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Introduction

Context

Systems biology : system-level understanding of biological systems
[Kitano. 1CSB 2000]

@ Biological systems are dynamical systems in time and space

o Need to investigate components characteristics and their
interactions

@ Tools and formalisms required for modeling and simulation,
control and design methods.
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Introduction

Temporal logics approach

Temporal logics are general-purpose languages for specifying dynamical
properties of discrete transition systems. [Pnueli. FOCS 1977]

o Automatic verification done by model-checking

@ Model checking succesfully used for the verification of electronic
systems and programs, can be efficient on large and complex systems

o Temporal logic adapted to high level specifications, and to

incomplete and imprecise experimental data obtained in systems
biology.
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Introduction

A logical Paradigm for Systems Biology

Biological Model = (Quantitative) State Transition System
Biological Properties = Temporal Logic Formulae
Automatic Validation = Model-checking

Applications of Temporal Logic in Systems Biology:

@ query language of large reaction networks [Eker et al. PSB 02,
Chabrier Fages CMSB 03] and gene regulatory network [Batt et al.
Bioinformatics 05]

@ parameter search in boolean or discrete models [Bernot et al. JTB 04]
[Calzone et al. TCSB 06]

@ robustness analysis [Batt et al. 07]

Biocham : modeling environment based on formal languages for system
description and for biological properties

4/48



Introduction

Temporal logics for continuous models

Temporal logics :
@ mostly developed for discrete systems
@ temporal logics with numerical constraints can deal with continuous

time models (ODE or CTMC, hybrid systems)

Abstraction levels in systems biology :

@ Presence/absence of molecules (boolean transitions)
o Concentration of molecules (continuous models, rates of reactions)

@ Number of molecules (stochastic models, probabilities of reactions)
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Introduction
Description of temporal behaviors

80
60
40

Concentration [A]

50 60

Time

Describe as:

e Numerical data time series ([A]=0 at t=0, [A]= 45 at t=7, ---)
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Introduction
Description of temporal behaviors

80
60
40

Concentration [A]

50 60

Time

Describe as:
e Numerical data time series ([A]=0 at t=0, [A]= 45 at t=7, ---)
@ [A] rises above threshold 60
@ [A] rises above threshold 60 and then remains above 20
@ [A] rises then falls (and nothing else happens)
@ [A] attains a local maximum of value 70

High level properties adapted to noisy data ... but need formalization
to be used by a computer program.

7/48



Introduction

Formalize temporal properties in Linear Time Logic (LTL)

Linear Time Logic add temporal operators to usual logical operators
(= AV, =)

e Fq (finally) : g is true at some time point in the future;

e Ggq (globally) : q is true at all time points in the future;

e pUgq (until) : p is true until g becomes true.

o Xg (next) : q is true at the next time point;
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LTL(R) examples

@ [A] rises above threshold 60:
F([A]>60)

@ [A] rises above threshold 60 and then remains above 20:
F([A]>60 A G([A]> 20))

@ [A] rises then falls (and nothing else happens):
(d[A]/dt>0) U (G (d[A]/dt<0))

@ [A] attains a local maximum of value 70:
F([A] < 70 A X([A] = 70 A X([A] < 70)))

@ Numerical data time series:
F(Time=0A[A]=0 A F(.... A F(Time=45A[A]=T7)...))
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Introduction

Problem

True/False valuation of temporal logic formulae not well adapted to
several problems

@ parameter search, optimization and control of continuous models
@ quantitative estimation of robustness

@ local and global sensitivity analyses

— need for a continuous degree of satisfaction of temporal logic formulae

How far is the system from verifying the specification ?
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Introduction

Thesis contributions

@ generalization of model-checking to temporal constraint solving
which enables definition of continuous evaluation of temporal logic
formulas

@ show how continuous valuation can be used for quantitative
analysis in systems biology and that it enables parameter search in
high dimension and robustness analysis of temporal properties

@ implementation of methods in Biocham modeling environment

@ application to biological problems
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Introduction

Outline

© Introduction

Q Temporal logic constraint solving
o LTL(R) with variables : QFLTL(R)
@ Continuous satisfaction degree
@ Temporal constraint solving algorithm

© Applications to systems biology
@ Parameter search
@ Robustness analysis
@ Sensitivity analysis

@ Applications to biological systems
@ Yeast cell cycle model analysis
@ Optimization of cancer therapeutic schedule
@ Synthetic Biology in E. Coli

© Discussion and conclusion
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Temporal logic constraint solving

Validity domain of free variables in LTL(RR) formulae

Evaluation of temporal logic formulae on numerical traces

Al T
10p---s +-+- -----------------
+ + +
+ +
+
2becccne- -t D T T
;time
LTL(R)
O=F([A]=7
AF([A]=0))
~

Model-checking

the formula is false
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Temporal logic constraint solving

Validity domain of free variables in LTL(RR) formulae

Evaluation of temporal logic formulae on numerical traces

Al T
10p---s +-+- -----------------
+ + +
+ +
+
2becccne- -t D T T
;time
LTL(R) QFLTL(R)
O=F([Alz7 O*=F([A]l=x
AF([A]=0)) AF([Alsy))
~ N

Model-checking Constraint solving

the formula is true for any
x<10 A y=2

the formula is false
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Temporal logic constraint solving

Validity domain of free variables in LTL(R) formulae

Evaluation of temporal logic formulae on numerical traces
A

LTL(R) QFLTL(R) ¢
O=F([Al27 O*=F([Al=x
AF([A]<0)) AF([Alsy))
- ~

Model-checking Constraint solving

the formula is true for any

the formula is false x<10 A y=2

Validity domain D,-(T): set of values of the variables in a LTL(R)
formula making it true on a given trace T.
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Temporal logic constraint solving

Violation and satisfaction degree of an LTL(R) formula

[Al T

@"(xy)= F([Al2x A F(Alsy))

Do =F(AEAF(AE) | ¢les)
bb =F(ARTAF(A0) | @70
G =F(Alz12 A F([A]<0)) L @li20)
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Temporal logic constraint solving
[ ]

Violation and satisfaction degree of an LTL(R) formula

Definition of violation degree vd(T, ¢) and satisfaction degree sd(T

In the variable space of ¢*, original formula ¢ is single point var(¢>)

vd(T,$) = min,ep,.(Tyd(v, var(¢)) sd(T, o) = 1+vd(T 5 €[0,1]

[A] T

10f=--- LR R R

+ T
+ + F +
+
2 e (10,2)
@"(xy)= F(1Alx A F((Alsy))

Ga =F(ARBAF(AS) | ¢les) — va=0 sl (¥)
Gb =FIARTAF(AI0) | @l70)  vd=2 s0=0.33  (X)
b =FAR2AFIAO) | @liz0)  va=2v sa=0.26 ()

17/ 48



Temporal logic constraint solving
@00

Computation of validity domain D-(T)

Algorithm (Computation by induction on ¢ subformulae)

@ Dy.o={veERX| s = alv/x]} for an atomic proposition «,
® Ds,¢ny = Ds;,¢ N Dsiy,

® Dsrp = Uj>iDs 4,
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Temporal logic constraint solving
@00

Computation of validity domain D-(T)

Algorithm (Computation by induction on ¢ subformulae)

Dr1,6 = D¢,

Ds.o = {veERK| s = alv/x]} for an atomic proposition a,
Ds;.onyp = Ds;, N Ds, 4,

D . ¢vyp = Ds;,p U Ds, 4,

Dg x¢ = Dsip1,0)

Ds; k= Uj>iDs; 6,

Ds.6p = Nj>iDs; 6,

Ds; pup = Ujzi(Dsp N Niefij—11Dsc.0)-

— computation done by finite unions and intersections of domains.

Algorithm computing Dg«(T) [Fages Rizk TCS 08] implemented in
Biocham
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Temporal logic constraint solving
(o] o}

Validity domain representation

@ when at most one variable per atomic formula : domain is a finite
union of orthotopes

@ when linear constraints on variables : domain is a finite union of
polyhedra

@ intersections and unions of domains computed with the Parma
Polyhedra Library

@ domain simplification rules :

| o

Omega-reduction Pairwise merging
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Temporal logic constraint solving

ooe

Temporal constraint solving algorithm

Algorithm implemented in Biocham in gnu-prolog.

Strong completeness

The temporal constraint solving algorithm is correct and complete : a
valuation vV makes ¢ true at time t;, T,t; Er71 (#(V)), if and only if V is
in the computed domain of ¢ at t;, Vv € Dy(t;).

Validity domain of size f formula containing k variables on length n trace
at most (i) (nf)?* when at most one variable is present per atomic
formula and (ii) 2" otherwise

Temporal constraint solving algorithm for Computation Tree Logic (CTL)
in [Fages Rizk CP 09]
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Applications to systems biology
[ Je]

© Applications to systems biology
@ Parameter search
@ Robustness analysis
@ Sensitivity analysis
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Applications to systems biology
oce

Using violation degree as cost function [Rizk et al. TCS 09]

@ Use existing optimization toolbox for kinetic parameter search using
violation degree as cost function

@ Use state-of-the-art Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [Hansen Osermeier 01, Hansen 08]

@ CMA-ES minimizes an objective function in continuous domain in a
black box scenario :

f(x)

@ CMA-ES uses a probabilistic neighborhood and updates information

in covariance matrix at each move
First generation Second generation Third generation
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Applications to systems biology
L]

Robustness Measure Definition [Rizk et al. 1SMB 09]

Robustness defined with respect to :
@ a biological system
@ a functionality property D,
@ a set P of perturbations

@ General notion of robustness proposed in [Kitano MSB 07]:

Rap = / Da(p) prob(p) dp
peP
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Applications to systems biology
L]

Robustness Measure Definition [Rizk et al. 1SMB 09]

Robustness defined with respect to :

a biological system
a functionality property D,
a set P of perturbations

General notion of robustness proposed in [Kitano MSB 07]:
Rap = / D,(p) prob(p) dp
peP

Our computational measure of robustness w.r.t. LTL(R) spec:
Given an ODE model with initial conditions, a TL formula ¢ and a
set of perturbations P (on initial conditions or parameters),

Rop = [ sd(T(p).6) prob(s) dp

— evaluate mean behavior of a system subject to noise, compare
robustness of different designs, use robustness as optimization objective
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Applications to systems biology
@00

Sensitivity analysis

Sensitivity analysis

Study how the variation in the output can be apportioned to different
sources of variation. [Saltelli 2000]

Input Model Output

x1, X2, ...,

o T Y=f(x) F——> Y

Instantiate with satisfaction degree of LTL formulas as output and
biological model parameters (kinetic, initial conditions) as input
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Applications to systems biology
(o] le}

Global sensitivity analysis

Global SA (Morris screening, Sobol variance based methods) : accounts
for the whole range of possible parameter variation, sensitivity of
individual parameters evaluated while varying all other parameters as well.

Sensitivity indices

Evaluate quantitative impact of factors on output by estimating :

_ V(ELYIX))

%= V)
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Applications to systems biology
ooe

Application of continuous satisfaction degree

Continuous satisfaction degree benefits :

@ parameter optimization : efficient search (compared to boolean
evaluation) with respect to flexible high level specifications
(compared to curve-fitting)

@ robustness and sensitivity analysis : generic computational method
with respect to high level specifications
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Applications to biological systems

@ Applications to biological systems
@ Yeast cell cycle model analysis
@ Optimization of cancer therapeutic schedule
@ Synthetic Biology in E. Coli
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Applications to biological systems
@000

Applications to biological problems

@ Yeast cell cycle model : oscillatory behavior analysis in parameter
space

@ Optimization of cancer therapeutic schedule : control problem

@ Synthetic biology in E. Coli : design optimization
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Applications to biological systems
0e00

Yeast cell cycle model [Tyson PNAS 91]

@ ODE model of the yeast cell cycle (6 variables, 8 kinetic parameters)

@ models Cdc2 and Cyclin interactions, exhibits sustained oscillations

/.p

'“—T"

Y \‘

— is it possible to change oscillations characteristics 7 is robustness the
same everywhere in kinetic parameter space ?
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Applications to biological systems
[e]e] o]

Learning kinetic parameter values from LTL specifications

@ Pb : find values of 8 parameters such that amplitude is > 0.3
o*: F( [MPF]>x A F([MPF]<y) ) A x-y > z

amplitude x-y
goal : z=10.3
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Applications to biological systems
[e]e] o]

Learning kinetic parameter values from LTL specifications

@ Pb : find values of 8 parameters such that amplitude is > 0.3
o*: F( [MPF]>x A F([MPF]<y) ) A x-y > z

amplitude x-y

goal : z=10.3
@ — solution found after 30s (100 calls to the fitness function)
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Applications to biological systems

oooe

Robustness analysis w.r.t parameter perturbations

1000

01 1.0 10
kﬁ‘ min”
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Applications to biological systems

oooe

Robustness analysis w.r.t parameter perturbations

@ cell cycle model [Tyson PNAS 91]
@ oscillation of at least 0.2

¢*: F( [MPF]>x A F([MPF]<y) ) A x-y > z; amplitude z=0.2
@ parameters normally distributed, i = p,r, CV=0.2

Violation ree in parameter spac
1000 olation degree eter space

002

o 10 0
1

1
k6

Rpp = 0.991,, Ry py = 0.917, Ry p = 0.932

kﬁ‘ min”
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Applications to biological systems
000

@ Applications to biological systems
@ Yeast cell cycle model analysis
@ Optimization of cancer therapeutic schedule
@ Synthetic Biology in E. Coli
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Applications to biological systems
o] lo}

Coupled Models of Cell Cycle, Circadian Clock, DNA repair

o Context of colorectal cancer chronotherapies (collab. INSERM
France, EU Tempo, coord. F. Lévi INSERM Villejuif France)

o Coupled model of the cell cycle [Tyson Novak 04] and the circadian
clock [Leloup Goldbeter 99] with DNA repair system p53/Mdm2 and
effect of irinotecan anticancer drug

Cell eycle Circadian clock

Weel < Bmall

S-phase:
Toplee
CycA CyeE Bmall
p21 {
\ DNAdam Tapl
P53

p53/Mdm2

Irinotecan }—{ Injection control ]

— coupled models built by finding kinetic parameter values such that
period of cell cycle entrained by circadian clock

DNA damage
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Applications to biological systems
[efe] ]

Optimize therapeutic schedule

Optimize therapeutic schedule by maximizing satisfaction degree of :
G([DNA damage]<vl) in healthy cells
F([DNA damage]>v2) in phase shifted cells

KKK

T /"‘ ( / / T ’/‘J h /
/ / ul/ /
il / m m / / %X
‘ ‘ L L

| [ L ‘.J

ol [ | | o . |
" Optimized schedule for minimum DNA damage in phase-shifted
DNA damage in healthy cells cells
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Applications to biological systems
®000000

@ Applications to biological systems
@ Yeast cell cycle model analysis
@ Optimization of cancer therapeutic schedule
@ Synthetic Biology in E. Coli
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Applications to biological systems
O®@00000

Application to Synthetic Biology in E. Coli [Riz et al. 15MB 09]

Cascade of transcriptional inhibitions implemented in E.coli [Weiss et al
PNAS 05]

aTc

1
= TeiR > Lacl > CI -~ EYFP
——— ™ L L ‘ —

tetht lacl ! cufp

The output protein EYFP is controlled by the small input molecule aTc

-

fluorescence
Eh

10 = m -

LY n n
00 300 400 500 800 700 aoo 200
iy t g
time

The system is well-timed if EYFP remains below 103 for at least 150
min., then exceeds 10® after at most 450 min., and switches from low to
high levels in less than 150 min. 40/48



Applications to biological systems
00e0000

Specifying the expected behavior in LTL(RR)

The timing specifications can be formalized in temporal logic as follows:

o(t1, 1) = G(time < t; — [EYFP] < 10%)
A G(time > t, — [EYFP] > 10°)
AN t1 >150At, <450t — t; < 150

which is abstracted into

&(t1, to, by, by, b3) = G(time < t; — [EYFP] < 103)
A G(time > t, — [EYFP] > 10°)
AN t1>blAtb < b Ath—1t < bs

for computing validity domains for by, by, b3

with the objective by = 150, b, = 450, b3 = 150 for computing the
satisfaction degree in a given trace.
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Applications to biological systems
[ee]e] lele]e]

ODE model and perturbation model

o ODE model with Hill functions :

9’1;3%11
. _ . _ tet _
Xt = Kier =7 terr Yretr Xlacl = Kigei Nare Yiacl Xlaci
etk Mietr alc |

. 0 ek + Xeeik Tore . Tn
Uore = Baln"cc +ua;‘cb

i @ Niaet . QM

X = lacl —V X % =K cl -y x

e o gﬂim + xmm el <l o afp gﬂd + xﬂ'c{ o ot
lacl lacl cl ol

@ Perturbation model : (log-)normally distributed parameters

x= f(x,q),w1th q ”LOgN(P,U2P)
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Applications to biological systems
0000800

Improving local robustness

o 200 400 600 800 1000

Average behavior of the system Coefficient of variation over fime
(5000 simulations)

@ robustness = 0.9
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Improving local robustness

o 200 400 600 800 1000

Average behavior of the system
(5000 simulations)

@ robustness = 0.9

@ robustness as criterion
objective — optimized
parameters found s.t
robustness = 1

Applications to biological systems
0000800

[ . .200 400 . 500' 800 1
Coefficient of variation over t

000

ime

3.2

400 ) 800 1000

Coefficient of variation in the
optimized system
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Applications to biological systems
0000080

Parameter contribution on global robustness

Variance-based global sensitivity indices

5, 202% Sroior 8.7%
Steyty 7.4% Suy 6.2%
gl 6.1% Smg,w 5.0%
SN? , 3.3% "'OI Kyl 2.8%
Var(E(R|P; oc o
Si= ar\(/ar((:‘:\") 2 € [Oa 1] s"cc)l 2.0% el eyt L8%
Sn,ad 1.5:f ngfpw 1.5:?
0.9 1.1
“oto ° o el °
vt 0.4% 5.9 i 05%
1P lac)
total first order | 40.7% || total second order | 31.2%

@ degradation factor  has the strongest impact on the cascade.

@ the basal production of EYFP is due to an incomplete repression of
the promoter by Cl (high effect of k) rather than a constitutive

leakage of the promoter (low effect of x2 ;).
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Applications to biological systems
0O00000e

Other applications and scalability

Scalability :
o fitness function computation = numerical simulation +
satisfaction domain (satisfaction degree computation)
@ Computational cost of violation degree :
e curve fitting, box specification : less than 10% of required time for
numerical simulation
e oscillation amplitude : 300%
o oscillation period : 100%
@ parameter search parallelized with MPI, efficient on 100-1000 cores
depending on problem

Other applications :

@ kinetic parameter search in multiple conditions in FSH signaling
network (joint work with Eric Reiter, INRA Tours) (40 unknown
parameters, solution found in few hours on 32 cores)

e find oscillations in MAPK cascade (37 unknown parameters found in
few minutes on 1 core )

@ iGEM competition (PARIS team 2007)

@ analysis of temporal experimental data [Fages Rizk CMSB 07] w6



Conclusion

Conclusion

Definition of a continuous degree of satisfaction of LTL(R) formulae
which can be computed by LTL(R) constraint solving algorithm

Continuous satisfaction degree enables :
@ measuring the satisfaction of high level specifications
o efficient parameter optimization w.r.t. temporal specification

@ measuring and optimizing the robustness of a model w.r.t temporal
logic specifications
@ sensitivity analysis w.r.t. temporal specification

Related work :

o probabilistic/statistical model checking [Kwiatkowska et al. SIGMETRICS
08, Clarke et al. CMSB 08]

@ alternative quantitative interpretation of TL [Fainekos and Pappas
FORMATS 07]
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Conclusion

Perspectives

@ reduce temporal constraint solving computation time with trace
simplification

o define formula patterns in natural language for easier use by non
specialists [Monteiro et al, Bioinformatics 2008]

@ evaluation of parameter search on larger models with rich biological
data (e.g. Chen et al. cell cycle model validation w.r.t. 130 mutants)
using parameter search parallelization

@ use optimization methods providing sets of valid parameters

@ develop methods to propose network structure modifications when
parameter search fails using sensitivity analysis
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