Constraint Programming III: Constraint Solving

> François Fages
> INRIA Rocquencourt, Francois.Fages@inria.fr

1. Constraint languages
decidability in complete theories,
2. Constraint solving by rewriting
unification algorithm for equality constraints over \mathcal{H}
Fourier's elimination for linear inequalities over \mathbf{R}
3. Constraint solving by domain reduction
forward checking and look-ahead for constraint over finite domains
4. Reified constraints and higher-order constraints

1. Constraint Languages

Alphabet: set V of variables,
set S_{F} of constant and function symbols,
set S_{C} of predicate symbols containing true and $=$.

We consider a subset of first-order formulas, called the basic constraints, containing all atomic propositions and supposed to be closed by variable renaming,

The language of constraints is the closure by conjonction and existential quantification of the set of basic constraints.

Constraints will be denoted by c, d, \ldots

Fixed Interpretation \mathcal{X}

Structure $\mathcal{X}=(\mathcal{D}, E, O, R)$ for interpreting the constraint language.
The constraint satisfiability problem

$$
\mathcal{X} \models ? \exists(c)
$$

is assumed to be decidable.

Fixed Interpretation \mathcal{X}

Structure $\mathcal{X}=(\mathcal{D}, E, O, R)$ for interpreting the constraint language.
The constraint satisfiability problem

$$
\mathcal{X} \models ? \exists(c)
$$

is assumed to be decidable.
This is equivalent to assume that \mathcal{X} is presented by a (satisfaction-complete) axiomatic theory \mathcal{T} satisfying:

1. (soundness) $\mathcal{X} \models \mathcal{T}$
2. (completeness for constraint satisfaction) for every constraint c, either $\mathcal{T} \vdash \exists(c)$, or $\mathcal{T} \vdash \neg \exists(c)$.

Presburger's arithmetic

Complete axiomatic theory of $(\mathbf{N}, 0, s,+,=)$,
$E_{1}: \forall x x=x$,
$E_{2}: \forall x \forall y x=y \rightarrow s(x)=s(y)$,
$E_{3}: \forall x \forall y \forall z \forall v x=y \wedge z=v \rightarrow(x=z \rightarrow y=v)$,
$E_{4}, \Pi_{1}: \quad \forall x \forall y s(x)=s(y) \rightarrow x=y$,
$E_{5}, \Pi_{2}: \quad \forall x 0 \neq s(x)$,
$\Pi_{3}: \quad \forall x x+0=x$,
$\Pi_{4}: \quad \forall x x+s(y)=s(x+y)$,
$\Pi_{5}: \quad \phi[x \leftarrow 0] \wedge(\forall x \phi \rightarrow \phi[x \leftarrow s(x)]) \rightarrow \forall x \phi$ for every formula ϕ.
Note that $E_{6}: \forall x x \neq s(x)$ and $E_{7}: \forall x x=0 \vee \exists y x=s(y)$ are provable by induction.

Clark's Equality Theory for the Herbrand domain \mathcal{H}

Given S_{F} containing at least one constant, $S_{C}=\{=\}, \mathcal{H}=\mathcal{T}\left(S_{F}\right)$.

Clark's Equality Theory for the Herbrand domain \mathcal{H}

Given S_{F} containing at least one constant, $S_{C}=\{=\}, \mathcal{H}=\mathcal{T}\left(S_{F}\right)$.
$E_{1} \forall x x=x$,
$E_{2} \forall\left(x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)\right)$,
$E_{3} \forall\left(x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n} \rightarrow p\left(x_{1}, \ldots, x_{n}\right) \rightarrow p\left(y_{1}, \ldots, y_{n}\right)\right)$,
$E_{4} \forall\left(f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right) \rightarrow x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n}\right)$,
$E_{5} \forall\left(f\left(x_{1}, \ldots, x_{m}\right) \neq g\left(y_{1}, \ldots, y_{n}\right)\right)$ for different function symbols $f, g \in S_{F}$ with arity m and n respectively,

Clark's Equality Theory for the Herbrand domain \mathcal{H}

Given S_{F} containing at least one constant, $S_{C}=\{=\}, \mathcal{H}=\mathcal{T}\left(S_{F}\right)$.
$E_{1} \forall x x=x$,
$E_{2} \forall\left(x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)\right)$,
$E_{3} \forall\left(x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n} \rightarrow p\left(x_{1}, \ldots, x_{n}\right) \rightarrow p\left(y_{1}, \ldots, y_{n}\right)\right)$,
$E_{4} \forall\left(f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right) \rightarrow x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n}\right)$,
$E_{5} \forall\left(f\left(x_{1}, \ldots, x_{m}\right) \neq g\left(y_{1}, \ldots, y_{n}\right)\right)$ for different function symbols $f, g \in S_{F}$ with arity m and n respectively,

Proposition $1=i s$ an equivalence relation (use $E 1$ and E_{3} with $=$ for p).
Proposition $2 \mathcal{H} \models C E T$.

Clark's Equality Theory for the Herbrand domain \mathcal{H}

Given S_{F} containing at least one constant, $S_{C}=\{=\}, \mathcal{H}=\mathcal{T}\left(S_{F}\right)$.
$E_{1} \forall x x=x$,
$E_{2} \forall\left(x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)\right)$,
$E_{3} \forall\left(x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n} \rightarrow p\left(x_{1}, \ldots, x_{n}\right) \rightarrow p\left(y_{1}, \ldots, y_{n}\right)\right)$,
$E_{4} \forall\left(f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right) \rightarrow x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n}\right)$,
$E_{5} \forall\left(f\left(x_{1}, \ldots, x_{m}\right) \neq g\left(y_{1}, \ldots, y_{n}\right)\right)$ for different function symbols $f, g \in S_{F}$ with arity m and n respectively,
$E_{6} \forall x M[x] \neq x$ for every term M strictly containing x.

Proposition $1=$ is an equivalence relation (use $E 1$ and E_{3} with $=$ for p).
Proposition $2 \mathcal{H} \models C E T$.

Questions on CET

1. give a non standard model of CET (model different from \mathcal{H})
2. give a model of $\operatorname{CET} \backslash E_{6}$ in which E_{6} is false
3. compare CET to Presburger arithmetic
4. If S_{F} is finite, e.g. $S_{F}=\{0, s\}$, show that CET is not complete.

Questions on CET

1. give a non standard model of CET (model different from \mathcal{H}) $\mathcal{H} \cup\{\epsilon, f(\epsilon, \ldots), \ldots\}$
2. give a model of $\operatorname{CET} \backslash E_{6}$ in which E_{6} is false $T^{\infty}\left(S_{F}\right)$
3. compare CET to Presburger arithmetic no induction, $E_{7}: \forall x x=0 \vee \exists y x=s(y)$ not provable
4. If S_{F} is finite, e.g. $S_{F}=\{0, s\}$, show that CET is not complete, E_{7} not provable: true in \mathcal{H}, false in $\mathcal{H} \cup\{\epsilon, s(\epsilon), \ldots\}$

Theorem 1 (Clark 78) If S_{F} is infinite, CET is a complete theory.

Solving Equality Constraints in \mathcal{H} by Rewriting

Systems of equations Γ :

$$
M_{1}=N_{1} \wedge \ldots \wedge M_{n}=N_{n}
$$

A system is in solved form if it is of the form

$$
x_{1}=M_{1} \wedge \ldots \wedge x_{n}=M_{n}
$$

with $n \geq 0$ and $\left\{x_{1}, \ldots, x_{n}\right\} \cap\left(V\left(M_{1}\right) \cup \ldots \cup V\left(M_{n}\right)\right)=\emptyset$.
Proposition 3 If Γ is in solved form then $\mathcal{H} \models \exists(\Gamma)$.

Idea of the unification algorithm: try to simplify Γ into either a solved form or \perp.

Herbrand-Robinson's Unification Algorithm

$\operatorname{Dec} f\left(M_{1}, \ldots, M_{n}\right)=f\left(N_{1}, \ldots, N_{n}\right) \wedge \Gamma$
$\longrightarrow M_{1}=N_{1} \wedge \ldots \wedge M_{n}=N_{n} \wedge \Gamma$,
$\mathrm{D} \perp f\left(M_{1}, \ldots, M_{n}\right)=g\left(N_{1}, \ldots, N_{m}\right) \wedge \Gamma \longrightarrow \perp$ if $f \neq g$,
Triv $x=x \wedge \Gamma \longrightarrow \Gamma$,
Var $x=M \wedge \Gamma \longrightarrow x=M \wedge \Gamma \sigma$
if $x \notin V(M), x \in V(\Gamma), \sigma=\{x \leftarrow M\}$,
$\mathbf{V} \perp x=M \wedge \Gamma \longrightarrow \perp$
if $x \in V(M)$ and $x \neq M$.
Lemma 1 (Validity) If $\Gamma \longrightarrow \Gamma^{\prime}$ then $C E T \models \Gamma \leftrightarrow \Gamma^{\prime}$.
Proof: Simple application of the axioms for each rule (of E_{1}, E_{3} for Var).

Herbrand-Robinson's Unification Algorithm

Lemma 2 (Termination) The rules terminate.
Proof: Take as complexity measure of Γ, the number of variables in non-solved form, and the size of Γ, ordered lexicographically.

Herbrand-Robinson's Unification Algorithm

Lemma 2 (Termination) The rules terminate.
Proof: Take as complexity measure of Γ, the number of variables in non-solved form, and the size of Γ, ordered lexicographically.

Theorem 2 (Decidability of unification) $C E T \models \exists(\Gamma)$ iff the irreducible form of Γ is a solved form.

Proof: An irreducible form is either \perp, in which case Γ is unsatisfiable, or, by case analysis, a solved form, in which case Γ is satisfiable.

Herbrand-Robinson's Unification Algorithm

Lemma 2 (Termination) The rules terminate.
Proof: Take as complexity measure of Γ, the number of variables in non-solved form, and the size of Γ, ordered lexicographically.

Theorem 2 (Decidability of unification) $C E T \models \exists(\Gamma)$ iff the irreducible form of Γ is a solved form.

Proof: An irreducible form is either \perp, in which case Γ is unsatisfiable, or, by case analysis, a solved form, in which case Γ is satisfiable.

Corollary 1 (Completeness of CET) For any equation system Γ, either $C E T \vdash \exists(\Gamma)$, or $C E T \vdash \neg \exists(\Gamma)$.

Corollary $2 \mathcal{H} \models \exists(\Gamma)$ iff $C E T \models \exists(\Gamma)$.

Ordering Constraints over Terms (subtyping constraints)

Let $\left(S_{F}, \leq_{S_{F}}\right)$ be a lattice of co-variant function symbols, then (\mathcal{H}, \leq) is a lattice.

One can decide ordering constraint satisfiability by a closure algorithm [Trifonov and Smith 96] :
(Trans)

$$
C, \tau \leq \alpha, \alpha \leq \tau^{\prime} \rightarrow C, \tau \leq \alpha, \alpha \leq \tau^{\prime}, \tau \leq \tau^{\prime}
$$

(Fail)

$$
C, t\left(\tau_{1}, \ldots, \tau_{m}\right) \leq u\left(\tau_{1}^{\prime}, \ldots, \tau_{n}^{\prime}\right) \rightarrow \text { fail } \quad \text { if } t \not \leq_{S_{F}} u
$$

(Dec)

$$
\begin{aligned}
& C, t\left(\tau_{1}, \ldots, \tau_{m}\right) \leq u\left(\tau_{1}^{\prime}, \ldots, \tau_{n}^{\prime}\right) \rightarrow \\
& \quad C, t\left(\tau_{1}, \ldots, \tau_{m}\right) \leq u\left(\tau_{1}^{\prime}, \ldots, \tau_{n}^{\prime}\right) \cup\left\{\tau_{i} \leq \tau_{j}^{\prime} \mid e_{i}=e_{j}^{\prime}\right\} \\
& \text { if } t\left(e_{1}, \ldots, e_{m}\right) \leq_{S_{F}} u\left(e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right)
\end{aligned}
$$

Theorem 3 The rules terminate in $O\left(n^{3}\right)$. A system of term inequalities is satisfiable iff its normal form is not fail.

CLP (X) Programs

Alphabet V, S_{F}, S_{C} of constraint symbols.
Structure \mathcal{X} presented by a satisfaction complete theory \mathcal{T}

Alphabet S_{P} of program predicate symbols

A $\operatorname{CLP}(\mathcal{X})$ program is a finite set of program clauses.
Program clause $\forall\left(A \vee \neg c_{1} \vee \ldots \neg c_{m} \vee \neg A_{1} \vee \ldots \vee \neg A_{n}\right)$

$$
A \leftarrow c_{1}, \ldots, c_{m} \mid A_{1}, \ldots A_{n}
$$

Goal clause $\forall\left(\neg c_{1} \vee \ldots \neg c_{m} \vee \neg A_{1} \vee \ldots \vee \neg A_{n}\right)$

$$
c_{1}, \ldots, c_{m} \mid A_{1}, \ldots, A_{n}
$$

Operational semantics: CSLD Resolution

$$
\frac{\left(p\left(t_{1}, t_{2}\right) \leftarrow c^{\prime} \mid A_{1}, \ldots, A_{n}\right) \theta \in P \quad \mathcal{X} \models \exists\left(c \wedge s_{1}=t_{1} \wedge s_{2}=t_{2} \wedge c^{\prime}\right)}{\left(c \mid \alpha, p\left(s_{1}, s_{2}\right), \alpha^{\prime}\right) \longrightarrow\left(c, s_{1}=t_{1}, s_{2}=t_{2}, c^{\prime} \mid \alpha, A_{1}, \ldots, A_{n}, \alpha^{\prime}\right)}
$$

where θ is a renaming substitution of the program clause with new variables.

A successful derivation is a derivation of the form
$G \longrightarrow G_{1} \longrightarrow G_{2} \longrightarrow \ldots \longrightarrow c \mid \square$
c is called a computed answer constraint for G.

Prolog as $\operatorname{CLP}(\mathcal{H})$

The programming language Prolog [Colmerauer 73, Kowalski 74] is an implementation of $\operatorname{CLP}(\mathcal{H})$ in which:

- the constraints are only equalities between terms,
- the selection strategy consists in solving the atoms from left to right according to their order in the goal,
- the search strategy consists in searching the derivation tree depth-first by backtracking.

Only constants: Deductive Databases

```
gdfather(X,Y):-father(X,Z), parent(Z,Y).
gdmother(X,Y) :-mother(X,Z), parent(Z,Y).
parent(X,Y):-father(X,Y).
parent(X,Y):-mother(X,Y).
father(alphonse,chantal).
mother(emilie,chantal).
mother(chantal,julien).
father(julien,simon).
| ?- gdfather(X,Y).
X = alphonse, Y = julien ? ;
no
| ?- gdmother(X,Y).
X = emilie, Y = julien ? ;
X = chantal, Y = simon ? ;
```

no

Lists

```
member(X,cons(X,L)).
member(X, cons(Y,L)):-member(X,L).
| ?- member(X,cons(a,cons(b,cons(c,nil)))).
X = a ? ;
X = b ? ;
X = c ? ;
no
| ?- member(X,Y).
Y = cons(X,_A) ? ;
Y = cons(_B,cons(X,_A)) ? ;
Y = cons(_C,cons(_B,cons(X,_A))) ?
yes
```


Appending lists

```
append([],L,L).
append([X|L],L2,[X|L3]):-append(L,L2,L3).
| ?- append([a,b],[c,d],L).
L = [a,b,c,d] ? ;
no
| ?- append(X,Y,L).
X = [],
Y = L ? ;
L = [_A|Y],
X = [_A] ? ;
L = [_A,_B|Y],
X = [_A,_B] ?
yes
```


Reversing a list

```
reverse([], []).
reverse([X|L],R):-reverse(L,K), append(K,[X],R).
| ?- reverse([a,b,c,d],M).
M = [d,c,b,a] ? ;
no
| ?- reverse(M,[a,b,c,d]).
M = [d,c,b,a] ?
rev(L,R):-rev_lin(L, [],R).
rev_lin([],R,R).
rev_lin([X|L],K,R):-rev_lin(L,[X|K],R).
| ?- reverse(X,Y).
X = [], Y = [] ? ;
X = [_A], Y = [_A] ? ;
```


Quicksort

```
quicksort([],[]).
quicksort([X|L],R):-
    partition(L,Linf,X,Lsup),
    quicksort(Linf,L1),
    quicksort(Lsup,L2),
    append(L1,[X|L2],R).
partition([], [],_, []).
partition([Y|L],[Y|Linf],X,Lsup):-
    Y=<X ,
    partition(L,Linf,X,Lsup).
partition([Y|L],Linf,X,[Y|Lsup]):-
    Y>X,
    partition(L,Linf,X,Lsup).
```


Parsing

```
sentence(L):-nounphrase(L1), verbphrase(L2), append(L1,L2,L).
nounphrase(L):- determiner(L1), noun(L2), append(L1,L2,L).
nounphrase(L):- noun(L).
verbphrase(L):- verb(L).
verbphrase(L):- verb(L1), nounphrase(L2), append(L1,L2,L).
verb([eats]).
determiner([the]).
noun([monkey]).
noun([banana]).
```


Parsing/Synthesis (continued)

```
| ?- sentence([the,monkey,eats]).
yes
    | ?- sentence([the,eats]).
no
    | ?- sentence(L).
L = [the,monkey,eats] ? ;
L = [the,monkey,eats,the,monkey] ? ;
L = [the,monkey,eats,the,banana] ? ;
L = [the,monkey,eats,monkey] ?
yes
```


Prolog Meta-interpreter

```
solve((A,B)) :- solve(A), solve(B).
solve(A) :- clause(A).
solve(A) :- clause((A:-B)), solve(B).
clause(member(X,[X|_])).
clause((member(X,[_|L]) :- member(X,L))).
    | ?- solve(member(X,L)).
L = [X|_A] ? ;
L = [_A,X|_B] ? ;
L = [_A,_B,X|_C] ? ;
L = [_A,_B,_C,Xl_D] ?
yes
```


Complete Search Procedure by Iterative Deepening

Linear space complexity in the depth of the search tree.

```
solve(G):-solve(G,1).
solve(G,I) :- write('Depth: '), write(I), nl, solve(G,0,I,_).
solve(G,I) :- J is I+1, solve(G,J).
solve(_,I,I,_):- !, fail.
solve(((A,B)),I,J,R):- solve(A,I,J,R1), solve(B,R1,J,R).
solve(A,I,_,I):- clause(A).
solve(A,I,J,R):- clause((A:-C)), I1 is I+1, solve(C,I1,J,R).
```


2. Complete Theory of the Real Numbers

$$
\begin{array}{ll}
C_{1}:(x+y)+z=x+(y+z), & O_{2}: x<y \rightarrow(y<z \rightarrow x<z) \\
C_{2}: x+0=x, & O_{4}: x<y \rightarrow x+z<y+z \\
C_{3}: x+(-1 * x)=0, & R_{1}: 0<x \rightarrow \exists y y * y=x \\
C_{4}: x+y=y+x, & O_{1}: \neg(x<x), \\
C_{5}:(x * y) * z=x *(y * z), & O_{3}: x<y \vee x=y \vee y<x, \\
C_{6}: x * 1=x, & O_{5}: 0<x \rightarrow(0<y \rightarrow 0<x * y), \\
C_{7}: x \neq 0 \rightarrow \exists y x * y=1, & R_{2}: y_{n} \neq 0 \rightarrow \\
C_{8}: x * y=y * x, & \exists x y_{n} * x^{n}+y_{n-1} * x^{n-1}+\ldots+y_{0}=0 \\
C_{9}: x *(y+z x * y)+(x * z), & \text { for any odd integer } n \\
C_{10}: 0 \neq 1, & \text { where } x^{n} \text { stands for } x * \ldots * x, n \text { times. }
\end{array}
$$

Theorem 4 (Tarski 56, Collins 80) The elementary theory of ordered fields is complete. Satisfiability of a formula of size n can be decided in $O\left(2^{2^{n}}\right)$ time.

Fourier's Alg. for Linear Inequality Constraints over \mathcal{R}

Check the satisfiability of a system of linear inequalities
$\sum_{i=1}^{m} a_{i} x_{i}+c \leq \sum_{j=1}^{n} b_{j} y_{j}+d$
Normal forms: $t \leq x, x \leq t$, or $t \leq 0$, where t is linear and $x \notin V(t)$.
The normal form of $s \leq t$ w.r.t. x is noted $\bar{s} \leq^{x}$.

- $\Gamma \longrightarrow \bigwedge_{i=1}^{n} \bigwedge_{j=1}^{m} s_{i} \leq t_{j} \wedge \Gamma^{\prime}$

$$
\text { if } \bar{\Gamma}^{x}=\bigwedge_{i=1}^{n} s_{i} \leq x \wedge \bigwedge_{j=1}^{m} x \leq t_{j} \wedge \Gamma^{\prime} \text { where } x \notin V\left(\Gamma^{\prime}\right)
$$

- $s \leq t \wedge \Gamma \longrightarrow \Gamma$ if $s, t \in \mathbf{R}$ and $s \leq t$,
- $s \leq t \wedge \Gamma \longrightarrow$ false if $s, t \in \mathbf{R}$ and $s>t$.

Theorem 5 The rules terminate. A system of linear inequalities Γ is satisfiable over \mathcal{R} iff it reduces to the empty system.

Linear Programming

- Variables with a continuous domain R.

$$
\begin{aligned}
& A . x \leq B \\
& \max c . x
\end{aligned}
$$

Satisfiability and optimization has polynomial complexity (Simplex algorithm, interior point method).

- Mixed Integer Linear Programming

Variables with either a continuous domain R or a discrete domain Z

$$
\begin{gathered}
x \in \mathcal{Z} \\
A . x \leq B \\
\max c . x
\end{gathered}
$$

NP-hard problem (Branch and bound procedure, Gomory's cuts,...)

CLP(R) mortgage program

```
int(P,T,I,B,M):- T > 0, T <= 1, B + M = P * (1 + I).
int(P,T,I,B,M):- T > 1, int(P * (1 + I) - M, T - 1, I, B, M).
| ?- int(120000,120,0.01,0,M).
M = 1721.651381 ?
yes
| ?- int(P,120,0.01,0,1721.651381).
P = 120000 ?
yes
| ?- int(P,120,0.01,0,M).
P = 69.700522*M ?
yes
| ?- int(P,120,0.01,B,M).
P = 0.302995*B + 69.700522*M ?
yes
| ?- int(999, 3, Int, 0, 400).
400 = (-400 + (599 + 999*Int) * (1 + Int)) * (1 + Int) ?
```


CLP(R) heat equation

| ?- $X=[[0,0,0,0,0,0,0,0,0,0,0]$,

```
    [100,_,_,_,_,_,_,_,_,_,100],
    [100,_,_,_,_,-,-,_,_, , 100],
    [100,_,_,_,_,_,_,_,_,_,100],
    [100,_,_,_,_,_,_,_,_,_,100],
    [100,_,_,_,_,_,_,_,_,_,100],
    [100,_,_,_,_,_,_,_,_,_,100],
    [100,_,_,_,_,_,_,_,_,_,100],
    [100,_,_,_,_,_,_,_,_,_,100],
    [100,_,_,_,_,_,_,_,_,_,100],
    [100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100]],
laplace(X)
```

$\mathrm{X}=[[0,0,0,0,0,0,0,0,0,0,0]$,
$[100,51.11,32.52,24.56,21.11,20.12,21.11,24.56,32.52,51.11,100]$, $[100,71.91,54.41,44.63,39.74,38.26,39.74,44.63,54.41,71.91,100]$, $[100,82.12,68.59,59.80,54.97,53.44,54.97,59.80,68.59,82.12,100]$, [100, 87.97,78.03,71.00,66.90,65.56,66.90,71.00,78.03,87.97,100], [100, $91.71,84.58,79.28,76.07,75.00,76.07,79.28,84.58,91.71,100]$, $[100,94.30,89.29,85.47,83.10,82.30,83.10,85.47,89.29,94.30,100]$, [100, 96.20, $92.82,90.20,88.56,88.00,88.56,90.20,92.82,96.20,100]$, [100, 97.67, 95.59, 93.96, 92.93, 92.58, 92.93, 93.96, 95.59, 97.67, 100], [100, 98.89, 97.90, 97.12,96.63,96.46,96.63,97.12,97.90, 98.89, 100], [100,100,100,100,100,100,100,100,100,100,100]] ?

CLP(R) heat equation

```
laplace([H1,H2,H3|T]):- laplace_vec(H1,H2,H3), laplace([H2,H3|T]).
laplace([_,_]).
laplace_vec([TL,T,TR|T1],[ML,M,MR|T2],[BL,B,BR|T3]):-
    B + T + ML + MR - 4 * M = 0,
    laplace_vec([T,TR|T1],[M,MR|T2],[B,BR|T3]).
laplace_vec([_,_], [_,_],[_,_]).
| ?- laplace([[B11, B12, B13, B14],
    [B21, M22, M23, B24],
    [B31, M32, M33, B34],
    [B41, B42, B43, B44]]).
B12 = -B21 - 4*B31 + 16*M32 - 8*M33 + B34 - 4*B42 + B43,
B13 = -B24 + B31 - 8*M32 + 16*M33 - 4*B34 + B42 - 4*B43,
M22 = -B31 + 4*M32 - M33 - B42,
M23 = -M32 + 4*M33 - B34 - B43 ?
```


3. Constraint Solving by Domain Reduction

Variables $\left\{x_{1}, \ldots, x_{v}\right\}$
over a finite domain $D=\left\{e_{1}, \ldots, e_{d}\right\}$.

Constraints to satisfy:

- unary constraints of domains $x \in\left\{e_{i}, e_{j}, e_{k}\right\}$
- binary constraints: $c(x, y)$
defined intentionally, $x>y+2$,
or extentionally, $\{c(a, b), c(d, c), c(a, d)\}$.
- n-ary global constraints: $c\left(x_{1}, \ldots, x_{n}\right)$,

Constraint Solving by Domain Reduction

- Simple reasoning on the domain of variables for each constraint independently.
- "Arc consistency": for each constraint c, for each variable x in c, for each value e of the domain of x, there exists a solution of c with $x=e$.
- Example: $x, y, z \in\{1,2\}$

The system $x \neq y \wedge x \neq z \wedge y \neq z$
is arc-consistent but unsatisfiable
The Global constaint all-different ($[\mathrm{x}, \mathrm{y}, \mathrm{z}]$ is not arc-consistent.

CLP(FD) N-queens Problem

GNU-Prolog program:

```
queens(N,L):-
    length(L,N),
    fd_domain(L,1,N),
    safe(L),
    fd_labeling(L,first_fail).
safe([]).
safe([X|L]):-
    noattack(L,X,1),
    safe(L).
noattack([],_,_).
noattack([Y|L],X,I):-
    X#=/=Y,
    X#=/=Y+I,
    X+I#=/=Y,
    I1 is I+1,
    noattack(L,X,I1).
```


Search space of all solutions

CLP $(\mathcal{F} \mathcal{D})$ send + more $=$ money

```
send(L):-sendc(L), labeling(L).
sendc([S,E,N,D,M,O,R,Y]) :-
    domain([S,E,N,D,M,O,R,Y],[0, 9]),
    alldifferent([S,E,N,D,M,O,R,Y]), S#=/=0, M#=/=0,
    eqln( 1000*S+100*E+10*N+D
        + 1000*M+100*O+10*R+E ,
    10000*M+1000*O+100*N+10*E+Y).
| ?- send(L).
L = [9,5,6,7,1,0,8,2] ? ;
no
| ?- sendc([S,E,N,D,M,O,R,Y]).
M = 1, D = 1, O = 0, S = 9, domain(E,[4,7]), domain(N,[5,8]),
domain(D, [2, 8]), domain(R,[2, 8]), domain(Y, [2, 8])
Y+90*N#=10*R+D+91*E, alldifferent([E,N,D,R,Y]), ?
```


Domain Reduction over Finite Domains

$$
\operatorname{Sol}(\Gamma, \mathcal{F D})=\left\{\sigma \mid \sigma=\left\{x^{d} \leftarrow v \mid x^{d} \in V(\Gamma), v \in d\right\}, \mathcal{F D} \models \Gamma \sigma\right\}
$$

The reduced domain of a variable x^{d} w.r.t. a basic constraint c is the domain

$$
D R\left(x^{d}, c\right)=\left\{v \in d \mid \mathcal{F D} \models \exists\left(c\left[v / x^{d}\right]\right)\right\}
$$

A constraint system Γ is arc-consistent if

$$
\forall c \in \Gamma \forall x^{d} \in V(c) D R\left(x^{d}, c\right)=d
$$

Idea of constraint propagation: reduce the domain of variables independently to make the system arc-consistent.

Example $a * X \geq b * Y+c$

Simple interval reasoning:

$$
a X^{[k, l]} \geq b Y^{[m, n]}+d, a, b>0, d \geq 0
$$

we have

$$
\begin{aligned}
D R\left(X^{[k, l]}, c\right) & =\left[\max \left(k, k^{\prime}\right), l\right] \\
D R\left(Y^{[m, n]}, c\right) & =\left[\operatorname{m,min}\left(n, n^{\prime}\right)\right]
\end{aligned}
$$

where $k^{\prime}=\left\lceil\frac{b m+d}{a}\right\rceil$ and $n^{\prime}=\left\lfloor\frac{a l-d}{b}\right\rfloor$.

Domain Reduction Algorithm

Fail: $c \wedge \Gamma \longrightarrow \perp$ if $x^{d} \in V(c)$ and $D R\left(x^{d}, c\right)=\emptyset$.
FC: $c \wedge \Gamma \longrightarrow \Gamma \sigma$
if $V(c)=\left\{x^{d}\right\}, d^{\prime}=D R\left(x^{d}, c\right), d^{\prime} \neq \emptyset$, and $\sigma=\left\{x^{d} \leftarrow y^{d^{\prime}}\right\}$
LA: $c \wedge \Gamma \longrightarrow c \sigma \wedge \Gamma \sigma$
if $|V(c)|>1, x^{d} \in V(c), d^{\prime}=D R\left(x^{d}, c\right), d^{\prime} \neq \emptyset, d^{\prime} \neq d, \sigma=\left\{x^{d} \leftarrow y^{d^{\prime}}\right\}$.
PLA: $c \wedge \Gamma \longrightarrow c \sigma \wedge \Gamma \sigma$
if $|V(c)|>1, x^{d} \in V(c), D R\left(x^{d}, c\right) \subseteq d^{\prime} \subset d, d^{\prime} \neq \emptyset, \sigma=\left\{x^{d} \leftarrow y^{d^{\prime}}\right\}$.
EL: $c \wedge \Gamma \longrightarrow \Gamma$
if $\mathcal{F D} \models c \sigma$ for every valuation σ of the variables in c by values of their domain.

Domain Reduction Algorithm (continued)

Lemma 3 (Validity) If $\Gamma \longrightarrow{ }_{\sigma}^{*} \Gamma^{\prime}$ then
$\operatorname{Sol}(\Gamma, \mathcal{F} \mathcal{D})=\left\{\sigma \theta \mid \theta \in \operatorname{Sol}\left(\Gamma^{\prime}, \mathcal{F} \mathcal{D}\right)\right\}$.
Proof: No solution is lost by filtering values outside the reduced domain of any variable w.r.t. any constraint.

Domain Reduction Algorithm (continued)

Lemma 3 (Validity) If $\Gamma \longrightarrow{ }_{\sigma}^{*} \Gamma^{\prime}$ then
$\operatorname{Sol}(\Gamma, \mathcal{F} \mathcal{D})=\left\{\sigma \theta \mid \theta \in \operatorname{Sol}\left(\Gamma^{\prime}, \mathcal{F} \mathcal{D}\right)\right\}$.
Proof: No solution is lost by filtering values outside the reduced domain of any variable w.r.t. any constraint.

Proposition 4 (Completeness of LA for inequations 2 var.) Let Γ be a constraint system of the form

$$
a X \geq b Y+d, a, b>0, d \geq 0
$$

Let $\Gamma \longrightarrow{ }_{\sigma}^{*} \Gamma^{\prime} \nrightarrow$. Then Γ is satisfiable if and only if $\Gamma^{\prime} \neq \perp$.

Domain Reduction Algorithm (continued)

Lemma 3 (Validity) If $\Gamma \longrightarrow{ }_{\sigma}^{*} \Gamma^{\prime}$ then
$\operatorname{Sol}(\Gamma, \mathcal{F} \mathcal{D})=\left\{\sigma \theta \mid \theta \in \operatorname{Sol}\left(\Gamma^{\prime}, \mathcal{F} \mathcal{D}\right)\right\}$.
Proof: No solution is lost by filtering values outside the reduced domain of any variable w.r.t. any constraint.

Proposition 4 (Completeness of LA for inequations 2 var.) Let Γ be a constraint system of the form

$$
a X \geq b Y+d, a, b>0, d \geq 0
$$

Let $\Gamma \longrightarrow{ }_{\sigma}^{*} \Gamma^{\prime} \nrightarrow$. Then Γ is satisfiable if and only if $\Gamma^{\prime} \neq \perp$.
Proof: If $\Gamma^{\prime} \neq \perp$ is an irreducible form of Γ then for all $c \in \Gamma^{\prime}$ and $x \in V(c)$ we have $D R\left(x^{d}, c\right)=d$ and $\left\{x^{[k, l]} \leftarrow k \mid x \in V\left(\Gamma^{\prime}\right)\right\}$ is a solution of Γ^{\prime}.

$\operatorname{CLP}(\mathcal{F D})$ scheduling

Tasks with duration and unknown start dates, precedence and due date constraints.

No need to enumerate on the start dates, the lower bounds are a solution.
Simple precedence problems (PERT) are polynomial
| ?- minimise ($(B \#>=A+5, C \#>=B+2, D \#>=B+3, E \#>=C+5, E \#>=D+5), E)$.
Solution de cout 13
$A=0, B=5, D=8, E=13$, domain $(C,[7,8])$?
yes
Disjunctive scheduling (mutual exclusion of tasks) is NP-hard

```
| ?- minimise( \(\mathrm{B} \#>=\mathrm{A}+5, \mathrm{C} \#>=\mathrm{B}+2, \mathrm{D} \#>=\mathrm{B}+3, \mathrm{E} \#>=\mathrm{C}+5\),
    E\#>=D+5, (C\#>=D+5 ; D\#>=C+5)), E).
```

Solution de cout 18
Solution de cout 17
$\mathrm{A}=0, \mathrm{~B}=5, \mathrm{C}=7, \mathrm{D}=12, \mathrm{E}=17$? ;
no

Disjunctive scheduling: bridge problem (50 tasks)

Disjunctive scheduling: bridge problem (4000 nodes)

4. Reified constraints and Higher-order Constraints

The reified constraint $B \Leftrightarrow(X<Y)$ associates a boolean variable B to the satisfaction of the constraint $X<Y$. Arc consistency:
B is set to 1 when $\operatorname{domain}(X)<\operatorname{domain}(Y)$,
B is set to 0 when domain $(Y)<\operatorname{domain}(X)$,
$\operatorname{domain}(X)$ is set to $\{v \in \operatorname{domain}(X) \mid v<\max (Y)\}$ when $B=1$, $\operatorname{domain}(Y)$ is set to $\{v \in \operatorname{domain}(Y) \mid v>\min (X))\}$ when $B=1$,
$\operatorname{domain}(X)$ is set to $\{v \in \operatorname{domain}(X) \mid v \geq \min (Y)\}$ when $B=0$, $\operatorname{domain}(Y)$ is set to $\{v \in \operatorname{domain}(Y) \mid v \leq \max (X))\}$ when $B=0$.

Cardinality constraint

Cardinality constraint $\operatorname{card}(N,[C 1, \ldots, C m])$ is true iff there are exactly N constraints true in $[C 1, \ldots, C m]$.

```
card(0,[]).
card(N,[C|L]) :-
    fd_domain_bool(B),
    B#<=>C,
    N#=B+M,
    card(M,L).
```

atmost ...

Cardinality constraint

Cardinality constraint $\operatorname{card}(N,[C 1, \ldots, C m])$ is true iff there are exactly N constraints true in $[C 1, \ldots, C m]$.

```
card(0,[]).
card(N,[C|L]) :-
    fd_domain_bool(B),
    B#<=>C,
    N#=B+M,
    card(M,L).
atmost(N,L) :-
    M#=<N,
    card(M,L).
```


Time Tabling

The organizers of a congress have 3 rooms and 2 days for eleven half-day sessions. Sessions AJ, JI, IE, CF, BHK, ABCH, DFJ can't be simultaneous, moreover $E<J, D<K, F<K$

Time Tabling

The organizers of a congress have 3 rooms and 2 days for eleven half-day sessions. Sessions AJ, JI, IE, CF, BHK, ABCH, DFJ can't be simultaneous, moreover $E<J, D<K, F<K$
| ?- domain([A,B,C,D,E,F,G,H,I, J, K],[1, 4]),
alldifferent([A, J]), alldifferent([J, I]), alldifferent([I, E]), alldifferent($\{B, H, K]$), alldifferent ([A, B, C, H]) , alldifferent ([D, F, J]), J\#>E, K\#>D, K\#>F,
$\operatorname{atmost}(3,[A=1, B=1, C=1, D=1, E=1, F=1, G=1, H=1, I=1, J=1, K=1])$,
$\operatorname{atmost}(3,[A=2, B=2, C=2, D=2, E=2, F=2, G=2, H=2, I=2, J=2, K=2])$, $\operatorname{atmost}(3,[A=3, B=3, C=3, D=3, E=3, F=3, G=3, H=3, I=3, J=3, K=3])$, atmost ($3,[A=4, B=4, C=4, D=4, E=4, F=4, G=4, H=4, I=4, J=4, K=4]$), labeling([A, B, C, D, E, F, G, H, I, J, K]).
$A=1, B=2, C=4, D=1, E=2, F=2, G=4, H=3, I=1, J=3, K=4$?

Magic Series

Find a sequence of integers $\left(i_{0}, \ldots, i_{n-1}\right)$ such that
i_{j} is the number of occurrences of the integer j in the sequence

$$
\bigwedge_{j=0}^{n-1} \operatorname{card}\left(i_{j},\left[i_{0}=j, \ldots, i_{n-1}=j\right]\right)
$$

Ex. $[6,2,1,0,0,0,1,0,0,0]$ (for $N \geq 7$ [$N-4,2,1, \mathrm{~N}-70^{2}$'s ,1,0,0,0])

- Constraint propagation with reified constraints $b_{k} \Leftrightarrow i_{k}=j$,
- Two redundant constraints: $n=\sum_{j=0}^{n-1} i_{j}$ (total number of occurrences) and $n=\sum_{j=0}^{n-1} i_{j} * j\left(\right.$ as $\left.i_{j}=\operatorname{card}\left\{k \mid i_{k}=j\right\}\right)$
- Enumeration with first fail heuristics (smallest domain first),

Less than one second CPU for $n=50 \ldots$

Double Modeling in $\operatorname{CLP}(\mathcal{F D})$

N-queens with two concurrent models: by lines and by columns

```
queens2(N,L) :-
    list(N, Column), fd_domain(Column,1,N), safe(Column),
    list(N, Line), fd_domain(Line,1,N), safe(Line),
    linking(Line,1,Column),
    append(Line,Column,L), labeling(L,ff).
linking([],_,_).
linking([X|L],I,C):- equivalence(X,I,C,1),
    I1 is I+1,
    linking(L, I1, C).
equivalence(_,_,[],_).
equivalence(X,I,[Y|L],J):- B #<=> (X #= J), B #<=> (Y #= I),
                                    J1 is J+1,
                                    equivalence(X,I,L,J1).
```


Lexicographic order constraint

$$
\begin{aligned}
& \operatorname{lex}([X 1, \ldots, X n]) \\
& \text { iff } X_{1}<X_{2} \text { or }\left(X_{1}=X_{2} \text { and }\left(X_{2}<X_{3} \ldots \text { or } X_{n-1} \leq X_{n}\right)\right)
\end{aligned}
$$

Lexicographic order constraint

```
lex([X1, .., Xn])
iff }\mp@subsup{X}{1}{}<\mp@subsup{X}{2}{}\mathrm{ or ( }\mp@subsup{X}{1}{}=\mp@subsup{X}{2}{}\mathrm{ and ( }\mp@subsup{X}{2}{}<\mp@subsup{X}{3}{}\ldots\mathrm{ or }\mp@subsup{X}{n-1}{}\leq\mp@subsup{X}{n}{})
lex(L):-
    lex(L,B),
    B=1.
lex([],1).
lex([_],1).
lex([X,Y|L],R):-
    B #<=> (X #< Y),
    C #<=> (X #= Y),
    lex([Y|L],D),
    R #<=> B #\/ (C #/\ D).
```


Programming in CLP $(\mathcal{H}, \mathrm{B}, \mathrm{FD}, \mathrm{R})$

- Basic constraints on domains of terms H, bounded integers FD, reals R, booleans B, ontologies H_{\leq}, etc.
- Relations defined extentionally by constrained facts:

```
precedence(X,D,Y) :- X+D<Y.
disjonctives(X,D,Y,E) :- X+D<Y.
disjonctives(X,D,Y,E) :- Y+E<X.
and intentionally by rules:
labeling([]).
labeling([X|L]):- indomain(X), labeling(L).
```

- Programming of search procedures and heuristics:

And-parallelism (variable choice): "first-fail" heuristics e.g. min domain Or-parallelism (value choice): "best-first" heuristics e.g. min value

