Constraint Programming II: Logical Background

François Fages INRIA Rocquencourt, Francois.Fages@inria.fr

- 1. First-order formulas
- 2. Model theory

Herbrand's domain, Skolemization

3. Proof theory

Logic programming in *axiomatic theories* Decidability of constraint languages in *complete theories*

4. Compactness theorem and Gödel's completeness and incompleteness theorems

1. First-Order Terms

Alphabet:

infinite set of variables V,

set of constant and function symbols S_F , given with their arity α

The set T of first-order terms is the *least* set satisfying

i) $V \subset T$

ii) if
$$f \in S_F$$
, $\alpha(f) = n, M_1, ..., M_n \in T$
then $f(M_1, ..., M_n) \in T$

1. First-Order Terms

Alphabet:

infinite set of variables V,

set of constant and function symbols S_F , given with their arity α

The set T of first-order terms is the *least* set satisfying

i) $V \subset T$

ii) if
$$f \in S_F$$
, $\alpha(f) = n, M_1, ..., M_n \in T$
then $f(M_1, ..., M_n) \in T$

The principle of structural induction applies to such inductive definitions: a property on terms is true if it is true for variables, and true for terms of the form $f(M_1, ..., M_n)$ supposing it true for $M_1, ..., M_n$.

First-order Formulas

Alphabet: set S_P of predicate symbols.

Atomic propositions: $p(M_1, ..., M_n)$ where $p \in S_P, M_1, ..., M_n \in T$. Formulas: $\neg \phi, \phi \lor \psi, \exists x \phi$

First-order Formulas

Alphabet: set S_P of predicate symbols.

Atomic propositions: $p(M_1, ..., M_n)$ where $p \in S_P, M_1, ..., M_n \in T$. Formulas: $\neg \phi, \phi \lor \psi, \exists x \phi$

The other logical symbols are defined as abbreviations:

$$\begin{split} \phi \Rightarrow \psi &= \neg \phi \lor \psi \\ true &= \phi \Rightarrow \phi \\ false &= \neg true \\ \phi \land \psi &= \neg (\phi \Rightarrow \neg \psi) \\ \phi \equiv \psi &= (\phi \Rightarrow \psi) \land (\psi \Rightarrow \phi) \\ \forall x \phi &= \neg \exists x \neg \phi \end{split}$$

Clauses

A *literal* L is either an atomic proposition, A, (called a *positive literal*), or the negation of an atomic proposition, $\neg A$ (called a *negative literal*).

A *clause* is a disjunction of universally quantified literals,

 $\forall (L_1 \vee \ldots \vee L_n),$

A *Horn clause* is a clause having at most one positive literal.

 $\neg A_1 \lor \ldots \lor \neg A_n$ $A \lor \neg A_1 \lor \ldots \lor \neg A_n$

2. Interpretations

An interpretation $\langle D, [] \rangle$ is a mathematical structure given with

- a domain D,
- distinguished elements $[c] \in D$ for each constant $c \in S_F$,
- operators $[f]: D^n \to D$ for each function symbol $f \in S_F$ of arity n.
- relations $[p]: D^n \to \{true, false\}$ for each predicate symbol $p \in S_P$ of arity n

Valuation

A valuation is a function $\rho: V \to D$ extended to terms by morphism

•
$$[x]_{\rho} = \rho(x)$$
 if $x \in V$,

•
$$[f(M_1, ..., M_n)]_{\rho} = [f]([M_1]_{\rho}, ..., [M_n]_{\rho})$$
 if $f \in S_F$

The truth value of an atom $p(M_1, ..., M_n)$ in an interpretation $I = \langle D, [] \rangle$ and a valuation ρ is the boolean value $[p]([M_1]_{\rho}, ..., [M_n]_{\rho}).$

The truth value of a formula in I and ρ is determined by truth tables and $[\exists x\phi]_{\rho} = true$ if $[\phi[d/x]]_{\rho} = true$ for some $d \in D$, = false otherwise. $[\forall x\phi]_{\rho} = true$ if $[\phi[d/x]]_{\rho} = true$ for every $d \in D$, = false otherwise.

Models

- An interpretation I is a *model* of a closed formula ϕ , $I \models \phi$, if ϕ is true in I.
- A closed formula ϕ' is a *logical consequence* of ϕ closed, $\phi \models \phi'$, if every model of ϕ is a model of ϕ' .
- A formula φ is satisfiable in an interpretation I if I ⊨ ∃(φ), (e.g. Z ⊨ ∃x x < 0)
 φ is valid in I if I ⊨ ∀(φ).

Models

- An interpretation I is a *model* of a closed formula ϕ , $I \models \phi$, if ϕ is true in I.
- A closed formula ϕ' is a *logical consequence* of ϕ closed, $\phi \models \phi'$, if every model of ϕ is a model of ϕ' .
- A formula φ is satisfiable in an interpretation I if I ⊨ ∃(φ),
 (e.g. Z ⊨ ∃x x < 0)
 φ is valid in I if I ⊨ ∀(φ).
- A formula ϕ is *satisfiable* if $\exists(\phi)$ has a model (e.g. x < 0)
- A formula is *valid*, noted $\models \phi$,

if every interpretation is a model of $\forall(\phi)$ (e.g. $p(x) \Rightarrow \exists yp(y)$)

Proposition 1 For closed formulas, $\phi \models \phi'$ iff $\models \phi \Rightarrow \phi'$.

Herbrand's Domain ${\cal H}$

Domain of closed terms $T(S_F)$ "Syntactic" interpretation [c] = c $[f(M_1, ..., M_n)] = f([M_1], ..., [M_n])$

Herbrand's base $B_{\mathcal{H}} = \{ p(M_1, ..., M_n) \mid p \in S_P, M_i \in T(S_F) \}$

A Herbrand's interpretation is identified to a subset of B_H (the subset defines the atomic propositions which are true).

Herbrand's Models

Proposition 2 Let S be a set of clauses. S is satisfiable if and only if S has a Herbrand's model.

PROOF: Suppose I is a model of S: for every I-valuation ρ , for every clause $C \in S$, there exists a positive literal A (resp. negative literal $\neg A$) in C such that $I \models A\rho$ (resp. $I \not\models A\rho$).

. . .

Herbrand's Models

Proposition 3 Let S be a set of clauses. S is satisfiable if and only if S has a Herbrand's model.

PROOF: Suppose I is a model of S: for every I-valuation ρ , for every clause $C \in S$, there exists a positive literal A (resp. negative literal $\neg A$) in C such that $I \models A\rho$ (resp. $I \not\models A\rho$).

Let I' be the Herbrand's interpretation defined by

$$I' = \{ p(M_1, ..., M_n) \in B_H \mid I \models p(M_1, ..., M_n) \}.$$

For every Herbrand's valuation ρ' , there exists an *I*-valuation ρ such that $I \models A\rho$ iff $I' \models A\rho'$. Hence, for every clause, there exists a literal A (resp. $\neg A$) such that $I' \models A\rho'$ (resp. $I' \not\models A\rho'$).

Therefore I' is a Herbrand's model of S.

Satisfiability of Non-Clausal Formula by Skolemization

- Put ϕ in prenex form (all quantifiers in the head)
- Replace an existential variable x by a term $f(x_1, ..., x_k)$ where f is a *new function symbol* and the x_i 's are the universal variables before x

E.g. $\phi = \forall x \exists y \forall z \ p(x, y, z), \ \phi^s = \forall x \forall z \ p(x, f(x), z).$

Proposition 4 Any formula ϕ is satisfiable iff its Skolem's normal form ϕ^s is satisfiable.

Satisfiability of Non-Clausal Formula by Skolemization

- Put ϕ in prenex form (all quantifiers in the head)
- Replace an existential variable x by a term $f(x_1, ..., x_k)$ where f is a *new function symbol* and the x_i 's are the universal variables before x

E.g. $\phi = \forall x \exists y \forall z \ p(x, y, z), \ \phi^s = \forall x \forall z \ p(x, f(x), z).$

Proposition 5 Any formula ϕ is satisfiable iff its Skolem's normal form ϕ^s is satisfiable.

PROOF: If $I \models \phi$ then one can choose an interpretation of the Skolem's function symbols in ϕ^s according to the *I*-valuation of the existential variables of ϕ such that $I \models \phi^s$.

Conversely, if $I \models \phi^s$, the interpretation of the Skolem's functions in ϕ^s gives a valuation of the existential variables in ϕ s.t. $I \models \phi$.

3. Logical Theories

A theory is a formal system formed with

• logical axioms and inference rules

$$\begin{array}{ll} \neg A \lor A \ (\text{excluded middle}) & A[x \leftarrow B] \Rightarrow \exists x \ A \ (\text{substitution}), \\ \\ \hline \frac{A}{B \lor A} \ (\text{Weakening}), & \frac{A \lor A}{A} \ (\text{Contraction}), \\ \\ \hline \frac{A \lor (B \lor C)}{(A \lor B) \lor C} \ (\text{Associativity}), & \frac{A \lor B \ \neg A \lor C}{B \lor C} \ (\text{Cut}), \\ \\ \hline \frac{A \Rightarrow B \ x \notin V(B)}{\exists xA \Rightarrow B} \ (\text{Existential introduction}). \end{array}$$

• a set \mathcal{T} of non-logical axioms

3. Logical Theories

A *theory* is a formal system formed with

• logical axioms and inference rules

$$\begin{array}{ll} \neg A \lor A \ (\text{excluded middle}) & A[x \leftarrow B] \Rightarrow \exists x \ A \ (\text{substitution}), \\ \\ \frac{A}{B \lor A} \ (\text{Weakening}), & \frac{A \lor A}{A} \ (\text{Contraction}), \\ \\ \frac{A \lor (B \lor C)}{(A \lor B) \lor C} \ (\text{Associativity}), & \frac{A \lor B \ \neg A \lor C}{B \lor C} \ (\text{Cut}), \\ \\ \frac{A \Rightarrow B \ x \notin V(B)}{\exists x A \Rightarrow B} \ (\text{Existential introduction}). \end{array}$$

• a set \mathcal{T} of non-logical axioms

Deduction relation: $\mathcal{T} \vdash \phi$ if the closed formula ϕ can be derived in \mathcal{T} \mathcal{T} is contradictory if $\mathcal{T} \vdash false$, otherwise \mathcal{T} is consistent.

Deduction Theorem

Theorem 6 $\mathcal{T} \vdash \phi \Rightarrow \psi$ iff $\mathcal{T} \cup \{\phi\} \vdash \psi$.

PROOF: The implication is immediate with the cut rule.

Conversely the proof is by structural induction on the derivation of the formula ψ .

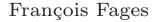
Validity Theorem

Theorem 7 If $\mathcal{T} \vdash \phi$ then $\mathcal{T} \models \phi$.

PROOF: By induction on the length of the deduction of ϕ .

Corollary 8 If \mathcal{T} has a model then \mathcal{T} is consistent

PROOF: We show the contrapositive: if \mathcal{T} is contradictory, then $\mathcal{T} \vdash false$, hence $\mathcal{T} \models false$, hence \mathcal{T} has no model.



4. Gödel's Completeness Theorem

Theorem 9 A theory is consistent iff it has a model.

PROOF: Supposing the theory consistent, the idea is to construct a Herbrand's model of the theory, by interpreting by true the closed atoms which are theorems of \mathcal{T} , and by false the closed atoms whose negation is a theorem of \mathcal{T} .

For this it is necessary to extend the alphabet to denote domain elements by Herbrand terms. $\hfill \Box$

Corollary 10 $\mathcal{T} \models \phi$ *iff* $\mathcal{T} \vdash \phi$.

PROOF: If $\mathcal{T} \models \phi$ then $\mathcal{T} \cup \{\neg\phi\}$ has no model, hence $\mathcal{T} \cup \{\neg\phi\} \vdash false$, and by the deduction theorem $\mathcal{T} \vdash \neg \neg \phi$, now by the cut rule with the axiom of excluded middle (plus weakening and contraction) we get $\mathcal{T} \vdash \phi$. \Box

Axiomatic and Complete Theories

A theory \mathcal{T} is *axiomatic* if the set of non logical axioms is recursive (i.e. membership to this set can be decided by an algorithm).

Proposition 11 In an axiomatic theory T, valid formulas, $\mathcal{T} \models \phi$, are recursively enumerable.

(expresses the feasibility of the Logic Programming paradigm...)

Axiomatic and Complete Theories

A theory \mathcal{T} is *axiomatic* if the set of non logical axioms is recursive (i.e. membership to this set can be decided by an algorithm).

Proposition 12 In an axiomatic theory T, valid formulas, $\mathcal{T} \models \phi$, are recursively enumerable.

(expresses the feasibility of the Logic Programming paradigm...)

A theory is *complete* if for every closed formula ϕ , either $\mathcal{T} \vdash \phi$ or $\mathcal{T} \vdash \neg \phi$.

In a complete axiomatic theory, we can decide whether an arbitrary formula is satisfiable or not (Constraint Satisfaction paradigm...).

Compactness theorem

Theorem 13 $\mathcal{T} \models \phi$ iff $\mathcal{T}' \models \phi$ for some finite part \mathcal{T}' of \mathcal{T} .

PROOF: By Gödel's completeness theorem, $\mathcal{T} \models \phi$ iff $\mathcal{T} \vdash \phi$.

As the proofs are finite, they use only a finite part of non logical axioms \mathcal{T} . Therefore $\mathcal{T} \models \phi$ iff $\mathcal{T}' \models \phi$ for some finite part \mathcal{T}' of \mathcal{T} .

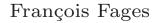
Compactness theorem

Theorem 14 $\mathcal{T} \models \phi$ iff $\mathcal{T}' \models \phi$ for some finite part \mathcal{T}' of \mathcal{T} .

PROOF: By Gödel's completeness theorem, $\mathcal{T} \models \phi$ iff $\mathcal{T} \vdash \phi$.

As the proofs are finite, they use only a finite part of non logical axioms \mathcal{T} . Therefore $\mathcal{T} \models \phi$ iff $\mathcal{T}' \models \phi$ for some finite part \mathcal{T}' of \mathcal{T} .

Corollary 15 \mathcal{T} is consistent iff every finite part of \mathcal{T} is consistent. PROOF: \mathcal{T} is inconsistent iff $\mathcal{T} \vdash false$, iff for some finite part \mathcal{T}' of $\mathcal{T}, \mathcal{T}' \vdash false$, iff some finite part of \mathcal{T} is inconsistent.



Let \mathcal{T} express the coloriability with four colors of an infinite planar graph G:

Let \mathcal{T} express the coloriability with four colors of an infinite planar graph G:

• $\forall x \ \bigvee_{i=1}^4 c_i(x),$

Let \mathcal{T} express the coloriability with four colors of an infinite planar graph G:

- $\forall x \ \bigvee_{i=1}^4 c_i(x),$
- $\forall x \ \bigwedge_{1 \le i < j \le 4} \neg (c_i(x) \land c_j(x)),$

Let \mathcal{T} express the coloriability with four colors of an infinite planar graph G:

- $\forall x \ \bigvee_{i=1}^4 c_i(x),$
- $\forall x \ \bigwedge_{1 \le i < j \le 4} \neg (c_i(x) \land c_j(x)),$
- $\bigwedge_{i=1}^{4} \neg (c_i(a) \land c_i(b))$ for every adjacent vertices a, b in G.

Let \mathcal{T} express the coloriability with four colors of an infinite planar graph G:

- $\forall x \ \bigvee_{i=1}^4 c_i(x),$
- $\forall x \ \bigwedge_{1 \le i < j \le 4} \neg (c_i(x) \land c_j(x)),$
- $\bigwedge_{i=1}^{4} \neg (c_i(a) \land c_i(b))$ for every adjacent vertices a, b in G.

Let \mathcal{T}' be any finite part of \mathcal{T} , and G' be the (finite) subgraph of G containing the vertices which appear in \mathcal{T}' . As G' is finite and planar it can be colored with 4 colors [Appel and Haken 76], thus \mathcal{T}' has a model.

Now as every finite part \mathcal{T}' of \mathcal{T} is satisfiable, we deduce from the compactness theorem that \mathcal{T} is satisfiable. Therefore every infinite planar graph can be colored with four colors.

Complete theory: Presburger's arithmetic

Complete axiomatic theory of $(\mathbf{N}, 0, s, +, =)$,

$$\begin{split} E_1 : &\forall x \ x = x, \\ E_2 : &\forall x \forall y \ x = y \to s(x) = s(y), \\ E_3 : &\forall x \forall y \forall z \forall v \ x = y \land z = v \to (x = z \to y = v), \\ E_4, \Pi_1 : &\forall x \forall y \ s(x) = s(y) \to x = y, \\ E_5, \Pi_2 : &\forall x \ 0 \neq s(x), \end{split}$$

. . .

Complete theory: Presburger's arithmetic

Complete axiomatic theory of $(\mathbf{N}, 0, s, +, =)$,

 E_1 : $\forall x \ x = x$, $E_2: \forall x \forall y \ x = y \rightarrow s(x) = s(y),$ $E_3: \forall x \forall y \forall z \forall v \ x = y \land z = v \to (x = z \to y = v),$ $E_4, \Pi_1: \quad \forall x \forall y \ s(x) = s(y) \rightarrow x = y,$ $E_5, \Pi_2: \quad \forall x \ 0 \neq s(x),$ $\Pi_3: \quad \forall x \ x + 0 = x,$ $\Pi_4: \quad \forall x \ x + s(y) = s(x+y),$. . .

Complete theory: Presburger's arithmetic

Complete axiomatic theory of $(\mathbf{N}, 0, s, +, =)$,

 E_1 : $\forall x \ x = x$. $E_2: \forall x \forall y \ x = y \rightarrow s(x) = s(y),$ $E_3: \forall x \forall y \forall z \forall v \ x = y \land z = v \to (x = z \to y = v),$ $E_4, \Pi_1: \quad \forall x \forall y \ s(x) = s(y) \rightarrow x = y,$ $E_5, \Pi_2: \quad \forall x \ 0 \neq s(x),$ $\Pi_3: \quad \forall x \ x + 0 = x,$ $\Pi_4: \quad \forall x \ x + s(y) = s(x+y),$ $\Pi_5: \quad \phi[x \leftarrow 0] \land (\forall x \ \phi \to \phi[x \leftarrow s(x)]) \to \forall x \phi \text{ for every formula } \phi.$ Note that E_6 : $\forall x \ x \neq s(x)$ and E_7 : $\forall x \ x = 0 \lor \exists y \ x = s(y)$ are provable by induction.

Incomplete Theory: Peano's arithmetic

Peano's arithmetic contains moreover two axioms for \times :

- $\Pi_6: \quad \forall x \ x \times 0 = 0,$
- $\Pi_7: \quad \forall x \forall y \ x \times s(y) = x \times y + x,$

Incomplete Theory: Peano's arithmetic

Peano's arithmetic contains moreover two axioms for \times :

- $\Pi_6: \quad \forall x \ x \times 0 = 0,$
- $\Pi_7: \quad \forall x \forall y \ x \times s(y) = x \times y + x,$

Theorem 16 (Gödel's Incompleteness Theorem) Any consistent axiomatic extension of Peano's arithmetic is incomplete.

PROOF: The idea of the proof, following the liar paradox of Epimenides (600 bc) which says: "I lie", is to construct in the language of Peano's arithmetic Π a formula ϕ which is true in the structure of natural numbers **N** if and only if ϕ is not provable in Π . As **N** is a model of Π , ϕ is necessarily true in **N** and not provable in Π , hence Π is incomplete. \Box

Corollary 17 The structure $(\mathcal{N}, 0, 1, +, *)$ is not axiomatizable.

