. Freuder, E., Lee, J., O’Sullivan, B., Pesant, G., Rossi, F., Sellman, M., Walsh, T.:
The future of cp. personal communication (2011)

5. Hermenier, F., Demassey, S., Lorca, X.: The bin-repacking scheduling problem in
virtualized datacenters. In: CP’11. LNCS, Springer-Verlag, Perrugia, Italy (2011)

6. Kameugne, R., Fotso, L.P., Scott, J., Ngo-Kateu, Y.: A quadratic edge-finding
filtering algorithm for cumulative resource constraints. In: CP. pp. 478–492 (2011)

7. O’Sullivan, B.: Cp panel position - the future of cp. personal communication (2011)
8. Régin, J.C., Rezgui, M.: Discussion about constraint programming bin packing

models. In: AI for Data Center Management and Cloud Computing. AAAI (2011)
9. ROADEF: Challenge 2012 machine reassignment (2012),

http://challenge.roadef.org/2012/en/index.php
10. Team, C.: Choco: an open source java CP library. Research report 10-02-INFO,

Ecole des Mines de Nantes (2010), http://choco.emn.fr/
11. Viĺım, P.: Edge finding filtering algorithm for discrete cumulative resources in o(kn

log n). In: CP. pp. 802–816 (2009)

