
Using Global Constraints for Rectangle Packing

Helmut Simonis and Barry O’Sullivan

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

{h.simonis|b.osullivan}@4c.ucc.ie

Abstract. In this paper we solve the optimal rectangle packing problem
using Cumulative and Disjoint2 constraints in SICStus Prolog with a
novel decomposition method, together with a specialized search routine
and various model enhancements. We improve the best known runtimes
by up to a factor of 300.

1 Introduction

Rectangle packing is an important application domain for constraint program-
ming, with significant research into improved constraint propagation methods
being reported in the literature [1–7, 12]. In this paper we consider a particular
case of rectangle packing from [9–11]. The objective is to fit all squares of size
1 × 1 to N × N into the rectangle with the smallest area that can contain all
items. Optimal solutions are known for values of N from 1 to 25.

We introduce a simple decomposition method to define subproblems of fixed
size, for which we use the standard formulation with global Disjoint2 (non-
overlapping) and Cumulative constraints, and add problem specific improve-
ments and search routine. We consider this problem to be more attractive as
a benchmark comparison for general packing problems than the perfect square
packing problems considered in [1–7, 12], as it requires non-trivial infeasibility
proofs and contains subproblems with different amounts of slack and aspect ra-
tio. The related square packing problem considers finding the smallest square to
hold all items.

Our results show that our approach is competitive with the best known al-
gorithms, improving the runtimes consistently by a factor of between 100 and
300. We also provide six new optimal solutions to the optimal square packing
problem.

2 Constraint Programming Model

We use the established constraint model [2, 6] for the rectangle packing problem.
Each item to be placed is defined by domain variables X and Y for the origin
in the x, respectively y, dimension, and two integer constants W and H for
the width, and respectively the height, of the rectangle. In the particular case
of packing squares, W and H are identical. The constraints are expressed by a



non-overlapping constraint in two dimensions and two (redundant) Cumulative

constraints that work on the projection of the packing problem in x or y direction.
This is illustrated by Figure 1. We use SICStus Prolog 4.0.2 [8], which provides
both Cumulative [1] and Disjoint2 [3] constraints for this purpose.

Disjoint2

Cumulative

Cumulative

X,Y

W

H

Width

Height

Fig. 1. The basic constraint programming model.

2.1 Decomposition

To find the enclosing rectangle with smallest area, we need a decomposition
strategy that generates sub-problems with fixed enclosing rectangle sizes. As a
first step we solve the square packing problem and obtain its optimal solution
UB. We then enumerate all pairs Width, Height that satisfy

[Width, Height] :: n..∞, Width > Height

n
∑

i=1

i2 ≤ Width ∗ Height ≤ UB2

Width ≥

n
∑

j=

⌊

Height+1

2

⌋

j. (1)



Equation 1 implements a simple bound on the required area, considering all large
squares that cannot be stacked on top of each other, and which therefore must
all fit horizontally.

We compute all solutions (bounding rectangles), and sort them by increasing
area and increasing Height, i.e. for two solutions with the same surface we try
the “less square-like” solution first. We then solve the rectangle packing prob-
lem for each such rectangle in turn, until we find the first feasible solution. By
construction, this is an optimal solution.

Note that this decomposition approach differs from both [10] and [11]. Moffitt
and Pollack do not impose a priori limits on the rectangle to be filled, while
Korf builds solutions starting from an initial wide rectangle. Both methods are
anytime algorithms, while our method only provides one initial feasible solution.
Whether this distinction is important will depend on the particular intended
application. Note that Korf will have to show infeasibility of the same or larger,
more difficult rectangles to prove optimality, while the search space for Moffitt
and Pollack looks very different.

2.2 Symmetry Removal

The model so far contains a number of symmetries, which we need to remove
as we may have to explore the complete search space. We restrict the domain of
the largest square of size N × N to be placed in an enclosing rectangle of size
Width × Height to

X :: 1..1 +

⌊

Width − N

2

⌋

, Y :: 1..1 +

⌊

Height− N

2

⌋

.

3 Search Strategy

We have tested a number of search strategies for this problem; three methods
are competitive for different sub-problem types. The x interval strategy of [4]
first splits the domain of the x variables into intervals (in order of decreasing
square size), before choosing fixed values for them. It then repeats the process
for the y variables. The size of the interval is an important parameter and is
fixed empirically to 0.3 times the size of each square. This method works well for
non-square like problems with little or no slack and is the default used in the ex-
periments. The xy interval strategy splits both x and y variables for each square
into intervals, creating obligatory parts for both Cumulative and Disjoint2

constraints. It is the most stable of the methods, and works reasonable well even
if there is slack in the problem. An interval size of 0.75 times the square size
worked best for the problems considered. The dual strategy from [2, 6] chooses
subsets of squares and fixes them to the left-most position possible, before fix-
ing the y variables. This method only works if there is little or no slack in the
sub-problem.



4 Model Improvements

We also consider a number of improvements to the basic model, which signifi-
cantly reduce runtime and/or backtracking steps. The first idea is to ignore the
1×1 square when setting up the constraints, as it can fit in any available gap left
by the other squares. Contrary to [4], where this increased execution times by up
to a factor of 7, we find that in our case it reduces runtime significantly. This is
probably due to the amount of slack already present in most subproblems, while
the perfect square packing problem has no slack at all.

The second idea is an adaptation of the empty strip dominance criterion of [9]
to our model. This is a problem specific symmetry breaking method that rejects
some partial packings where squares are either within a certain distance from the
border, or from each other. The first case can be expressed by a simple domain
restriction of the x and y variables, the second needs a specialized, redundant
constraint that checks the distance between facing squares. This is weaker than
the pruning in [9] and reduces the number of backtracks only marginally, while
increasing runtime slightly. In the experiments below only the domain restriction
is applied.

5 Results

Table 1 shows the experimental results for the rectangle packing problem of sizes
17 to 25. The columns have the following meaning:

– N is the problem size;

– Surface is the total surface area of all squares to be packed;

– For the Square packing, Size is the length and Area the surface area of the
minimal enclosing square; Loss is the spare space (as a percentage of Surface)
required;

– For the Rectangle packing, K is the number of subproblems that had to be
checked, Width and Height are the size of the optimal rectangle, and Area

is its surface area; Loss is the spare space in the optimal rectangle as a
percentage;

– B1 and B2 are the backtrack steps as reported by SICStus Prolog required
for the square and rectangle packing, T1 and T2 the time (in HH:MM:SS)
required, respectively.

Table 2 compares our results to the ones reported in [11]. The results for
Clautiaux, Korf and BlueBlocker were obtained on a Linux Opteron 2.2GHz
machine with 8Gb of RAM. Our results use SICStus 4.0.2 on a 2GHz Pentium
M Linux laptop with 1Gb of memory, i.e. our hardware was slower and had
less memory than the hardware used to obtain the results we compare with. The
previous best time for size 25 in [10] was over 42 days, although on a significantly
slower machine.



Table 1. Rectangle Placement Overview.

Square Rectangle Backtrack Time
N Surface Size Area Loss K Width Height Area Loss B1 B2 T1 T2

17 1785 43 1849 3.59 5 39 46 1794 0.50 928 1837 00:00 00:00

18 2109 47 2209 4.74 13 31 69 2139 1.42 183084 29803 00:09 00:03

19 2470 50 2500 1.21 12 47 53 2491 0.85 11902 31651 00:02 00:03

20 2870 54 2916 1.60 14 34 85 2890 0.70 5716 53347 00:01 00:08

21 3311 58 3364 1.60 19 38 88 3344 1.00 16035 208947 00:04 00:27

22 3795 62 3844 1.29 15 39 98 3822 0.71 17133 886235 00:05 02:36

23 4324 66 4356 0.74 19 64 68 4352 0.65 140396 4771926 00:45 14:19

24 4900 71 5041 2.88 17 56 88 4928 0.57 378894 8278035 00:28 28:14

25 5525 75 5625 1.81 17 43 129 5547 0.40 985287 74084617 06:41 03:56:08

Table 2. Comparison with the current state-of-the-art.

N Clautiaux Korf BlueBlocker SICStus Improvement Factor

18 31:33 1:08 1:29 0:03 22

19 72:53:18 8:15 4:11 0:03 83

20 13:32 15:03 0:08 101

21 1:35:08 1:32:01 0:27 204

22 6:46:15 4:51:23 2:36 112

23 36:54:50 29:03:49 14:19 121

24 213:33:00 146:38:48 28:14 311

25 3:56:08

6 Incomplete Heuristics

We also considered incomplete heuristics to find good solutions for the problem
and evaluated these on the square packing problem. They are based on the
well-known observation that good packing solutions place the large items in the
corner and on the edges of the enclosing field without any lost space. The smaller
items and the slack space are used inside the packing area. We only consider one
side, say the left one, of the board for our heuristic, and assume that the biggest
square is placed in the bottom left corner. We then try to find combinations of
K − 1 other squares that fill the left edge completely.

We precompute all possible solutions with a small finite domain constraint
program. Once all solutions are found, we order them by decreasing size of the
smallest square, and use them as initial branches in our packing model, setting
the x coordinate of the selected squares to 1, as well as fixing the biggest square in
position (1, 1). Note that we do not fix the relative placement in the y direction,
this is determined by the remainder of the search routine. If no solution for the
given Size is found, we backtrack and recompute the heuristic for the next larger
value.

Optimal solutions for the square packing problem up to size 25 are already
known from [10]. We find six new optimal values shown in Table 3, Topt is the
time required to find the optimal solution, Tproof the time for the proof of
optimality with the full model. A dash indicates that a lower bound is reached,
thus implicitly proving optimality.



Table 3. New optimal solutions for square packing.

Problem Size 26 27 29 30 31 35

Optimal Solution 80 84 93 98 103 123

Topt 12:26 00:04 11:06 2:07 00:18 1:10:07

Tproof 1:25:22 - - - - -

Acknowledgment

This work was supported by Science Foundation Ireland (Grant Number 05/IN/I886).
The authors wish to thank Mats Carlsson, who provided the SICStus Prolog 4.0.2
used for the experiments.

References

1. A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complex schedul-
ing problems. Journal of Mathematical and Computer Modelling, 17(7):57 –73,
1993.

2. N. Beldiceanu, E. Bourreau, and H. Simonis. A note on perfect square placement,
1999. Prob009 in CSPLIB.

3. N. Beldiceanu and M. Carlsson. Sweep as a generic pruning technique applied to
the non-overlapping rectangles constraint. In Walsh [13], pages 377–391.

4. N. Beldiceanu, M. Carlsson, and E. Poder. New filtering for the cumulative con-
straint in the context of non-overlapping. In CP-AI-OR 08, Paris, May 2008. to
appear.

5. N. Beldiceanu, M. Carlsson, E. Poder, R. Sadek, and C. Truchet. A generic geo-
metrical constraint kernel in space and time for handling polymorphic -dimensional
objects. In Christian Bessiere, editor, CP, volume 4741 of Lecture Notes in Com-

puter Science, pages 180–194. Springer, 2007.
6. N. Beldiceanu and E. Contejean. Introducing global constraints in CHIP. Journal

of Mathematical and Computer Modelling, 20(12):97–123, 1994.
7. N. Beldiceanu, Q. Guo, and S. Thiel. Non-overlapping constraints between convex

polytopes. In Walsh [13], pages 392–407.
8. M. Carlsson et al. SICStus Prolog User’s Manual. Swedish Institute of Computer

Science, release 4 edition, 2007. ISBN 91-630-3648-7.
9. R. E. Korf. Optimal rectangle packing: Initial results. In E. Giunchiglia, N. Muscet-

tola, and D. S. Nau, editors, ICAPS, pages 287–295. AAAI, 2003.
10. R. E. Korf. Optimal rectangle packing: New results. In Shlomo Zilberstein, Jana

Koehler, and Sven Koenig, editors, ICAPS, pages 142–149. AAAI, 2004.
11. M. D. Moffitt and M. E. Pollack. Optimal rectangle packing: A meta-CSP ap-

proach. In Derek Long, Stephen F. Smith, Daniel Borrajo, and Lee McCluskey,
editors, ICAPS, pages 93–102. AAAI, 2006.

12. P. Van Hentenryck. Scheduling and packing in the constraint language cc(FD). In
M. Zweben and M. Fox, editors, Intelligent Scheduling. Morgan Kaufmann Pub-
lishers, San Francisco, USA, 1994.

13. T. Walsh, editor. Principles and Practice of Constraint Programming - CP 2001,

7th International Conference, CP 2001, Paphos, Cyprus, November 26 - December

1, 2001, Proceedings, volume 2239 of Lecture Notes in Computer Science. Springer,
2001.


