
OADymPPaC - Réalisation 3.2.3

Explanation-based repair techniques for
constraint programming

Narendra Jussien and Romuald Debruyne

École des Mines de Nantes
4, rue Alfred Kastler – BP 20722

F-44307 Nantes Cedex 3
email: jussien@emn.fr

Résumé

Dans ce document, nous présentons un nouveau paradigme pour la programma-
tion par contraintes : la programmation par contraintes avec explications. Nous
montrons plus précisément l’intérêt de l’utilisation des explications pour définir des
techniques de réparations qui permettent d’obtenir de nouveaux algorithmes effi-
caces pour résoudre les problèmes de satisfaction de contraintes.

Abstract

In this paper, we introduce a new paradigm for constraint programming: explanation-
based constraint programming. We emphasize the interest of using explanations to
design repair techniques in order to provide new efficient algorithms and heuristic
for solving constraint satisfaction problems.

1 Introduction

Constraint satisfaction problems (csp) [37] have proven to be an efficient model for
solving many combinatorial and complex problems. Most of work on this topic rely on
both enhancing search performances and extending the original model.

Explanations for constraint programming appear to be a good tool to be used for
performing both objectives. Indeed, they can be used to store contradictions encountered
during search and to identify relevant choice to undo when trapped in a dead-end. They
therefore avoid falling repeatedly in the same portion of the search and reduce thrashing.
Moreover, they extend the classical static csp framework by allowing efficient constraint
retractions.

In this paper, we introduce some new usage of explanations: designing explanation-
based repair techniques to improve search. A new family of algorithms is introduced
based on the decision-repair algorithm [26]. The interest of the new philosophy in-
troduced by the active use of explanations within constraint programming is illustrated
on a combinatorial optimisation problem.

1

2

Our paper is organized as follows: first, some theoretical background about csp
is recalled, then explanations are formally introduced. In Section 4, a new paradigm
is introduced: explanation-based constraint programming. Finally, an application is
described showing the interest of the new approaches.

2 Constraint Satisfaction Problems

We introduce here a formal model for representing both a constraint network and its
resolution (domain reductions and constraint propagation).

2.1 The constraint network

Following [37], a Constraint Satisfaction Problem is made of two parts: a syntactic part
and a semantic part. The syntactic part is a finite set V of variables, a finite set C of
constraints and a function var : C → P(V), which associates a set of related variables to
each constraint. Indeed, a constraint may involve only a subset of V . For the semantic
part, we need to consider various families f = (fi)i∈I . Such a family is referred to by
the function i 7→ fi or by the set {(i, fi) | i ∈ I}.

2.1.1 Domains

(Dx)x∈V is a family where each Dx is a finite non empty set of possible values for x. We
define the domain of computation by D =

⋃
x∈V ({x} ×Dx). This domain allows simple

and uniform definitions of (local consistency) operators on a power-set. For reduction,
we consider subsets d of D. Such a subset is called an environment. Let d ⊆ D, W ⊆ V ,
we denote by d|W = {(x, e) ∈ d | x ∈ W}. d is actually a family (dx)x∈V with dx ⊆ Dx:
for x ∈ V , we define dx = {e ∈ Dx | (x, e) ∈ d}. dx is the domain of variable x.

2.1.2 Constraints as set of allowed tuples

Constraints are defined by their set of allowed tuples. A tuple t on W ⊆ V is a par-
ticular environment such that each variable of W appears only once: t ⊆ D|W and
∀x ∈ W,∃e ∈ Dx, t|{x} = {(x, e)}. For each c ∈ C, Tc is a set of tuples on var(c), called
the solutions of c. Note that a tuple t ∈ Tc is equivalent to a family (ex)x∈var(c) and t is
identified with {(x, ex) | x ∈ var(c)}.

We can now formally define a csp and a solution to it.

Definition 1 A Constraint Satisfaction Problem (csp) is defined by: a finite set V of
variables; a finite set C of constraints; a function var : C → P(V); a family (Dx)x∈V

(the domains); a family (Tc)c∈C (the constraints semantics).

Definition 2 A solution for a csp (V,C, var, (Dx)x∈V , (Tc)c∈C) is a tuple s on V such
that ∀c ∈ C, s|var(c) ∈ Tc.

2.2 Domain reduction and propagation

Two more key concepts need some details: the domain reduction mechanism and the
propagation mechanism itself.

3

2.2.1 Local propagators

A constraint is fully characterized by its behavior regarding modification of the environ-
ments of the variables. Local consistency operators are associated with the constraints.
Such an operator has a type (Win ,Wout) with Win ,Wout ⊆ V . For the sake of clarity,
we will consider in our formal presentation that each operator is applied to the whole en-
vironment, but, in practice, it only removes from the environments of Wout some values
which are inconsistent with respect to the environments of Win .

Definition 3 A local consistency operator of type (Win ,Wout), with Win ,Wout ⊆ V , is
a monotonic function r : P(D) → P(D) such that: ∀d ⊆ D, r(d)|V \Wout

= D|V \Wout
, and

r(d) = r(d|Win)

Example 1 (Constraint x ≥ y + c):
x ≥ y + c is one of the basic constraints in choco. It is represented by the
GreaterOrEqualxyc class. Reacting to an upper bound update for this constraint
can be stated as: if the upper bound of x is modified then the upper bound of y
should be lowered to the new value of the upper bound of x (taking into account the
constant c). This is encoded as:

[awakeOnSup(c:GreaterOrEqualxyc,idx:integer)

-> if (idx = 1)

updateSup(c.v2,c.v1.sup - c.cste)]

idx is the index of the variable of the constraint whose bound (the upper bound
here) has been modified. This particular constraint only reacts to modification of the
upper bound of variable x (c.v1 in the choco representation of the constraint). The
updateSup method only modifies the value of y (c.v2 in the constraint) when the
upper bound is really updated.
The awakeOnSup method can be considered as a local consistency operator with Win =
{c.v1} and Wout = {c.v2}.

Classically [15, 38, 4, 2], reduction operators are considered as monotonic, contrac-
tant and idempotent functions. However, on the one hand, contractance is not mandatory
because environment reduction after applying a given operator r can be forced by in-
tersecting its result with the current environment, that is d ∩ r(d). On the other hand,
idempotence is useless from a theoretical point of view (it is only useful in practice for
managing the propagation queue). This is generally not mandatory to design effective
constraint solvers. We can therefore use only monotonic functions in definition 3.

The solver semantics is completely described by the set of such operators associated
with the handled constraints. More or less accurate local consistency operators may be
selected for each constraint. Moreover, this framework is not limited to arc-consistency
but may handle any local consistency which boils down to domain reduction as shown in
[16].

Of course local consistency operators should be correct with respect to the constraints.
In practice, to each constraint c ∈ C is associated a set of local consistency operators
R(c). The set R(c) is such that for each r ∈ R(c): let (Win ,Wout) be the type of r with
Win ,Wout ⊆ var(c); for each d ⊆ D, t ∈ Tc: t ⊆ d ⇒ t ⊆ r(d).

4

2.2.2 Constraint propagation

Propagation is handled through a propagation queue (containing events or conversely
operators to awake). Informally, starting from the given initial environment for the
problem, a local consistency operator is selected from the propagation queue (initialized
with all the operators) and applied to the environment resulting to a new one. If an
environment/domain reduction occurs, new operators (or new events) are added to the
propagation queue.

Termination is reached when:

1. a variable environment is emptied: there is no solution to the associated problem;

2. the propagation queue is emptied: a common fix-point (or a desired consistency
state) is reached ensuring that further propagation will not modify the result.

The resulting environment is actually obtained by sequentially applying a given se-
quence of operators. To formalize this result, let consider iterations.

Definition 4 The iteration [2] from the initial environment d ⊆ D with respect to an
infinite sequence of operators of R: r1, r2, . . . is the infinite sequence of environments
d0, d1, d2, . . . inductively defined by: d0 = d; for each i ∈ N, di+1 = di ∩ ri+1(di). Its
limit is ∩i∈Ndi.

A chaotic iteration is an iteration with respect to a sequence of operators of R where
each r ∈ R appears infinitely often.

The most accurate set which can be computed using a set of local consistency oper-
ators in the framework of domain reduction is the downward closure. Chaotic iterations
have been introduced for this aim in [14].

Definition 5 The downward closure of d by a set of operators R is CL ↓ (d,R) =
max{d′ | d′ ⊆ d,∀r ∈ R, d′ ⊆ r(d′)}.

Note that if R′ ⊆ R, then CL ↓ (d,R) ⊆ CL ↓ (d,R′).
Obviously, each solution to the csp is in the downward closure. It is easy to check that

CL ↓ (d,R) exists and can be obtained by iteration of the operator d′ 7→ d′ ∩⋂
r∈R r(d′).

Using chaotic iteration provides another way to compute CL ↓ (d,R) [12]. Iterations
proceed by elementary steps. Chaotic iterations is a convenient theoretical definition but
in practice each iteration is finite and fair in some sense.

Lemma 1 The limit of every chaotic iteration of the set of local consistency operators
R from d ⊆ D is the downward closure of d by R.

This well-known result of confluence [12, 14] ensures that any chaotic iteration reaches
the closure. Notice that, since ⊆ is a well-founded ordering (i.e. D is a finite set), every
iteration from d ⊆ D (obviously decreasing) is stationary, that is, ∃i ∈ N, ∀j ≥ i, dj =
di: in practice computation ends when a common fix-point is reached (eg. using a
propagation queue).

5

2.2.3 Search

The computation of a solution to a constraint problem often needs a so-called enumera-
tion phase. Indeed, in many occasions, constraint propagation is not sufficient to reduce
the environment to a set of singletons.

The enumeration phase can be modelled as a sequence of constraint additions and
retractions (backtracks). As long as no solution is found, a variable with a domain with at
least two values is selected and a decision is made: reducing the domain1. This reduction
can be considered as the addition of a decision constraint to the current constraint system.

Definition 6 A decision constraint is a constraint that helps reducing at least one do-
main in an environment when solving a constraint satisfaction problem.

Then, a propagation step is performed. As usual, if a domain is emptied, a backtrack
occurs (the last decision is retracted); if the current environment is not reduced to a set
of singletons, the decision process is repeated until a solution is found or no decision
constraint is left to be retracted (the problem is over-constrained). This is a tree-based
search process.

As the constraints system evolves throughout resolution, a notion of context is needed
to describe a given state of the resolution.

Definition 7 A context for a constraint satisfaction problem is composed of two sets: the
set of the original constraints of the problem and a set of decision constraints. Typically,
the latter represents the current path in the search tree that is being explored.

3 Explanations for constraint propagation

Informally, an explanation-set is a set of constraints that justifies a domain reduction.
As we will see through the concept of explanation-tree, explanations can be derived from
the resolution of the csp.

3.1 The basics: explanation-sets

Definition 8 Let R be the set of all local consistency operators. Let h ∈ D and d ⊆ D.
We call explanation-set for h w.r.t. d a set of local consistency operators E ⊆ R such
that h 6∈ CL ↓ (d,E).

Since E ⊆ R, CL ↓ (d,R) ⊆ CL ↓ (d,E). Hence, if E is an explanation-set for h then
each super-set of E is an explanation-set for h. An explanation-set E is independent of
any chaotic iteration with respect to R.

For each h 6∈ CL ↓ (d, R), expl(h) represents any explanation-set for h. Notice that
for any h ∈ CL ↓ (d, R), expl(h) does not exist.

1Classically, such a decision amounts to reduce the current domain to a single value (variable as-
signment) but this can be more general as in numeric csp where a splitting is made, or for scheduling
problem where a precedence constraint is posted

6

3.2 More information: explanation-trees

Explanation-sets are a compact representation of a sufficient set of constraints to achieve a
given domain reduction. A more complete description of the interaction of the constraints
responsible for this domain reduction can be introduced through explanation-trees. We
need to introduce the notion of deduction rule related to local consistency operators.

3.2.1 Deduction rules and local consistency operators

Definition 9 A deduction rule of type (Win ,Wout) is a rule h ← B such that h ∈ D|Wout

and B ⊆ D|Win
.

The intended semantics of a deduction rule h ← B can be presented as follows: if
all the elements of B are removed from the environment, then h does not appear in any
solution of the csp and may be removed harmlessly.

A set of deduction rules Rr may be associated with each local consistency operator r.
It is intuitively obvious that this is true for arc-consistency enforcement but it has been
proved in [16] that for any local consistency which boils down to domain reduction it is
possible to associate such a set of rules (moreover it shows that there exists a natural
set of rules for classical local consistencies). It is important to note that, in the general
case, there may exist several rules with the same head but different bodies.

We consider the set R of all the deduction rules for all the local consistency operators
of R defined by R = ∪r∈RRr.

The initial environment must be taken into account in the set of deduction rules:
the iteration starts from an environment d ⊆ D; it is therefore necessary to add facts
(deduction rules with an empty body) in order to directly deduce the elements of d: let
Rd = {h ← ∅ | h ∈ d} be this set.

3.2.2 Proof-trees

Definition 10 A proof tree with respect to a set of rules R∪Rd is a finite tree such that
for each node labelled by h, let B be the set of labels of its children, h ← B ∈ R ∪Rd.

Proof trees are closely related to the computation of environment/domain reduction.
Let d = d0, . . . , di, . . . be an iteration. For each i, if h 6∈ di then h is the root of a proof
tree with respect to R∪Rd. More generally, CL ↓ (d,R) is the set of the roots of proof
trees with respect to R∪Rd.

Each deduction rule used in a proof tree comes from a packet of deduction rules,
either from a packet Rr defining a local consistency operator r, or from Rd.

A set of local consistency operators can be associated with a proof tree:

Definition 11 Let t be a proof tree. A set X of local consistency operators associated
with t is such that, for each node of t: let h be the label of the node and B the set of
labels of its children: either h 6∈ d (and B = ∅); or there exists r ∈ X, h ← B ∈ Rr.

Note that there may exist several sets associated with a proof tree. Moreover, each
super-set of a set associated with a proof tree is also convenient (R is associated with all
proof trees). It is important to recall that the root of a proof tree does not belong to the
closure of the initial environment d by the set of local consistency operators R. So there
exists an explanation-set (definition 8) for this value.

7

Lemma 2 If t is a proof tree, then each set of local consistency operators associated with
t is an explanation-set for the root of t.

From now on, a proof tree with respect to R∪Rd is therefore called an explanation-
tree. As we just saw, explanation-sets can be computed from explanation-trees.

3.3 Basic properties for explanations

Characterizing explanations is helpful when comparing or using explanations.

3.3.1 Preciseness

Definition 12 An explanation-set e1 is said to be more precise than explanation-set e2

iff e1 ⊂ e2.

This is a simple way of defining precise explanation-sets. However, there exists other
possibilities: preciseness could be defined regarding the reduction power of operators,
the scope (number of involved variables) of the constraints, etc.

Notice that determining for any value removal the most precise explanation-set (at
least on of them as several not comparable ones may exist) often amounts to solve an
NP-hard problem.

3.3.2 Validity and k-relevance

Explanation-sets are a self-contained concept. However, a given explanation-set may not
be relevant in the current context (the set of constraints and active decisions).

Definition 13 An explanation-set e is said to be valid or relevant w.r.t. the current
context C iff

{c|∃r ∈ e, r ∈ R(c)} ⊂ C

Following [3], we introduce the concept of k-relevance for explanation-sets to measure
their distance from full validity.

Definition 14 An explanation-set e is said to be k-relevant w.r.t. the current context
C iff

#{c|∃r ∈ e, r ∈ R(c), c 6∈ C} < k

4 Explanation-based search for constraint program-
ming

The usage of explanations within a constraint programming language leads to new pro-
gramming gimmicks and new approaches. Those new approches are designed under the
name explanation-based constraint programming (e-constraints for short).

8

4.1 From backtrack-based to explanation-based solving

Most of csp solving algorithms are derived from a backtrack-based complete search. The
drawbacks of this approach have been known for a long time: thrashing and backtrack-
ing to irrelevant choice points. The previously developed fancy backtrackers were not
really convincing to address that issue (time or space overhead, no real advantages) [5].
Nevertheless, more recently, the mac-dbt algorithm [25] showed that explanation-based
algorithms could compete well with backtrack-based algorithms in real-world situations.
mac-dbt algorithm is to dbt what mac is to sb. That algorithm can be described using
a very generic algorithm that appears as the archetype of explanation-based constraint
solving.

4.1.1 From standard backtracking to dynamic backtracking

Most of complete search algorithms over Constraint Satisfaction Problems (csp) are
based on Standard Backtracking (sb): a depth-first search is performed using chrono-
logical backtracking. Various intelligent backtrackers have been proposed: Conflict-
directed BackJumping (cbj) [32], Dynamic Backtracking (dbt) [17], Partial order Dy-
namic Backtracking (pdb) [18], Generalized Dynamic Backtracking (gpb) [6], etc. In
those algorithms, information (namely a special case of explanations: nogoods) is kept
when encountering inconsistencies so that the forthcoming search will not get back to
already known traps in the search space.

Dependency Directed Backtracking (ddb) [35] was the first algorithm to use this en-
hancement, however it has an important drawback: its space complexity is exponential
since the number of nogoods it stores increases monotically. To address this problem, al-
gorithms such as cbj or dbt eliminate nogoods that are no longer relevant to the current
variable assignment. By doing so, the space complexity remains polynomial.

When a failure occurs, those algorithms have to identify the assignment to be recon-
sidered (suspected to be a culprit for the failure).

• sb always considers the most recent assignment to be a culprit. This selection may
be completely irrelevant for the current failure leading to useless exploration of
parts of the search tree already known to be dead-ends (thrashing).

• In cbj a conflict-set is associated to each variable: CSvi (for the variable vi) con-
tains the set of the assigned variables whose value is in conflict with the value of
vi. When identifying a dead-end while assigning vi, cbj considers the most re-
cent variable in CSvi to be a culprit. A backtrack then occurs: the conflict-sets
and domains of the future variables are reset to their original value. By doing so,
cbj forgets a lot of information that could have been useful. This also leads to
thrashing.

• dbt selects the most recent variable in the computed nogood (the conflict-set of
cbj) in order to undo the assignment. However, thanks to the explanations, dbt
only removes related information that depends on it and so avoids thrashing: useful
information is kept. Indeed, there is no real backtracking in dbt and like in a repair
method, only the assignments that caused the contradiction are undone.

Notice that sb can also be considered as selecting the most recent assignment of a
nogood, namely the nogood that contains all the current variable assignments (which

9

fails to give really relevant information).

4.1.2 Integrating constraint propagation within dynamic backtracking

Constraint propagation has been included in sb leading to forward checking fc and to
the Maintaining Arc-Consistency algorithm (mac) [33]. mac is nowadays considered as
one of the best algorithms for solving csp[5].

Several attempts to integrate constraint propagation within intelligent backtrackers
have been done: for example, Prosser has proposed mac-cbj which maintains arc consis-
tency in cbj [32]. But, Bessière and Régin [5] have stopped further research in that field
by showing that mac-cbj was very rarely better than mac. They concluded that there
was no need to spend time nor space for intelligent backtracking because the brute force
of mac simply does it more quickly. From our point of view, the inadequacy of mac-cbj
is more related to the fact that cbj does not avoid thrashing2 than to the cost of the
management of nogoods. When backtracking occurs, cbj comes back to a relevant as-
signment, and then forgets all the search space developed since this assignment has been
performed: as sb, cbj has a multiplicative behavior on independent sub-problems. dbt
does not only use nogoods to perform intelligent backtracking but also to avoid thrashing
and so becomes additive on independent sub-problems [17]. [5] had another point pre-
venting the use of nogoods: it is always possible to find an intelligent labelling heuristic
so that a standard backtracking-based algorithm will perform a search as efficiently as an
intelligent backtracker. In our experience, using a good heuristic reduces the number of
problems on which the algorithm thrashes but does not make it additive on independent
subproblems: there are still problems on which the heuristic cannot prevent thrashing.

In [25], we introduced the mac-dbt algorithm which shows the efficient integration
of constraint propagation within dbt thanks to the use of explanations. The general
behavior of mac-dbt is described in the algorithm in Figure 1: as long as no solution has
been found, choose a variable and a value for it, assign the value to the variable (line 11),
propagate this new information (line 12). If a contradiction occurs during that process,
use a special handling contradiction procedure (line 15 and the algorithm in Figure 2).

This special handling contradiction procedure merely amounts to a backtrack if a
standard backtrack-based search is desired. However, if one wants to take benefit from
an explanation-based solver, an explanation for this failure can be computed (see line 2
in the algorithm in Figure 2) and, if possible, a choice (an assignment constraint) to
undo3 is selected (line 7). At this point, an intelligent backtracker can be defined by
performing a classical backtrack to that selected choice. In order to use explanations as
much as possible, a dynamic constraint removal should be performed (line 12), followed
by the posting within a given context4 of the negation of the undone decision and the
propagation of the new information (line 15). It is important to recursively handle any
contradiction that may appear (line 18).

2A thrashing behavior consists in repeatedly performing the same search work due to the backtrack
mechanism.

3Notice that this choice is tightly guided by the completeness requirements of the algorithms (see
[6]).

4Line 14 in the algorithm in Figure 2 introduces the constraint opposite(ct) which will remain active
as long as the context e remains valid. See [25] for more information on that point.

10

function solve(pb: Problem): boolean

(1) begin

(2) unassignedVars ← pb.vars

(3) try (

(4) while not(empty(unassignedVars))

(5) let idx ← nextVarToAssign(pb) // variable choice

(6) v ← unassignedVars[idx]

(7) a ← selectValToAssign(pb, v) // value choice

(8) in (

(9) try (

(10) unassignedVars :delete v
(11) post(pb, v == a) // instantiation

(12) propagate(pb)

(13))

(14) catch LabelingContradiction // An empty domain found

(15) handleContradiction(pb) // classically: BACKTRACK

(16))

(17))

(18) endwhile

(19) true

(20))

(21) catch ProblemContradiction

(22) false // No solution

(23))

(24) end

Figure 1: Solving a CSP

procedure handleContradiction(pb: Problem)

(1) begin

(2) let e ← becauseOf(theDom(getFailingVariable(pb))) // conflict explanation

(3) in (

(4) if e empty then

(5) raiseProblemContradiction()

(6) else

(7) let ct ← selectConstraint(e) // select a to be removed choice

(8) in (

(9) if ct exists then

(10) unassignedVars :add ct.v1

(11) try (

(12) remove(ct) // perform constraint removal

(13) e :delete ct

(14) post(pb, opposite(ct), e) // context-guarded negation

(15) propagate(pb)) // achieving consistency

(16))

(17) catch LabelingContradiction

(18) handleContradiction(pb) // recursive handling

(19))

(20) else

(21) raiseProblemContradiction()

(22) endif

(23))

(24) endif

(25))

(26) end

Figure 2: Contradiction handling

11

4.1.3 A generic algorithm

One can identify three different components5 in algorithms 1 and 2 that help understand
and generalizing their behavior:

• a propagation component that is used to propagate information throughout the
constraint network when a decision is made during search. Two operators are
needed: filtering and checking if a solution can exist.

• a learning component that is used to make sure that the search mechanism will
avoid (as much as possible) to get back to states that have been explored and
proved to be solution-less. Using a rough analogy with the brain, we will use
two operators: a recording operator that learns new pieces of information and a
forgetting operator that will make room for new information to be learnt.

• a moving component whose aim is, unlike the other two components, to explore
the search space instead of pruning it. There are two moving operators: repair
to be used when the current constraints system is contradictory and need some
modification and extend to potentially add new information when no contradiction
has not yet been detected but when no solution has be found.

Those three components can be used to design a generic csp solving algorithm (the
PLM algorithm – see figure 3) that encompasses complete and incomplete searches,
prospective and retrospective algorithms [27]:

• the search starts from an initial set of decision constraints that may range from the
empty set (typically for backtrack-based search) or a total assignment (typically
for local search algorithm)

• decisions are made (extend) and propagated (filter) until a contradiction occurs

• when a contradiction does occur (line 6), the information related to the dead-
end (e.g. a conflict explanation) is learnt (record), the current state is repaired
(repair) and some information is forgotten (forget).

• the search terminates as soon as a solution is found (line 8) or the conditions of
termination (line 13) are fulfilled. Conditions of termination can be for example a
maximum number of iterations, the exhibition of a proof that no solution exists,
etc.

Using explanations greatly helps concretely implementing such a generic framework.
Indeed, explanations can be used to determine precise conflict explanations, perform
dynamic reparations of any constraints system, etc. The PaLM systems effortlessly
implements this generic framework.

4.2 A new family of algorithms: decision-repair

The PLM generic algorithm has been used to described several well known algorithms
[27]:

5A formal description about these components can be found in [27].

12

procedure PLM(V ,C,CD)

(1) begin

(2) P ← {V, C, CD}
(3) repeat

(4) P ← filter(P)
(5) switch check(P)
(6) case no solution :

(7) P ← forget(repair(record(P)))
(8) case solution found :

(9) return P
(10) case not enough information :

(11) P ← extend(P)
(12) endswitch

(13) until conditions of termination
(14) end

Figure 3: A generic algorithm for the PLM components

• systematic algorithms such as sb, cbj, dbt, mac, mac-dbt, etc.

• non-systematic algorithms such as tabu search [19], gsat [34], etc.

The PLM generic algorithm has been also used to design new algorithms: the deci-
sion-repair family [26]. The idea of decision-repair is to combine the propagation-
based nature of mac-dbt and the true freedom (in the search space exploration) given by
a local search algorithm such as tabu search. Therefore, in terms of the PLM generic
algorithm, we have:

• the starting set of decision constraints is empty;

• filter uses standard filtering algorithm for reducing the domain of the variables
of the problem;

• record computes an explanation-set for the current contradiction and stores it in
a tabu list of fixed size K;

• forget erases the oldest stored explanation-set if the tabu list is full;

• extend classically adds new decisions (variable assignment, domain splitting, etc.)
as long as no solution has been found yet;

• repair heuristically selects a decision to undo from the last computed explanation-
sets (and whose negation is compatible with the stored explanation-sets).

As several parameters remain unprecised (the way of handling the tabu list, the
heuristic to be used to select decisions to undo, etc.), decision-repair is a family of
algorithms. However, the two main points of that algorithm are: it makes use of a repair
algorithm (local search) as a basis, and it works on a partial instantiation in order to be
able to use filtering techniques.

A comprehensive study of the behavior of decision-repair has shown that the key
components of this algorithm are: its explanations-directed heuristics and its ability
both to perform a local search and to prune the search space [26]. Experiments with
decision-repair have shown good results over open-shop scheduling problems (see sec-
tion 5.2).

13

5 A case study: solving open-shop scheduling prob-
lems

We experienced using explanation-based constraint programming algorithms for solving
open-shop scheduling problems for several years now. First we developed intelligent
backtrackers that provided first good results and greatly improved our techniques using
more explanation-based features of e-constraints. This section provides some details
about these results.

5.1 Open Shop scheduling problems

Classical scheduling shop problems for which a set J of n jobs consisting each of m tasks
(operations) must be scheduled on a set M of m machines can be considered as csp6.
One of those problems is called the open-shop problem [20]. For that problem, operations
for a given job may be sequenced as wanted but only one at a time. We will consider
here the building of non preemptive schedules of minimal makespan7.

The open-shop scheduling problem is NP-hard as soon as min(n,m) ≥ 3. This prob-
lem although quite simple to enunciate is really hard to solve optimally: instances of size
6× 6 (i.e., 36) variables remain unsolved !

Only two branch-and-bound methods for that problem have been published so far.
The first one [7] is based on the resolution of a one-machine problem with positive and
negative time-lags. The second one, [9], consists, in each node, in fixing disjunctions on
the critical path of a heuristic solution. It combines two concepts:

• a generalization of a branching scheme first introduced by Grabowski et al. [21] for
one-machine problems with release dates and due dates;

• immediate selections [10], a method initially designed to fix disjunctions in Job-
Shop problems.

We used that method as a basis for our experiments and enhanced it in two steps:

1. designing an intelligent backtracker by using an explanation-based constraint solver
to propagate new decisions made during search;

2. use the decision-repair family of algorithms to design a new efficient heuristic
for solving open-shop scheduling problems.

5.2 An efficient heuristic technique

The open-shop problem being very hard to solve exactly, various heuristics have been
proposed8: greedy heuristics such as specific list heuristics [23] or local searches such as
highly specialized tabu searches [1, 29] or genetic algorithms [30], etc.

We tried decision-repair on the open-shop problems using one of its implementa-
tion described below:

6The variables of the csp are the starting date of the tasks. Bounds thus represent the least feasible
starting time and the least feasible ending time of the associated task.

7Ending time of the last task.
8We mention here heuristics that are considered to be the best thechniques to solve open-shop schedul-

ing problems.

14

Filtering technique Precedence constraints are handled with 2B-consistency filtering
[13, 28] and resource usage constraints are handled through task-intervals [11].

Search strategy For shop scheduling problems, enumeration is usually performed on
the relative order in which tasks are scheduled on the resources. The decision
constraints are thus precedence constraints between tasks9. We use the branching
scheme introduced in [9] to select such decisions.

Tabu list The implementation uses a tabu list of size 7.

Repair The repair function we used records in the tabu list the newly computed con-
tradiction explanation k (is is a conflict). It tries to find one decision in k such
that negating this decision makes the decision set compatible with all the stored
conflicts. When several decisions can be negated, we use the following weighting-
conflict heuristics: a weight is associated with each decision; the weight charac-
terizes the number of times that the decision has appeared in any conflict. The
repair function chooses to negate the decision with the greatest weight that, when
negated, makes the new decision set compatible with all the conflicts in tabu list.
If such a decision does not exist, it is a considered as a stopping criterion for the
overall algorithm.

Stopping criterion The failure conditions specifying the exit of decision-repair are
either a stop returned by the repair function or 3000 iterations without improve-
ment since the last solution reached.

Minimisation of the makespan The open-shop problems we consider are optimisa-
tion problems. This requires a main loop that calls decision-repair until im-
provement is no longer possible. (See Figure 4.) Improvements are forced by adding
a constraint that specifies that the makespan is less than the current best solution
found. The initial decision set for each call of the function decision-repair is the
latest set of decisions (which defines the last solution found).

We studied three series of reference problems:

1. Taillard’s problems [36]: 10 square instances of size 4, 5, 7 and 10.

2. Brucker et al. problems [8]: 52 problems of size 3× 3 to 8× 8. Those problems
are characterized by a common LB (the classical lower bound10) value: 1000.

3. Guéret and Prins’ problems11: Those 80 problems (8 series of 10 problems of size
3× 3 to 10× 10) have been generated using results presented in [24] for generating
really hard open-shop instances. They all share a common LB (classical lower
bound) value and the fact that another lower bound [24] gives a much greater
value.

decision-repair (referred to as TDR in the results) is compared with the best
published solving techniques for the open-shop problem:

9When every possible precedence has been posted, setting the starting date of the variable to their
smallest value provides a feasible solution.

10Maximum load of the involved machines and jobs.
11Available at http://www.emn.fr/gueret/OpenShop/OpenShop.html.

15

procedure minimise-makespan(C)

(1) begin

(2) CD ← initial decision set
(3) bound ← +∞
(4) lastSolution ← failure
(5) repeat

(6) C ← C ∪ { makespan < bound}
(7) solution ← decision-repair(C)

(8) if solution = failure then

(9) return lastSolution
(10) else

(11) bound ← value of makespan in solution
(12) lastSolution ← solution
(13) endif

(14) until false
(15) end

Figure 4: Algorithm used to solve open-shop problems

• For Taillard’s instances, our results are compared with two highly specialized tabu
searches tailored for solving open-shop problems, one presented in [1] (referred to
as TS-A97 in the results) and one presented in [29] (referred to as TS-L98 in the
results).

• For all the instances, our results are also compared with a genetic algorithm intro-
duced in [30] (referred to as GA-P99 in the results) which gives very good results
on all those problems.

Figure 1 presents results obtained on Taillard’s problems, Figure 2 on Brucker’s in-
stances, and finally Figure 3 on Guéret and Prins’s problems. Cpu time is not available
in [29], [1], nor in [30]12. Average cpu time for decision-repair is not really significant
since cpu time strongly depends on the instance of the problem. Just to give an idea, for
Taillard’s instances, 10× 10 average cpu time is 15 hours and for 7× 7 average cpu time
is 2 hours. For Brucker’s instances and Guéret and Prins’s problems, 10×10 average cpu
time is 3 to 4 hours and, for size less than 8× 8, average cpu time less than 4 minutes.

Series TS-L98 TS-A97 GA-P99 TDR
4× 4 0 / 0 (10) (*) 0.31 / 1.84 (8) 0 / 0 (10)
5× 5 0.09 / 0.93 (9) (*) 1.26 / 3.72 (1) 0 / 0 (10)
7× 7 0.56 / 1.77 (6) 0.75 / 1.71 (2) 0.41 / 0.95 (4) 0.44 / 1.92 (6)

10× 10 0.29 / 1.41 (6) 0.73 / 1.67 (1) 0 / 0 (10) 2.02 / 3.19 (0)

Table 1: Results on Taillard’s instances. Results are presented in the following
format: “average deviation from the optimal value” / “maximum deviation from the
optimal value” (“number of optimally solved instances”) (*) Only results for 7 problems
of size 7× 7 and 3 of size 10× 10 are given in the paper.

12This is quite usual for open-shop scheduling results. Indeed, the problem itself being really hard,
what is important is the quality of the solution and not the time required to obtain it. Moreover, in
real-life applications such as satellite scheduling problems [31] improving a solution by one can save so
much money that satellite operators are ready to wait as long as a full day for that improvement!

16

Series GA-P99 TDR
3× 3 (8 pbs) 0 / 0 (8) 0 / 0 (8)
4× 4 (9 pbs) 0 / 0 (9) 0 / 0 (9)
5× 5 (9 pbs) 0.36 / 2.07 (6) 0 / 0 (9)
6× 6 (9 pbs) 0.92 / 2.27 (3) 0.71 / 3.50 (6)
7× 7 (9 pbs) 3.82 / 8.20 (6) 4.40 / 11.5 (5)
8× 8 (8 pbs) 3.10 / 7.50 (8) 4.95 / 11.8 (2)

Table 2: Results on Brucker’s instances. Results are presented according to the
following format: “average deviation from the optimal value” / “maximum deviation
from the optimal value” (“number of optimally solved instances”) except for 7 × 7
and 8 × 8 time for which the deviation is computed from the LB value (1000 for each
problem).

Series BB-G00 GA-P99 TDR Open instances TDR yield
3× 3 10 / 10 10 / 10 10 / 10 0 -
4× 4 10 / 10 10 / 10 10 / 10 0 -
5× 5 10 / 10 8 / 8 10 / 10 0 -
6× 6 9 / 7 2 / 1 10 / 8 3 1 / 1
7× 7 3 / 1 6 / 3 10 / 4 9 1 / 3
8× 8 2 / 1 2 / 1 10 / 4 9 3 / 7
9× 9 1 / 1 0 / 0 10 / 2 9 1 / 9

10× 10 0 / 0 5 / 0 5 / 0 10 0 / 5

Table 3: Results on Guéret and Prins’s problems. Results are presented according
to the following format: “number of problems solved giving the best results” / “number
of optimally solved problems”. BB-G00 reports the results of an intelligent backtracker
described in [22] and stopped after 350 000 backtracks (which represents around 24 hours
of cpu time). What tabu decision-repair gave to the solving of those problem (TDR
yield) is indicated by “the number of closed instances” / “the number of newly improved
instances”

Recall that decision-repair is a generic algorithm which has been instantiated
simply to solve a very specific problem which has its own research community. The
results obtained on the three sets of problems are therefore very interesting because they
show that our algorithm is a competitive algorithm compared with the other techniques.

As far as Taillard’s instances are concerned, decision-repair gives comparable re-
sults but the tabu search of [29] is still the best technique except for 10 × 10 problems
where the genetic algorithm shows the best results.

On Brucker’s instances, decision-repair is far better than the genetic algorithm on
small instances but the latter becomes better on larger problems.

For the third set of problems (the really hard instances of Guéret and Prins) deci-
sion-repair shows all the interest of combining local search and constraint propagation:
decision-repair closed13 6 of these instances. Furthermore, it provided new best results
for 19 other instances; thus it improved known results for 25 instances out of 40 open
ones.

Up to size 9 × 9, decision-repair gives far better results than both the genetic
algorithm and branch and bound search (that has been truncated by a time criterion).

13An optimal solution was found and proved – a lower bound is known – for the first time.

17

For 10 × 10 problems, decision-repair is still better than the branch and bound but
is matched by the genetic algorithm.

Such good behavior of decision-repair was quite surprising because, unlike the
other specialized algorithms, our implementation remains general and does not need any
tuning of complex parameters. This is probably due to the search used for the open-shop
problem, which dynamically builds independent sub-problems by adding precedence con-
straints: classical backtracking algorithms may start by partially solving a sub-problem,
then go to another one, solve it, and then continue to solve the first sub-problem. In
cases where it has to backtrack to choices in the first part of its work, the search space
of the two sub-problems are multiplied. decision-repair, thanks to its use of expla-
nations, can identify independent sub-problems and stay in a sub-problem until it has
been solved. Also the heuristic we have introduced seems to be good. Once again, this
is another benefit from the use of explanations.

5.3 Analysis

We performed a comprehensive study of the behavior of decision-repair in [26]. It
has shown that the key components of this algorithm are its conflict-directed heuristics
and its ability both to perform a local search and to prune the search space.

6 Conclusion

In this paper, we introduced a new paradigm for constraint programming: explanation-
based constraint programming. We emphasized the interest of using explanations to
design repair techniques in order to provide new efficient algorithms and heuristic for
solving constraint satisfaction problems. Our results clearly advocate for the use of
explanations within constraint programming for providing new techniques and new pro-
grammation gimmicks.

References

[1] David Alcaide, Joaqúın Sicilia, and Daniele Vigo. A tabu search algorithm for the
open shop problem. TOP : Trabajos de Investigación Operativa, 5(2):283–296, 1997.

[2] Krzysztof R. Apt. The essence of constraint propagation. Theoretical Computer
Science, 221(1–2):179–210, 1999.

[3] Roberto J. Bayardo Jr. and Daniel P. Miranker. A complexity analysis of space-
bounded learning algorithms for the constraint satisfaction problem. In AAAI’96,
1996.

[4] Frédéric Benhamou. Heterogeneous constraint solving. In Michael Hanus and
Mario Rofŕıguez-Artalejo, editors, International Conference on Algebraic and Logic
Programming, volume 1139 of Lecture Notes in Computer Science, pages 62–76.
Springer-Verlag, 1996.

[5] Christian Bessière and Jean-Charles Régin. MAC and combined heuristics: Two
reasons to forsake FC (and CBJ?) on hard problem. In CP’96, Cambridge, MA,
1996.

18

[6] C. Bliek. Generalizing partial order and dynamic backtracking. In Proceedings of
AAAI, 1998.

[7] P. Brucker, T. Hilbig, and J. Hurink. A branch and bound algorithm for schedul-
ing problems with positive and negative time-lags. Technical report, Osnabrueck
University, may 1996.

[8] P. Brucker, B. Jurish, B. Sievers, and B. Wöstmann. A branch and bound algorithm
for the open-shop problem. Discrete Applied Mathematics, 76:43–49, 1997.

[9] P. Brucker, S. Knust, A. Schoo, and O. Thiele. A branch and bound algorithm for the
resource-constrained project scheduling problem. European Journal of Operational
Research, 107:272–288, 1998.

[10] Jacques Carlier and Éric Pinson. Adjustment of heads and tails for the job-shop
problem. European Journal of Operational Research, 78:146–161, 1994.

[11] Yves Caseau and François Laburthe. Improving clp scheduling with task intervals.
In P. Van Hentenryck, editor, Proc. of the 11th International Conference on Logic
Programming, ICLP’94, pages 369–383. MIT Press, 1994.

[12] Patrick Cousot and Radhia Cousot. Automatic synthesis of optimal invariant as-
sertions mathematical foundation. In Symposium on Artificial Intelligence and Pro-
gramming Languages, volume 12(8) of ACM SIGPLAN Not., pages 1–12, 1977.

[13] E. Davis. Constraint propagation with interval labels. Artificial Intelligence,
32(2):281–331, 1987.

[14] François Fages, Julian Fowler, and Thierry Sola. A reactive constraint logic pro-
gramming scheme. In International Conference on Logic Programming. MIT Press,
1995.

[15] François Fages, Julian Fowler, and Thierry Sola. Experiments in reactive constraint
logic programming. Journal of Logic Programming, 37(1-3):185–212, 1998.

[16] Gérard Ferrand, Willy Lesaint, and Alexandre Tessier. Theoretical foundations of
value withdrawal explanations for domain reduction. Electronic Notes in Theoretical
Computer Science, 76, 2002.

[17] Matthew L. Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence
Research, 1:25–46, 1993.

[18] Matthew L. Ginsberg and David A McAllester. Gsat and dynamic backtracking. In
International Conference on the Principles of Knowledge Representation (KR94),
pages 226–237, 1994.

[19] F. Glover and M. Laguna. Modern heuristic Techniques for Combinatorial Problems,
chapter Tabu Search, C. Reeves. Blackwell Scientific Publishing, 1993.

[20] T. Gonzales and S. Sahni. Open-shop scheduling to minimize finish time. Journal
of the Association for Computing Machinery, 23(4):665–679, 1976.

19

[21] J. Grabowski, E. Nowicki, and S. Zdrzalka. A block approach for single-machine
scheduling with release dates and due dates. European Journal of Operations Re-
search, 26:278–285, 1986.

[22] Christelle Guéret, Narendra Jussien, and Christian Prins. Using intelligent back-
tracking to improve branch and bound methods: an application to open-shop prob-
lems. European Journal of Operational Research, 127(2):344–354, 2000.

[23] Christelle Guéret and Christian Prins. Classical and new heuristics for the open-shop
problem. European Journal of Operations Research, 107(2):306–314, 1998.

[24] Christelle Guéret and Christian Prins. A new lower bound for the open-shop prob-
lem. AOR (Annals of Operations Research, 92:165–183, 1999.

[25] Narendra Jussien, Romuald Debruyne, and Patrice Boizumault. Maintaining arc-
consistency within dynamic backtracking. In Principles and Practice of Constraint
Programming (CP 2000), number 1894 in Lecture Notes in Computer Science, pages
249–261, Singapore, September 2000. Springer-Verlag.

[26] Narendra Jussien and Olivier Lhomme. Local search with constraint propagation
and conflict-based heuristics. Artificial Intelligence, 139(1):21–45, July 2002.

[27] Narendra Jussien and Olivier Lhomme. Unifying search algorithms for CSP. Re-
search Report 02-3-INFO, École des Mines de Nantes, Nantes, France, 2002.

[28] O. Lhomme. Consistency techniques for numeric CSPs. In IJCAI’93, pages 232–238,
Chambéry, France, August 1993.

[29] Ching-Fang Liaw. A tabu search algorithm for the open shop scheduling problem.
Computers and Operations Research, 26, 1998.

[30] Christian Prins. Competitive genetic algorithms for the open shop scheduling prob-
lem. Research report, École des Mines de Nantes, 99/1/AUTO, 1999.

[31] Christian Prins and Jacques Carlier. Resource optimization in a TDMA/DSI system:
the eutelsat approach. In Proceedings of the International Conference on Digital
Satellite Communications (ICDSC 7), pages 511–518, Munich, Germany, 1986.

[32] Patrick Prosser. MAC-CBJ: maintaining arc-consistency with conflict-directed back-
jumping. Research Report 95/177, Department of Computer Science – University
of Strathclyde, 1995.

[33] Daniel Sabin and Eugene Freuder. Contradicting conventional wisdom in constraint
satisfaction. In Alan Borning, editor, Principles and Practice of Constraint Pro-
gramming, volume 874 of Lecture Notes in Computer Science. Springer, May 1994.
(PPCP’94: Second International Workshop, Orcas Island, Seattle, USA).

[34] Bart Selman, Hector Levesque, and David Mitchell. A new method for solving hard
satisfiability problems. In AAAI-92: Proceedings 10th National Conference on AI,
pages 440–446, San Jose, July 1992.

20

[35] R. M. Stallman and G. J. Sussman. Forward reasoning and dependency directed
backtracking in a system for computer-aided circuit analysis. Artificial Intelligence,
9:135–196, 1977.

[36] É. Taillard. Benchmarks for basic scheduling problems. European Journal of Oper-
ations Research, 64:278–285, 1993.

[37] Edward Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

[38] Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. Logic Pro-
gramming. MIT Press, 1989.

