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1. First-Order Terms

Alphabet:

infinite set of variables V ,

set of constant and function symbols SF , given with their arity α

The set T of first-order terms is the least set satisfying

i) V ⊂ T

ii) if f ∈ SF , α(f) = n, M1, ...,Mn ∈ T

then f(M1, ...,Mn) ∈ T
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1. First-Order Terms

Alphabet:

infinite set of variables V ,

set of constant and function symbols SF , given with their arity α

The set T of first-order terms is the least set satisfying

i) V ⊂ T

ii) if f ∈ SF , α(f) = n, M1, ...,Mn ∈ T

then f(M1, ...,Mn) ∈ T

The principle of structural induction applies to such inductive definitions:

a property on terms is true if it is true for variables, and true for terms of

the form f(M1, ...,Mn) supposing it true for M1, ...,Mn.
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First-order Formulas

Alphabet: set SP of predicate symbols.

Atomic propositions: p(M1, ...,Mn) where p ∈ SP , M1, ...,Mn ∈ T.

Formulas: ¬φ, φ ∨ ψ, ∃x φ
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First-order Formulas

Alphabet: set SP of predicate symbols.

Atomic propositions: p(M1, ...,Mn) where p ∈ SP , M1, ...,Mn ∈ T.

Formulas: ¬φ, φ ∨ ψ, ∃x φ

The other logical symbols are defined as abbreviations:

φ⇒ ψ = ¬φ ∨ ψ

true = φ⇒ φ

false = ¬true

φ ∧ ψ = ¬(φ⇒ ¬ψ)

φ ≡ ψ = (φ⇒ ψ) ∧ (ψ ⇒ φ)

∀xφ = ¬∃x¬φ
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Clauses

A literal L is either an atomic proposition, A, (called a positive literal), or

the negation of an atomic proposition, ¬A (called a negative literal).

A clause is a disjunction of universally quantified literals,

∀(L1 ∨ ... ∨ Ln),

A Horn clause is a clause having at most one positive literal.

¬A1 ∨ ... ∨ ¬An

A ∨ ¬A1 ∨ ... ∨ ¬An
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2. Interpretations

An interpretation < D, [ ] > is a mathematical structure given with

• a domain D,

• distinguished elements [c] ∈ D for each constant c ∈ SF ,

• operators [f ] : Dn → D for each function symbol f ∈ SF of arity n.

• relations [p] : Dn → {true, false} for each predicate symbol p ∈ SP of

arity n
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Valuation

A valuation is a function ρ : V → D extended to terms by morphism

• [x]ρ = ρ(x) if x ∈ V ,

• [f(M1, ...,Mn)]ρ = [f ]([M1]ρ, ..., [Mn]ρ) if f ∈ SF

The truth value of an atom p(M1, ...,Mn) in an interpretation I =< D, [ ] >

and a valuation ρ is the boolean value [p]([M1]ρ, ..., [Mn]ρ).

The truth value of a formula in I and ρ is determined by truth tables and

[∃xφ]ρ = true if [φ[d/x]]ρ = true for some d ∈ D, = false otherwise.

[∀xφ]ρ = true if [φ[d/x]]ρ = true for every d ∈ D, = false otherwise.
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Models

• An interpretation I is a model of a closed formula φ, I |= φ,

if φ is true in I.

• A closed formula φ′ is a logical consequence of φ closed, φ |= φ′,

if every model of φ is a model of φ′.

• A formula φ is satisfiable in an interpretation I if I |= ∃(φ),

(e.g. Z |= ∃x x < 0)

φ is valid in I if I |= ∀(φ).

François Fages 9



Models

• An interpretation I is a model of a closed formula φ, I |= φ,

if φ is true in I.

• A closed formula φ′ is a logical consequence of φ closed, φ |= φ′,

if every model of φ is a model of φ′.

• A formula φ is satisfiable in an interpretation I if I |= ∃(φ),

(e.g. Z |= ∃x x < 0)

φ is valid in I if I |= ∀(φ).

• A formula φ is satisfiable if ∃(φ) has a model (e.g. x < 0)

• A formula is valid, noted |= φ,

if every interpretation is a model of ∀(φ) (e.g. p(x)⇒ ∃yp(y))

Proposition 1 For closed formulas, φ |= φ′ iff |= φ⇒ φ′ .
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Herbrand’s Domain H

Domain of closed terms T (SF ) “Syntactic” interpretation

[c] = c

[f(M1, ...,Mn)] = f([M1], ..., [Mn])

Herbrand’s base BH = {p(M1, ...,Mn) | p ∈ SP , Mi ∈ T (SF )}

A Herbrand’s interpretation is identified to a subset of BH

(the subset defines the atomic propositions which are true).
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Herbrand’s Models

Proposition 2 Let S be a set of clauses. S is satisfiable if and only if S

has a Herbrand’s model.

Proof: Suppose I is a model of S: for every I-valuation ρ, for every

clause C ∈ S, there exists a positive literal A (resp. negative literal ¬A) in

C such that I |= Aρ (resp. I 6|= Aρ).

... �
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Herbrand’s Models

Proposition 3 Let S be a set of clauses. S is satisfiable if and only if S

has a Herbrand’s model.

Proof: Suppose I is a model of S: for every I-valuation ρ, for every

clause C ∈ S, there exists a positive literal A (resp. negative literal ¬A) in

C such that I |= Aρ (resp. I 6|= Aρ).

Let I ′ be the Herbrand’s interpretation defined by

I ′ = {p(M1, ...,Mn) ∈ BH | I |= p(M1, ...,Mn)}.

For every Herbrand’s valuation ρ′, there exists an I-valuation ρ such that

I |= Aρ iff I ′ |= Aρ′. Hence, for every clause, there exists a literal A (resp.

¬A) such that I ′ |= Aρ′ (resp. I ′ 6|= Aρ′).

Therefore I ′ is a Herbrand’s model of S. �
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Satisfiability of Non-Clausal Formula by Skolemization

• Put φ in prenex form (all quantifiers in the head)

• Replace an existential variable x by a term f(x1, ..., xk) where f is a

new function symbol and the xi’s are the universal variables before x

E.g. φ = ∀x∃y∀z p(x, y, z), φs = ∀x∀z p(x, f(x), z).

Proposition 4 Any formula φ is satisfiable iff its Skolem’s normal form

φs is satisfiable.
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Satisfiability of Non-Clausal Formula by Skolemization

• Put φ in prenex form (all quantifiers in the head)

• Replace an existential variable x by a term f(x1, ..., xk) where f is a

new function symbol and the xi’s are the universal variables before x

E.g. φ = ∀x∃y∀z p(x, y, z), φs = ∀x∀z p(x, f(x), z).

Proposition 5 Any formula φ is satisfiable iff its Skolem’s normal form

φs is satisfiable.

Proof: If I |= φ then one can choose an interpretation of the Skolem’s

function symbols in φs according to the I-valuation of the existential

variables of φ such that I |= φs.

Conversely, if I |= φs, the interpretation of the Skolem’s functions in φs

gives a valuation of the existential variables in φ s.t. I |= φ. �
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3. Logical Theories

A theory is a formal system formed with

• logical axioms and inference rules

¬A ∨A (excluded middle) A[x← B]⇒ ∃x A (substitution),

A

B ∨A
(Weakening),

A ∨A

A
(Contraction),

A ∨ (B ∨ C)

(A ∨B) ∨ C
(Associativity),

A ∨B ¬A ∨ C

B ∨ C
(Cut),

A⇒ B x 6∈ V (B)

∃xA⇒ B
(Existential introduction).

• a set T of non-logical axioms
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3. Logical Theories

A theory is a formal system formed with

• logical axioms and inference rules

¬A ∨A (excluded middle) A[x← B]⇒ ∃x A (substitution),

A

B ∨A
(Weakening),

A ∨A

A
(Contraction),

A ∨ (B ∨ C)

(A ∨B) ∨ C
(Associativity),

A ∨B ¬A ∨ C

B ∨ C
(Cut),

A⇒ B x 6∈ V (B)

∃xA⇒ B
(Existential introduction).

• a set T of non-logical axioms

Deduction relation: T ⊢ φ if the closed formula φ can be derived in T

T is contradictory if T ⊢ false, otherwise T is consistent.
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Deduction Theorem

Theorem 6 T ⊢ φ⇒ ψ iff T ∪ {φ} ⊢ ψ.

Proof: The implication is immediate with the cut rule.

Conversely the proof is by structural induction on the derivation of the

formula ψ. �
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Validity Theorem

Theorem 7 If T ⊢ φ then T |= φ.

Proof: By induction on the length of the deduction of φ. �

Corollary 8 If T has a model then T is consistent

Proof: We show the contrapositive: if T is contradictory, then

T ⊢ false, hence T |= false, hence T has no model. �
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4. Gödel’s Completeness Theorem

Theorem 9 A theory is consistent iff it has a model.

Proof: Supposing the theory consistent, the idea is to construct a

Herbrand’s model of the theory, by interpreting by true the closed atoms

which are theorems of T , and by false the closed atoms whose negation is a

theorem of T .

For this it is necessary to extend the alphabet to denote domain elements

by Herbrand terms. �

Corollary 10 T |= φ iff T ⊢ φ.

Proof: If T |= φ then T ∪ {¬φ} has no model, hence T ∪ {¬φ} ⊢ false,

and by the deduction theorem T ⊢ ¬¬φ, now by the cut rule with the axiom

of excluded middle (plus weakening and contraction) we get T ⊢ φ. �

François Fages 20



Axiomatic and Complete Theories

A theory T is axiomatic if the set of non logical axioms is recursive

(i.e. membership to this set can be decided by an algorithm).

Proposition 11 In an axiomatic theory T , valid formulas, T |= φ, are

recursively enumerable.

(expresses the feasibility of the Logic Programming paradigm...)
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Axiomatic and Complete Theories

A theory T is axiomatic if the set of non logical axioms is recursive

(i.e. membership to this set can be decided by an algorithm).

Proposition 12 In an axiomatic theory T , valid formulas, T |= φ, are

recursively enumerable.

(expresses the feasibility of the Logic Programming paradigm...)

A theory is complete if for every closed formula φ, either T ⊢ φ or T ⊢ ¬φ.

In a complete axiomatic theory, we can decide whether an arbitrary

formula is satisfiable or not (Constraint Satisfaction paradigm...).
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Compactness theorem

Theorem 13 T |= φ iff T ′ |= φ for some finite part T ′ of T .

Proof: By Gödel’s completeness theorem, T |= φ iff T ⊢ φ.

As the proofs are finite, they use only a finite part of non logical axioms T .

Therefore T |= φ iff T ′ |= φ for some finite part T ′ of T . �
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Compactness theorem

Theorem 14 T |= φ iff T ′ |= φ for some finite part T ′ of T .

Proof: By Gödel’s completeness theorem, T |= φ iff T ⊢ φ.

As the proofs are finite, they use only a finite part of non logical axioms T .

Therefore T |= φ iff T ′ |= φ for some finite part T ′ of T . �

Corollary 15 T is consistent iff every finite part of T is consistent.

Proof: T is inconsistent iff T ⊢ false,

iff for some finite part T ′ of T , T ′ ⊢ false,

iff some finite part of T is inconsistent. �
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Coloring infinite maps with four colors

Let T express the coloriability with four colors of an infinite planar graph

G:
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Coloring infinite maps with four colors

Let T express the coloriability with four colors of an infinite planar graph

G:

• ∀x
∨4

i=1 ci(x),
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Coloring infinite maps with four colors

Let T express the coloriability with four colors of an infinite planar graph

G:

• ∀x
∨4

i=1 ci(x),

• ∀x
∧

1≤i<j≤4 ¬(ci(x) ∧ cj(x)),
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Coloring infinite maps with four colors

Let T express the coloriability with four colors of an infinite planar graph

G:

• ∀x
∨4

i=1 ci(x),

• ∀x
∧

1≤i<j≤4 ¬(ci(x) ∧ cj(x)),

•
∧4

i=1 ¬(ci(a) ∧ ci(b)) for every adjacent vertices a, b in G.
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Coloring infinite maps with four colors

Let T express the coloriability with four colors of an infinite planar graph

G:

• ∀x
∨4

i=1 ci(x),

• ∀x
∧

1≤i<j≤4 ¬(ci(x) ∧ cj(x)),

•
∧4

i=1 ¬(ci(a) ∧ ci(b)) for every adjacent vertices a, b in G.

Let T ′ be any finite part of T , and G′ be the (finite) subgraph of G

containing the vertices which appear in T ′. As G′ is finite and planar it can

be colored with 4 colors [Appel and Haken 76], thus T ′ has a model.

Now as every finite part T ′ of T is satisfiable, we deduce from the

compactness theorem that T is satisfiable. Therefore every infinite planar

graph can be colored with four colors.
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Complete theory: Presburger’s arithmetic

Complete axiomatic theory of (N, 0, s,+,=),

E1 : ∀x x = x,

E2 : ∀x∀y x = y → s(x) = s(y),

E3 : ∀x∀y∀z∀v x = y ∧ z = v → (x = z → y = v),

E4,Π1: ∀x∀y s(x) = s(y)→ x = y,

E5,Π2: ∀x 0 6= s(x),

...
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Complete theory: Presburger’s arithmetic

Complete axiomatic theory of (N, 0, s,+,=),

E1 : ∀x x = x,

E2 : ∀x∀y x = y → s(x) = s(y),

E3 : ∀x∀y∀z∀v x = y ∧ z = v → (x = z → y = v),

E4,Π1: ∀x∀y s(x) = s(y)→ x = y,

E5,Π2: ∀x 0 6= s(x),

Π3: ∀x x+ 0 = x,

Π4: ∀x x+ s(y) = s(x+ y),

...
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Complete theory: Presburger’s arithmetic

Complete axiomatic theory of (N, 0, s,+,=),

E1 : ∀x x = x,

E2 : ∀x∀y x = y → s(x) = s(y),

E3 : ∀x∀y∀z∀v x = y ∧ z = v → (x = z → y = v),

E4,Π1: ∀x∀y s(x) = s(y)→ x = y,

E5,Π2: ∀x 0 6= s(x),

Π3: ∀x x+ 0 = x,

Π4: ∀x x+ s(y) = s(x+ y),

Π5: φ[x← 0] ∧ (∀x φ→ φ[x← s(x)])→ ∀xφ for every formula φ.

Note that E6 : ∀x x 6= s(x) and E7 : ∀x x = 0 ∨ ∃y x = s(y) are provable

by induction.
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Incomplete Theory: Peano’s arithmetic

Peano’s arithmetic contains moreover two axioms for ×:

Π6: ∀x x× 0 = 0,

Π7: ∀x∀y x× s(y) = x× y + x,
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Incomplete Theory: Peano’s arithmetic

Peano’s arithmetic contains moreover two axioms for ×:

Π6: ∀x x× 0 = 0,

Π7: ∀x∀y x× s(y) = x× y + x,

Theorem 16 (Gödel’s Incompleteness Theorem) Any consistent

axiomatic extension of Peano’s arithmetic is incomplete.

Proof: The idea of the proof, following the liar paradox of Epimenides

(600 bc) which says: “I lie”, is to construct in the language of Peano’s

arithmetic Π a formula φ which is true in the structure of natural numbers

N if and only if φ is not provable in Π. As N is a model of Π, φ is

necessarily true in N and not provable in Π, hence Π is incomplete. �

Corollary 17 The structure (N , 0, 1,+, ∗) is not axiomatizable.
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