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Context

Systems biology : system-level understanding of biological systems
[Kitano. ICSB 2000]

Biological systems are dynamical systems in time and space

Need to investigate components characteristics and their
interactions

Tools and formalisms required for modeling and simulation,
control and design methods.
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Temporal logics approach

Temporal logics are general-purpose languages for specifying dynamical
properties of discrete transition systems. [Pnueli. FOCS 1977]

Automatic verification done by model-checking

Model checking succesfully used for the verification of electronic
systems and programs, can be efficient on large and complex systems

Temporal logic adapted to high level specifications, and to
incomplete and imprecise experimental data obtained in systems
biology.

3 / 48



Introduction Temporal logic constraint solving Applications to systems biology Applications to biological systems Conclusion

A logical Paradigm for Systems Biology

Biological Model = (Quantitative) State Transition System
Biological Properties = Temporal Logic Formulae

Automatic Validation = Model-checking

Applications of Temporal Logic in Systems Biology:

query language of large reaction networks [Eker et al. PSB 02,

Chabrier Fages CMSB 03] and gene regulatory network [Batt et al.

Bioinformatics 05]

parameter search in boolean or discrete models [Bernot et al. JTB 04]

[Calzone et al. TCSB 06]

robustness analysis [Batt et al. 07]

Biocham : modeling environment based on formal languages for system
description and for biological properties
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Temporal logics for continuous models

Temporal logics :

mostly developed for discrete systems

temporal logics with numerical constraints can deal with continuous
time models (ODE or CTMC, hybrid systems)

Abstraction levels in systems biology :

Presence/absence of molecules (boolean transitions)

Concentration of molecules (continuous models, rates of reactions)

Number of molecules (stochastic models, probabilities of reactions)
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Description of temporal behaviors
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High level properties adapted to noisy data . . . but need formalization
to be used by a computer program.
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Formalize temporal properties in Linear Time Logic (LTL)

Linear Time Logic add temporal operators to usual logical operators
(¬,∧,∨,→) :

Fq (finally) : q is true at some time point in the future;

Gq (globally) : q is true at all time points in the future;

pUq (until) : p is true until q becomes true.

Xq (next) : q is true at the next time point;
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LTL(R) examples

[A] rises above threshold 60:
F([A]>60)

[A] rises above threshold 60 and then remains above 20:
F([A]>60 ∧ G([A]> 20))

[A] rises then falls (and nothing else happens):
(d[A]/dt>0) U (G (d[A]/dt<0))

[A] attains a local maximum of value 70:
F([A] < 70 ∧ X([A] = 70 ∧ X([A] < 70 )))

Numerical data time series:
F(Time=0∧[A]=0 ∧ F(.... ∧ F(Time=45∧[A]=7)...))
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Problem

True/False valuation of temporal logic formulae not well adapted to
several problems

parameter search, optimization and control of continuous models

quantitative estimation of robustness

local and global sensitivity analyses

→ need for a continuous degree of satisfaction of temporal logic formulae

How far is the system from verifying the specification ?
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Thesis contributions

generalization of model-checking to temporal constraint solving
which enables definition of continuous evaluation of temporal logic
formulas

show how continuous valuation can be used for quantitative
analysis in systems biology and that it enables parameter search in
high dimension and robustness analysis of temporal properties

implementation of methods in Biocham modeling environment

application to biological problems
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Outline

1 Introduction

2 Temporal logic constraint solving
LTL(R) with variables : QFLTL(R)
Continuous satisfaction degree
Temporal constraint solving algorithm

3 Applications to systems biology
Parameter search
Robustness analysis
Sensitivity analysis

4 Applications to biological systems
Yeast cell cycle model analysis
Optimization of cancer therapeutic schedule
Synthetic Biology in E. Coli

5 Discussion and conclusion
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Validity domain of free variables in LTL(R) formulae

Evaluation of temporal logic formulae on numerical traces

QFLTL(R)

Φ*=F([A]≥x 
       ∧F([A]≤y))

Constraint solving

the formula is true for any 
x≤10 ∧ y≥2

Φ=F([A]≥7 
       ∧F([A]≤0))

Model-checking

the formula is false

LTL(R)

Dφ∗(T )
2
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[A]

time

T
y

xφ

Dφ∗(T )

vd=2  sd=1/3
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Validity domain of free variables in LTL(R) formulae

Evaluation of temporal logic formulae on numerical traces

QFLTL(R)

Φ*=F([A]≥x 
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Validity domain Dφ∗(T ): set of values of the variables in a LTL(R)
formula making it true on a given trace T .
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Violation and satisfaction degree of an LTL(R) formula
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Violation and satisfaction degree of an LTL(R) formula

Definition of violation degree vd(T , φ) and satisfaction degree sd(T , φ)

In the variable space of φ∗, original formula φ is single point var(φ).
vd(T , φ) = minv∈Dφ∗ (T )d(v , var(φ)) sd(T , φ) = 1

1+vd(T ,φ) ∈ [0, 1]
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Computation of validity domain Dφ∗(T )

Algorithm (Computation by induction on φ subformulae)

DT ,φ = Ds0,φ,

Dsi ,α = {v ∈ Rk | si |= α[v/x]} for an atomic proposition α,

Dsi ,φ∧ψ = Dsi ,φ ∩ Dsi ,ψ,

Dsi ,φ∨ψ = Dsi ,φ ∪ Dsi ,ψ,

Dsi ,Xφ = Dsi+1,φ,

Dsi ,Fφ = ∪j≥iDsj ,φ,

Dsi ,Gφ = ∩j≥iDsj ,φ,

Dsi ,φUψ = ∪j≥i (Dsj ,ψ ∩ ∩k∈[i,j−1]Dsk ,φ).
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Computation of validity domain Dφ∗(T )

Algorithm (Computation by induction on φ subformulae)

DT ,φ = Ds0,φ,

Dsi ,α = {v ∈ Rk | si |= α[v/x]} for an atomic proposition α,

Dsi ,φ∧ψ = Dsi ,φ ∩ Dsi ,ψ,

Dsi ,φ∨ψ = Dsi ,φ ∪ Dsi ,ψ,

Dsi ,Xφ = Dsi+1,φ,

Dsi ,Fφ = ∪j≥iDsj ,φ,

Dsi ,Gφ = ∩j≥iDsj ,φ,

Dsi ,φUψ = ∪j≥i (Dsj ,ψ ∩ ∩k∈[i,j−1]Dsk ,φ).

→ computation done by finite unions and intersections of domains.

Algorithm computing Dφ∗(T ) [Fages Rizk TCS 08] implemented in
Biocham
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Validity domain representation

when at most one variable per atomic formula : domain is a finite
union of orthotopes

when linear constraints on variables : domain is a finite union of
polyhedra

intersections and unions of domains computed with the Parma
Polyhedra Library

domain simplification rules :

Temporal logic with constraints LTL constraint solving LTL patterns Inference of biological properties Future work

Simplification rules

Fφ → φ ∨ XFφ, that is DFφ(ti ) = DFφ(ti+1) ∪Dφ(ti ) ;

Gφ → φ ∧ XGφ ;

(φUψ) → ψ ∨ (φ ∧ X (φUψ)).

Formulas are normalized in a negation-free form using the following
equivalences :

¬Xφ → X¬φ,

¬Fφ → G¬φ,

¬Gφ → F¬φ,

¬(φUψ) → G¬φ ∨ (¬φU(¬φ ∧ ¬ψ)).

Domain simplification rules :

On the Analysis of Numerical Data Time Series in Temporal Logic
Omega-reduction Pairwise merging

20 / 48



Introduction Temporal logic constraint solving Applications to systems biology Applications to biological systems Conclusion

Temporal constraint solving algorithm

Algorithm implemented in Biocham in gnu-prolog.

Strong completeness

The temporal constraint solving algorithm is correct and complete : a
valuation ~v makes φ true at time ti , T , ti |=LTL (φ(~v)), if and only if ~v is
in the computed domain of φ at ti , ~v ∈ Dφ(ti ).

Complexity

Validity domain of size f formula containing k variables on length n trace
at most (i) (nf )2k when at most one variable is present per atomic
formula and (ii) 2nf otherwise

Temporal constraint solving algorithm for Computation Tree Logic (CTL)
in [Fages Rizk CP 09]
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Using violation degree as cost function [Rizk et al. TCS 09]

Use existing optimization toolbox for kinetic parameter search using
violation degree as cost function
Use state-of-the-art Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [Hansen Osermeier 01, Hansen 08]
CMA-ES minimizes an objective function in continuous domain in a
black box scenario :

Problem Statement The Challenges Evolution Strategy CMA Evaluation Adaptive Encoding

Problem Statement: Search
Continuous Domain Search/Optimization

Task: minimize a objective function (fitness function, loss
function) in continuous domain

f : X ⊆ Rn → R, x #→ f (x)

Black Box scenario (direct search scenario)

f(x)x

! gradients are not available or not useful
! problem domain specific knowledge is used only within the black

box, e.g. within an appropriate encoding

Search costs: number of function evaluations

Nikolaus Hansen () Dynamic Encoding 3 / 34

CMA-ES uses a probabilistic neighborhood and updates information
in covariance matrix at each move
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Robustness Measure Definition [Rizk et al. ISMB 09]

Robustness defined with respect to :

a biological system

a functionality property Da

a set P of perturbations

General notion of robustness proposed in [Kitano MSB 07]:

Ra,P =

∫
p∈P

Da(p) prob(p) dp

Our computational measure of robustness w.r.t. LTL(R) spec:
Given an ODE model with initial conditions, a TL formula φ and a
set of perturbations P (on initial conditions or parameters),

Rφ,P =

∫
p∈P

sd(T (p), φ) prob(p) dp

→ evaluate mean behavior of a system subject to noise, compare
robustness of different designs, use robustness as optimization objective
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Sensitivity analysis

Sensitivity analysis

Study how the variation in the output can be apportioned to different
sources of variation. [Saltelli 2000]

Input Model Output

Y=f(x)x1, x2, ..., 
xn Y

Instantiate with satisfaction degree of LTL formulas as output and
biological model parameters (kinetic, initial conditions) as input
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Global sensitivity analysis

Global SA (Morris screening, Sobol variance based methods) : accounts
for the whole range of possible parameter variation, sensitivity of
individual parameters evaluated while varying all other parameters as well.

Sensitivity indices

Evaluate quantitative impact of factors on output by estimating :

Si =
V (E [Y |Xi ])

V (Y )
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Application of continuous satisfaction degree

Continuous satisfaction degree benefits :

parameter optimization : efficient search (compared to boolean
evaluation) with respect to flexible high level specifications
(compared to curve-fitting)

robustness and sensitivity analysis : generic computational method
with respect to high level specifications
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Applications to biological problems

Yeast cell cycle model : oscillatory behavior analysis in parameter
space

Optimization of cancer therapeutic schedule : control problem

Synthetic biology in E. Coli : design optimization
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Yeast cell cycle model [Tyson PNAS 91]

ODE model of the yeast cell cycle (6 variables, 8 kinetic parameters)

models Cdc2 and Cyclin interactions, exhibits sustained oscillations

Proc. Nati. Acad. Sci. USA
Vol. 88, pp. 7328-7332, August 1991
Cell Biology

Modeling the cell division cycle: cdc2 and cyclin interactions
(maturation promoting factor/metaphase arrest/weel/cdc25)

JOHN J. TYSON
Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

Communicated by David M. Prescott, May 20, 1991 (receivedfor review January 23, 1991)

ABSTRACT The proteins cdc2 and cyclin form a het-
erodimer (maturation promoting factor) that controls the major
events of the cell cycle. A mathematical model for the interac-
tions of cdc2 and cyclin is constructed. Simulation and analysis
of the model show that the control system can operate in three
modes: as a steady state with high maturation promoting factor
activity, as a spontaneous oscillator, or as an excitable switch.
We associate the steady state with metaphase arrest in unfer-
tilized eggs, the spontaneous oscillations with rapid division
cycles in early embryos, and the excitable switch with growth-
controlled division cycles typical of nonembryonic cells.

Passage through the cell cycle is marked by a temporally
organized sequence of events including DNA replication,
mitosis, and the appearance of certain cell-cycle specific
proteins and enzymatic activities (1). In most populations of
proliferating cells, the processes ofgrowth and division occur
simultaneously and are coordinated by some mechanism that
monitors the nucleocytoplasmic ratio of a cell and triggers
cell division at a characteristic value of this ratio (2-4). In
contrast, during oogenesis the developing egg accumulates
great quantities of maternal cytoplasm while undergoing a
reductive nuclear division, so the nucleocytoplasmic ratio
becomes abnormally small. After fertilization the developing
embryo undergoes many cycles of DNA synthesis and nu-
clear division in the absence of cell growth, to bring the
nucleocytoplasmic ratio back to values typical of somatic
cells. The division cycles of an early embryo are extremely
rapid (30 min in frog embryos) until the midblastula transition
(MBT) (5, 6). Furthermore, if the nucleus is removed from a
fertilized frog egg, the enucleated cell continues to undergo
periodic cortical contractions at 30-min intervals, as if it were
trying to divide (7). Enucleated sea urchin eggs even undergo
cleavage and develop into abnormal blastulas (8). As Mazia
(9) puts it, the cell cycle is really a cell "bicycle;" the two
wheels are the growth cycle and the division cycle, which
normally turn in a 1:1 ratio but may turn independently.
The mitotic cycles in both embryonic and somatic cells

appear to be controlled by the activity of an enzyme, matu-
ration promoting factor (MPF), that peaks abruptly at meta-
phase (10-14). MPF is a heterodimer composed of cyclin (Mr
= 45,000) and a protein kinase (Mr = 34,000) (15, 16). The
protein kinase is sometimes called p34, in reference to its
apparent molecular weight, and sometimes called cdc2, in
reference to the gene (cdc2) that codes for the protein in fission
yeast.
The interplay between cyclin and cdc2 in generating MPF

activity is understood in some detail (see Fig. 1) (10-14).
Newly synthesized cyclin subunits combine with preexisting
cdc2 subunits to form an inactive MPF complex. The com-
plex is then activated, in an autocatalytic fashion (17), by
dephosphorylation at a specific tyrosine residue of the cdc2
subunit (18). Active MPF is known to stimulate a number of

Ga

p

- pyrnP
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FIG. 1. The relationship between cyclin and cdc2 in the cell
cycle. In step 1, cyclin is synthesized de novo. Newly synthesized
cyclin may be unstable (step 2). Cyclin combines with cdc2-P (step
3) to form "preMPF." At some point after heterodimer formation,
the cyclin subunit is phosphorylated. (Assuming phosphorylation is
faster than dimerization, I write the two-step process as a single step,
rate-limited by dimerization.) The cdc2 subunit is then dephospho-
rylated (step 4) to form "active MPF." In principle, the activation of
MPF may be opposed by a protein kinase (step 5). Assuming that
active MPF enhances the catalytic activity of the phosphatase (as
indicated by the dashed arrow), I arrange that MPF activation is
switched on in an autocatalytic fashion. Nuclear division is triggered
when a sufficient quantity of MPF has been activated, but concur-
rently active MPF is destroyed by step 6. Breakdown of the MPF
complex releases phosphorylated cyclin, which is subject to rapid
proteolysis (step 7). Finally, the cdc2 subunit is phosphorylated (step
8, possibly reversed by step 9), and the cycle repeats itself. aa, amino
acids; -P, ATP; Pi, inorganic phosphate.

processes essential for nuclear and cell division (13, 14). At
the transition from metaphase to anaphase, the MPF complex
dissociates, and the cyclin subunit is rapidly degraded (15,
19-21). Then the cycle repeats itself.
MPF dissociation and cyclin proteolysis are necessary to

complete the mitotic cycle: metaphase arrest of unfertilized
eggs corresponds to steady high levels of active MPF, and
fertilization releases the egg from metaphase by stimulating
the breakdown of the active MPF complex (10). In early
embryos, the cycle ofMPF activation and deactivation seems
to be controlled by the synthesis of cyclin (21, 22), although
some evidence suggests that posttranslational events may be
rate-limiting (12, 23). In any event, the cycle continues even
in the absence of DNA synthesis (24). In somatic cells, by
contrast, cyclin synthesis is not sufficient to activate MPF,
and the MPF cycle is dependent on cell growth and periodic
DNA synthesis (12). In fission yeast, activation of the MPF
complex is controlled by at least two other gene products:
weel, an inhibitor of MPF, and cdc25, an activator (25, 26).
These two proteins apparently monitor the nucleocytoplas-
mic ratio in the yeast cell and activate MPF at a critical value

Abbreviations: MPF, maturation promoting factor (also called
M-phase-promoting factor); MBT, midblastula transition.
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→ is it possible to change oscillations characteristics ? is robustness the
same everywhere in kinetic parameter space ?
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Learning kinetic parameter values from LTL specifications
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Pb : find values of 8 parameters such that amplitude is ≥ 0.3
φ∗: F( [MPF]>x ∧ F([MPF]<y) ) ∧ x-y > z

amplitude x-y
goal : z = 0.3

→ solution found after 30s (100 calls to the fitness function)
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Robustness analysis w.r.t parameter perturbations

k
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.

.Violation degree in parameter space
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FIG. 2. Qualitative behavior of the cdc2-cyclin model of cell-
cycle regulation. The control parameters are k4, the rate constant
describing the maximum rate of MPF activation, and k6, the rate
constant describing dissociation ofthe active MPF complex. Regions
A and C correspond to stable steady-state behavior of the model;
region B corresponds to spontaneous limit cycle oscillations. In the
stippled area the regulatory system is excitable. The boundaries
between regions A, B, and C were determined by integrating the
differential equations in Table 1, for the parameter values in Table 2.
Numerical integration was carried out by using Gear's algorithm for
solving stiffordinary differential equations (32). The "developmental
path" 1 ... 5 is described in the text.

so k6 abruptly increases 2-fold. Continued cell growth causes
k6(t) again to decrease, and the cycle repeats itself. The
interplay between the control system, cell growth, and DNA
replication generates periodic changes in k6(t) and periodic
bursts of MPF activity with a cycle time identical to the
mass-doubling time of the growing cell.

Figs. 2 and 3 demonstrate that, depending on the values of
k4 and k6, the cell cycle regulatory system exhibits three

b

0.4
a 100

0 20 40 60 80 100 0 20 40 60 80 100

t, min t, min

different modes of control. For small values of k6, the system
displays a stable steady state of high MPF activity, which I
associate with metaphase arrest of unfertilized eggs. For
moderate Values of k6, the system executes autonomous
oscillations reminiscent of rapid cell cycling in early em-
bryos. For large values of k6, the system is attracted to an
excitable steady state of low MPF activity, which corre-
sponds to interphase arrest of resting somatic cells or to
growth-controlled bursts of MPF activity in proliferating
somatic cells.

Midblastula Traiisiton

A possible developmental scenario is illustrated by the path
1 ... 5 in Fig. 2. Upon fertilization, the metaphase-arrested
egg (at point 1) is stimulated to rapid cell divisions (2) by an
increase in the activity of the enzyme catalyzing step 6 (28).
During the early embryonic cell cycles (2-+ 3), the regulatory
system is executing autonomous oscillations, and the control
parameters, k4 and k6, increase as the nuclear genes coding
for these enzymes are activated. At midblastula (3), auton-
omous oscillations cease, and the regulatory system enters
the excitable domain. Cell division now becomes growth
controlled. As cells grow, k6 decreases (inhibitor diluted)
and/or k4 increases (activator accumulates), which drives the
regulatory system back into domain B (4 -S 5). The subse-
quent burst of MPF activity triggers mitosis, causes k6 to
increase (inhibitor synthesis) and/or k4 to decrease (activator
degradation), and brings the regulatory system back into the
excitable domain (5 -* 4).
Although there is a clear and abrupt lengthening of inter-

division times at MBT, there is no visible increase in cell
volume immediately thereafter (6, 20), so how can we enter-
tain the idea that cell division becomes growth controlled
after MBT? In the paradigm ofgrowth control ofcell division,
cell "size" is never precisely specified, because no one
knows what molecules, structures, or properties are used by
cells to monitor their size. Thus, even though post-MBT cells
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FIG. 3. Dynamical behavior of the cdc2-cyclin model. The curves are total cyclin ([YT] = [Y] + [YP] + [pM] + [M]) and active MPF [Ml
relative to total cdc2 ([CT] = [C2] + [CP] + [pM] + [MI). The differential equations in Table 1, for the parameter values in Table 2, were solved
numerically by using a fourth-order Adams-Moulton integration routine (33) with time step = 0.001 min. (The adequacy of the numerical
integration was checked by decreasing the time step and also by comparison to solutions generated by Gear's algorithm.) (a) Limit cycle
oscillations for k4 = 180 min-', k6 = 1 min- (point x in Fig. 2). A "limit cycle" solution of a set of ordinary differential equations is a periodic
solution that is asymptotically stable with respect to small perturbations in any of the dynamical variables. (b) Excitable steady state for k4 =
180 min 1, k6 = 2 min' (point + in Fig. 2). Notice that the ordinate is a logarithmic scale. The steady state of low MPF activity ([M]/[CT]
= 0.0074, [YT]/[CT] = 0.566) is stable with respect to small perturbations of MPF activity (at 1 and 2) but a sufficiently large perturbation of
[Ml (at 3) triggers a transient activation of MPF and subsequent destruction of cyclin. The regulatory system then recovers to the stable steady
state. (c) Parameter values as in b except that k6 is now a function of time (oscillating near point + in Fig. 2). See text for an explanation of
the rules for k6(Q). Notice that the period between cell divisions (bursts in MPF activity) is identical to the mass-doubling time (Td = 116 min
in this simulation). Simulations with different values of Td (not shown) demonstrate that the period between MPF bursts is typically equal to
the mass-doubling time-i.e., the cell division cycle is growth controlled under these circumstances. Growth control can also be achieved
(simulations not shown), holding k6 constant, by assuming that k4 increases with time between divisions and decreases abruptly after an MPF
burst.
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Robustness analysis w.r.t parameter perturbations

cell cycle model [Tyson PNAS 91]

oscillation of at least 0.2

φ∗: F( [MPF]>x ∧ F([MPF]<y) ) ∧ x-y > z; amplitude z=0.2

parameters normally distributed, µ = pref , CV=0.2
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FIG. 2. Qualitative behavior of the cdc2-cyclin model of cell-
cycle regulation. The control parameters are k4, the rate constant
describing the maximum rate of MPF activation, and k6, the rate
constant describing dissociation ofthe active MPF complex. Regions
A and C correspond to stable steady-state behavior of the model;
region B corresponds to spontaneous limit cycle oscillations. In the
stippled area the regulatory system is excitable. The boundaries
between regions A, B, and C were determined by integrating the
differential equations in Table 1, for the parameter values in Table 2.
Numerical integration was carried out by using Gear's algorithm for
solving stiffordinary differential equations (32). The "developmental
path" 1 ... 5 is described in the text.
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k4 and k6, the cell cycle regulatory system exhibits three

b

0.4
a 100

0 20 40 60 80 100 0 20 40 60 80 100

t, min t, min

different modes of control. For small values of k6, the system
displays a stable steady state of high MPF activity, which I
associate with metaphase arrest of unfertilized eggs. For
moderate Values of k6, the system executes autonomous
oscillations reminiscent of rapid cell cycling in early em-
bryos. For large values of k6, the system is attracted to an
excitable steady state of low MPF activity, which corre-
sponds to interphase arrest of resting somatic cells or to
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numerically by using a fourth-order Adams-Moulton integration routine (33) with time step = 0.001 min. (The adequacy of the numerical
integration was checked by decreasing the time step and also by comparison to solutions generated by Gear's algorithm.) (a) Limit cycle
oscillations for k4 = 180 min-', k6 = 1 min- (point x in Fig. 2). A "limit cycle" solution of a set of ordinary differential equations is a periodic
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Coupled Models of Cell Cycle, Circadian Clock, DNA repair

Context of colorectal cancer chronotherapies (collab. INSERM
France, EU Tempo, coord. F. Lévi INSERM Villejuif France)

Coupled model of the cell cycle [Tyson Novak 04] and the circadian
clock [Leloup Goldbeter 99] with DNA repair system p53/Mdm2 and
effect of irinotecan anticancer drug
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Circadian Clock, DNA Repair System, Irinotecan Metabolism and

Administration Control under Temporal Logic Constraints
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Project-team Contraintes, INRIA Paris-Rocquencourt, France
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MOTIVATION

• In systems biology, the number of available models of cellular processes increases rapidly, but
re-using models in different contexts or for different questions remains a challenging issue.

• In this work, we study the coupling of the mammalian cell cycle, the circadian clock, the
p53/Mdm2 DNA-damage repair system, the metabolism of irinotecan and its administration
control.

•We show how the formalization of experimental observations in temporal logic with numer-
ical constraints can be used to compute the unknown coupling kinetics parameter values
agreeing with experimental data.

MATERIALS AND METHODS

We consider the following models:

• a model of the mammalian cell cycle proposed by Novak and Tyson in [6] and extended by
Zámborszky et al. in [8];

• a model of the circadian clock developped by Leloup and Golbeter in [5];

• a model of proteins p53/Mdm2 introduced by Ciliberto et al. in [3];

• a whole body irinotecan model developed by Ballesta et al. [1].

After encoding the models in the rule-based language of Biocham [2], we add suitable linking
rules and we use an original method based on temporal logic constraint solving and optimization
techniques ([7, 4]) to find parameter values for the new rules so that some expected properties
are verified by the coupled model.

The irinotecan model.

The coupled model.

Coupling Rules

Link between the circadian clock and irinotecan models:
MA(kbmaltop) for =[Bmal1 nucl]=>TOP1.

Link between the circadian clock and cell cycle models:
(ksweemp+ksweem*[Bmal1 nucl])/(kweem+kwpcn*[PER nucl-CRY nucl])

for =[Bmal1 nucl]=>Wee1.

Link between the p53/Mdm2 and cell cycle models (extended version):
MA(k5321) for =[p53]=>p21.

MA(kA21) for CycA=[p21]=> .

MA(kA21) for CycE=[p21]=> .

Link between the p53/Mdm2 and cell cycle models (contracted version):
MA(kA53) for CycA=[p53]=> .

MA(kA53) for CycE=[p53]=> .

Link between the cell cycle and irinotecan models:
MA(kdam) for TOP1cc=>DNAdam.

Coupling Specification in LTL(R)

F1: Top1 is always lower than 1.5 and, whenever Bmal1 gets over 1 (before 85 time units),
there exists a future state where Top1 is greater than 1.
LTL(R) : G([TOP1] < 10.3 ∧ ([Bmal1 nucl] > 2.5) ∧ T ime < 85 → F([TOP1] > 10)).

F2: The period of CycA and CycB is 24.
LTL(R) : period(CycA, 24) ∧ period(CycB, 24).

F3: Within a time interval of 100 time units, CycA is greater than 2.7 in at least 4 oscillations.
LTL(R) : oscil([CycA], 4, 2.7).

F4: Whenever Top1cc gets above 0.2, there exists a future state when the first derivative of
DNAdam gets above 0.15.
LTL(R) : G([TOP1cc] > 0.2− > F(d([DNAdam])/dt > 0.15)).

RESULTS

•The coupling of the composite models has been achieved and irinotecan administration
times and maximum amount that maintain toxicity low for healthy cells have been found in
Biocham.

•The predictive power of the coupled model was tested with respect to a limited set of
mutants of the circadian clock genes. In the case of genes knock outs, we succeeded in
considering temporal logic constraints over different traces corresponding to the mutations
of different genes.

Maximum administration preserving DNA damage under threshold 1 (on the left) and maximum DNA damage
preserving the administration quantity (on the right).

mPER=0 or mCRY=0: period of ≈ 28.5h (on the left) and mBmal1=0: period of ≈ 23h (on the right).

DISCUSSION

Although preliminary, the results obtained are very encouraging for our coupling method. They
pointed out that

•mass-entrained models of the cell-cycle have a limited possibility of entrainment by the cir-
cadian molecular clock and non mass-entrained models of the mammalian cell cycle should
be preferred in future studies;

• the p53/Mdm2 DNA-damage repair model of Ciliberto et al. should be improved in order
to introduce a threshold above which the DNA is no longer repaired and the cell enters
apoptosis;

• a more detailed whole body irinotecan model including a tumor compartment should be
added.
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[3] Andrea Ciliberto, Béla Novák, and John J. Tyson. Steady states and oscillations in the p53/mdm2 network.
Cell Cycle, 4(3):488–493, March 2005.
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Optimize therapeutic schedule

Optimize therapeutic schedule by maximizing satisfaction degree of :
G([DNA damage]<v1) in healthy cells
F([DNA damage]>v2) in phase shifted cells

Optimized schedule for minimum
DNA damage in healthy cells

DNA damage in phase-shifted
cells
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Application to Synthetic Biology in E. Coli [Rizk et al. ISMB 09]

Cascade of transcriptional inhibitions implemented in E.coli [Weiss et al

PNAS 05]

The output protein EYFP is controlled by the small input molecule aTc

The system is well-timed if EYFP remains below 103 for at least 150
min., then exceeds 105 after at most 450 min., and switches from low to

high levels in less than 150 min. 40 / 48
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Specifying the expected behavior in LTL(R)

The timing specifications can be formalized in temporal logic as follows:

φ(t1, t2) = G(time < t1 → [EYFP] < 103)
∧ G(time > t2 → [EYFP] > 105)
∧ t1 > 150 ∧ t2 < 450 ∧ t2 − t1 < 150

which is abstracted into

φ(t1, t2, b1, b2, b3) = G(time < t1 → [EYFP] < 103)
∧ G(time > t2 → [EYFP] > 105)
∧ t1 > b1 ∧ t2 < b2 ∧ t2 − t1 < b3

for computing validity domains for b1, b2, b3

with the objective b1 = 150, b2 = 450, b3 = 150 for computing the
satisfaction degree in a given trace.
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ODE model and perturbation model

ODE model with Hill functions :

Perturbation model : (log-)normally distributed parameters
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Improving local robustness
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objective → optimized
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Coefficient of variation in the
optimized system
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Parameter contribution on global robustness

Variance-based global sensitivity indices

Si = Var(E(R|Pi ))
Var(R) ∈ [0, 1]

Sγ 20.2 % Sκeyfp ,γ
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0.5 %

total first order 40.7 % total second order 31.2 %

degradation factor γ has the strongest impact on the cascade.

the basal production of EYFP is due to an incomplete repression of
the promoter by CI (high effect of κcI ) rather than a constitutive
leakage of the promoter (low effect of κ0

eyfp).
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Other applications and scalability

Scalability :

fitness function computation = numerical simulation +
satisfaction domain (satisfaction degree computation)
Computational cost of violation degree :

curve fitting, box specification : less than 10% of required time for
numerical simulation
oscillation amplitude : 300%
oscillation period : 100%

parameter search parallelized with MPI, efficient on 100-1000 cores
depending on problem

Other applications :
kinetic parameter search in multiple conditions in FSH signaling
network (joint work with Eric Reiter, INRA Tours) (40 unknown
parameters, solution found in few hours on 32 cores)
find oscillations in MAPK cascade (37 unknown parameters found in
few minutes on 1 core )
iGEM competition (PARIS team 2007)
analysis of temporal experimental data [Fages Rizk CMSB 07]
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Conclusion

Definition of a continuous degree of satisfaction of LTL(R) formulae
which can be computed by LTL(R) constraint solving algorithm

Continuous satisfaction degree enables :

measuring the satisfaction of high level specifications

efficient parameter optimization w.r.t. temporal specification

measuring and optimizing the robustness of a model w.r.t temporal
logic specifications

sensitivity analysis w.r.t. temporal specification

Related work :

probabilistic/statistical model checking [Kwiatkowska et al. SIGMETRICS

08, Clarke et al. CMSB 08]

alternative quantitative interpretation of TL [Fainekos and Pappas

FORMATS 07]
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Perspectives

reduce temporal constraint solving computation time with trace
simplification

define formula patterns in natural language for easier use by non
specialists [Monteiro et al, Bioinformatics 2008]

evaluation of parameter search on larger models with rich biological
data (e.g. Chen et al. cell cycle model validation w.r.t. 130 mutants)
using parameter search parallelization

use optimization methods providing sets of valid parameters

develop methods to propose network structure modifications when
parameter search fails using sensitivity analysis
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