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ABSTRACT
Motivation: Robustness is the capacity of a system to maintain a
function in the face of perturbations. It is essential for the correct
functioning of natural and engineered biological systems. Robustness
is generally defined in an ad-hoc, problem-dependent manner,
thus hampering the fruitful development of a theory of biological
robustness, advocated by Kitano [Mol Syst Biol, 3:137, 2007].
Results: In this paper, we propose a general definition of robustness
that applies to any biological function expressible in temporal logic
LTL, and to broad model classes and perturbation types. Moreover,
we propose a computational approach and an implementation in
BIOCHAM 2.8 for the automated estimation of the robustness of
a given behavior with respect to a given set of perturbations. The
applicability and biological relevance of our approach is demonstrated
by testing and improving the robustness of the timed behavior of a
synthetic transcriptional cascade that could be used as a biological
timer for synthetic biology applications.
Availability: Version 2.8 of BIOCHAM and the transcriptional
cascade model are available at http://contraintes.inria.fr/BIOCHAM/
Contact: gregory.batt@inria.fr

1 INTRODUCTION
Robustness can be defined as the capacity of a system to maintain a
function in the face of perturbations. Over the years, many studies
have demonstrated theoretically and experimentally that robustness
is a key property of numerous biological processes, and have
proposed mechanisms that promote robustness (e.g. [3, 12, 34, 5,
35, 22, 36, 15, 11, 39, 25, 9]). Robustness is now regarded as
one of the fundamental characteristics of biological systems because
it allows their correct functioning in presence of molecular noise
and environmental fluctuations. Excellent reviews have surveyed
the role of biological robustness, and discussed its interesting
relations with evolvability of biological systems, modularity of
biological networks and the trade-off between robustness and
fragility (e.g. [26, 40, 37]). In particular, in the context of synthetic
biology applications, these are key issues to take into account at the
design level.

Intuitively, the notion of robustness seems easy to define. One
considers (i) a particular system, (ii) a particular function, and (iii)
a particular set of perturbations, and one assesses how perturbations
affect (or not) the given function. However, with the notable
exception of Kitano [27], no general formal definition of robustness
has been proposed. The precise definition of robustness is generally
highly problem-specific. This makes it difficult to discuss and
compare the robustness found in different contexts, or even in

similar contexts but computed using different formal definitions of
robustness. In [27], Kitano proposes the mathematical foundations
of a theory of biological robustness with the aim of providing a
unified perspective on robustness.

Although very interesting from a theoretical point of view,
Kitano’s definition might be too general when applying it to
particular problems. Indeed the definition relies on a so-called
evaluation function, defined using an unspecified, problem-
dependent real-valued performance function. Here, we propose to
define the evaluation function using the newly-introduced notion of
violation degree of temporal logic formulae [17]. Intuitively, the
violation degree reflects the distance between a particular behavior
of the perturbed system, given as a numerical timed trace, and the
expected reference behavior, expressed by a temporal logic formula.
Because (i) temporal logics are expressive languages to formalize
temporal behavior of dynamical systems and (ii) the violation
degree can be automatically computed, our instantiation of Kitano’s
definition is both general and computational. The main contribution
of our work is that we propose a computational approach for -and an
implementation of- the automatic estimation of the robustness that
applies to a broad class of dynamical properties and a large variety
of possible perturbations. We simply require that the property
describing the expected behavior can be expressed in temporal
logic and that the behavior of the system can be represented by
a numerical trace (possibly obtained by numerical simulation of
deterministic or stochastic models).

A second contribution of this work is that we propose two closely-
related but different notions of robustness that have been used
indiscriminately in publications, namely the absolute robustness of
a system, representing the average functionality of the system under
perturbations, and the relative robustness w.r.t. a given nominal
behavior of the system, quantifying the impact of perturbations
on the nominal behavior. We believe that distinguishing these two
notions will help to clarify the analysis of robustness of biological
systems. Undoubtedly, formal definitions are useful for making this
distinction.

The applicability and biological relevance of our approach is
illustrated on the analysis of the robustness of the timed response
of a synthetic transcriptional cascade built in E. coli. This system
presents a high cell-to-cell variability that prevents using it as a
biological timer. We look for parameter modifications that improve
the robustness of a “well-timed” behavior.

The remainder of this paper is organized as follows. In the
next section, we provide a brief description of the notion of
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violation degree introduced in [17]. In Section 3, we present the
proposed method for robustness estimation and its implementation
in BIOCHAM 2.8. In Section 4, we detail the application of
our method to the analysis of the robustness of the synthetic
transcriptional cascade.

2 VIOLATION DEGREE OF TEMPORAL LOGIC
PROPERTIES

We first define the Boolean semantics of LTL on timed numerical
traces (Section 2.1). Then, we show how using the variable
abstraction technique of Section 2.2, we can define a continuous
satisfaction degree for temporal logic formulae (Section 2.3) better
adapted to a quantitative notion of robustness.

2.1 Temporal logic semantics of numerical traces
In this article, we consider that the behavior of a biological system
is described by numerical timed traces. These traces can be obtained
either by experimentation on the actual system or by numerical
simulation of stochastic or deterministic models. Formally, a
numerical trace is a finite sequence of tuples describing system’s
evolution with time: T = (s0, s1, . . . , sn), with si = (ti, xi, ẋi),
(ti)i∈[0,n] being a strictly increasing sequence of time points, and
xi, ẋi ∈ Rm being vectors of state variable values and of their
derivatives at time ti. In Fig 1, a hypothetical evolution of a
protein concentration is represented. The associated trace is T =
((0, 6, 1.3), (2, 8, 0.8), . . . , (24, 5, 0)).
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Fig. 1. Numerical trace depicting the time evolution of a protein
concentration

We use Linear Temporal Logic (LTL) to express dynamical
properties of biological systems. Temporal logics have been
developed to specify the behavior of (usually discrete) dynamical
systems [16]. Typical properties include reachability (the system
can reach a given state), inevitability (the system will necessarily
reach a given state), invariance (a property is always true), response
(an event necessarily triggers a specific behavior), and infinite
occurrences of events (such as oscillations). Illustrative examples
of the expressiveness of temporal logics in systems biology can
be found in [1, 8, 4, 6, 7]. LTL formulae are built using atomic
propositions and LTL operators.

In our approach, atomic propositions π express real-valued linear
constraints on time, protein concentrations and their derivatives. The
infinite set of atomic propositions is denoted by Π.

LTL operators include the usual logical operators, such as
negation (¬), logical and (∧), logical or (∨), and implication
(→), and specific temporal operators, such as next (X), future (F),
globally (G) and until (U). Xφ, Fφ, Gφ and φUψ respectively

mean that a property φ holds at the next time, at some future
time, holds for all future times, or holds continuously until another
property ψ holds. These operators can be combined to express
complex dynamical properties. For example, the trace T represented
in Fig. 1 satisfies the formula φ1 = F([A] > 7 ∧ F [A] < 3),
expressing that at some time point, protein A concentration exceeds
7 and later goes below 3. Because negations can be pushed to
atomic propositions with the usual duality properties of operators,
and the set of atomic propositions is closed by negation, we consider
without loss of generality only negation-free LTL formulae.

The standard semantics of LTL formulae is generally defined with
respect to infinite executions, i.e. infinite traces. Because in our case,
the traces are finite, the usual semantics of LTL has to be adapted.
Let T = (s0, s1, . . . , sn) be a finite numerical trace, π ∈ Π be an
atomic proposition and φ, ψ be LTL formulae. Then the semantics
of LTL formulae with respect to finite traces is defined inductively
as

• T |= φ iff s0 |= φ,

• si |= π iff si =(ti, xi, ẋi) satisfies π with the usual semantics,

• si |= φ ∧ ψ iff si |= φ and si |= ψ,

• si |= φ ∨ ψ iff si |= φ or si |= ψ,

• si |= Xφ iff i < n and si+1 |= φ, or i = n and sn |= φ,

• si |= Fφ iff ∃j ∈ [i, n] such that sj |= φ,

• si |= Gφ iff ∀j ∈ [i, n], sj |= φ,

• si |= φUψ iff ∃j ∈ [i, n] s. t. sj |= ψ and ∀k ∈ [i, j − 1],
sk |= φ.

The first equivalence simply states that the trace satisfies a formula
if the formula holds at the initial time t0. This semantics of
LTL coincides with the standard semantics used on finite traces
completed by a self-loop on the last state [17]. This semantics differs
from the neutral semantics of Eisner and colleagues [14] for finite
traces only for the next operator, which in their definition is always
false on the last state, whereas in our case it enjoys the duality
property ¬Xφ = X¬φ and either Xφ or X¬φ holds. In practice,
the next operator being mainly used to detect local extrema, this
difference of interpretation is not significant.

It is worth noticing that when the numerical trace corresponds
to a discrete representation of a continuous process, the discrete
time semantics that we use may cause that particular events are
“missed” independently of the numerical errors that can be made
by the numerical integration method. For example, the formula
F([A] ≥ 10) interpreted on trace T of Fig. 1 and expressing that
eventually [A] exceeds 10 might be found true or false depending
on the integration step and precision. So care must be taken when
checking temporal properties on finite discrete time traces (for a
discussion, see [14, 19, 28], and references therein).

2.2 From model checking to constraint solving
The Boolean interpretation of temporal logic is not well adapted
to defining a quantitative notion of robustness. Indeed, neither of
the two formulae φ2 = F([A] > 12 ∧ F [A] < 3) and φ3 =
F([A] > 14∧F [A] < 3) hold for the trace T of Fig 1. However,
intuitively φ2 is closer to satisfaction than φ3, since it only requires
that [A] reaches 12 instead of 14.
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To provide a formal definition, for a continuous degree of
satisfaction of an LTL formula, we consider quantifier-free LTL
(QFLTL) formulae with free (non state) real-valued variables y [17].
Then, the original model checking problem is transformed into the
following constraint solving problem: for which values y does φ(y)
hold on T ? Accordingly, we define for any trace T the satisfaction
domain of the formula φ(y) as the set of y values for which φ(y)
holds:

DT,φ(y) = {y ∈ Rq | T |= φ(y)} (1)

In the sequel, φ(y) will denote the QFLTL formula obtained by
variable abstraction from a (QF)LTL formula φ.

Interestingly, an LTL formula can be seen as an instance of a
QFLTL formula obtained by abstracting the constants appearing
in the formula by new variables y ∈ Rq . For example, to φ1 =
F([A] > 7 ∧ F [A] < 3), we associate the formula φ(y) =
φ(y1, y2) = F([A] > y1 ∧ F [A] < y2). Then we have
φ1 = φ(7, 3). Moreover, one can easily check that for our example
trace T , DT,φ(y1,y2) = {y1 ≤ 10 ∧ y2 ≥ 2}, 10 and 2 being
respectively the maximal and minimal values of [A] in T .

More generally, this variable abstraction/instantiation process
allows us to view a LTL formula as a point in the QFLTL formula
space Rq , where q is the number of constants appearing in φ (or
the number of constants that are replaced by variables, if not all
constants are abstracted away). In Fig 2, φ1, φ2, φ3, and DT,φ are
represented in this formula space.

φ3

10 y1

φ2

y2

φ1

2

DT,φ(y)

Fig. 2. Satisfaction domainDT,φ(y) of QFLTL formula φ(y) = F([A] >
y1 ∧ F[A] < y2) and trace T , and LTL formulae represented in formula
space.

Given any trace T = (s0, s1, . . . , sn) and formula φ(y)
we showed in [17] that the satisfaction domain DT,φ(y) can be
computed by induction on T and the subformulae of φ(y) using
the equalities of Proposition 1.

PROPOSITION 1 (Computation of satisfaction domains [17]).

• DT,φ(y) = Ds0,φ(y),

• Dsi,π(y) = {y ∈ Rm | π(y) holds with the usual semantics},

• Dsi,φ(y)∧ψ(y) = Dsi,φ(y) ∩ Dsi,ψ(y),

• Dsi,φ(y)∨ψ(y) = Dsi,φ(y) ∪ Dsi,ψ(y),

• Dsi,Xφ(y) =

{ Dsi+1,φ(y), if i < n,
Dsi,φ(y), if i = n,

• Dsi,Fφ(y) = ∪j∈[i,n]Dsj ,φ(y),

• Dsi,Gφ(y) = ∩j∈[i,n]Dsj ,φ(y),

• Dsi,φ(y)Uψ(y) = ∪j∈[i,n](Dsj ,ψ(y) ∩ ∩k∈[i,j−1]Dsk,φ(y)).

Here, the atomic propositions in formula φ(y) being linear
constraints on free variables (y) and values of the state variables
(time , xj , or ẋj), the satisfaction domains are finite unions and
intersections of polytopes which can be computed with standard
polyhedral libraries.

2.3 Violation degree
To quantify how far from satisfaction a system’s behavior is, we
introduce the violation degree vd(T, φ) of a formula φ with respect
to trace T as the distance between the actual specification and
validity domain DT,φ(y) of the QFLTL formula φ(y) obtained by
variable abstraction:

vd(T, φ) = dist(φ,DT,φ(y)).

The violation degree has thus a simple interpretation, since it
quantifies by how much a given numerical trace must be changed
to satisfy the given formula.

Considering again our example in Fig 2 and using the Euclidean
distance, we have that vd(T, φ1) = 0, meaning that the formula is
satisfied by T , and vd(T, φ2) = 2 and vd(T, φ3) = 4, reflecting
that T is further from satisfaction of φ3 than of φ2.

We would like to emphasize that abstracting constants by
variables in temporal logic formulae is a means to define a metric
on the set of formulae. All set operations and distance computations
are made in the corresponding metric space, known as the formula
space. It might seem more intuitive to define distances directly
between traces. For example, Fainekos and Pappas [18] use with
a similar aim -defining a continuous interpretation of temporal
logic formulae on traces- the distance between a given trace T
and the set of traces satisfying a formula φ. One major advantage
of our approach is that the dimensionality of the formula space
(number of abstracted constants) is generally much lower than the
dimensionality of the trace space (trace length). Performing set
operations and distance computation in low dimensional spaces
may strongly affect the practical applicability of these methods. In
this article, we use the Euclidean distance. However, many other
distances can be used (e.g. Manhattan or Chebyshev), depending on
the desired interpretation of distance and, as we will see in the next
paragraph, on the desired interpretation of robustness.

To define the robustness of a behavior, it is more convenient to
reason with a positive notion that describes how good the (possibly
perturbed) system performs, i.e. satisfies a dynamical property. To
do so, we introduce the notion of continuous satisfaction degree of
a formula with respect to a trace T :

sd(T, φ) =
1

1 + vd(T, φ)
∈ [0, 1], (2)

where vd the violation degree previously introduced. The
satisfaction degree is normalized such that it ranges between 0 and
1, with a satisfaction degree equal to 1 when the property is true
and tending towards 0 when the system is far from satisfying the
expected property. For some applications, the satisfaction degree
might be normalized differently, using a given constant K instead
of the ones in equation (2).
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3 ROBUSTNESS DEFINITIONS AND
COMPUTATIONS

3.1 Absolute robustness
In this article, we mainly use Kitano’s general definition of
robustness. In [27], Kitano defines the robustness of a property a
of a system s with respect to a set of perturbations P as the average
of an evaluation function Ds

a of the system over all perturbations
p ∈ P , weighted by the perturbation probabilities prob(p):

Rs
a,P =

∫

p∈P

prob(p) Ds
a dp (3)

One should emphasized that this definition is very general and
can be used in many cases. Unfortunately, Kitano does not provide
much information on how to define the so-called evaluation function
Ds

a of the system. This function should determine if the system still
maintains its function under a perturbation and to what degree. The
evaluation function needs to be defined for each specific problem in
an ad-hoc manner and re-implemented for the computation of the
robustness. A central contribution of this paper is to demonstrate
that using the notion of satisfaction degree presented previously, one
can provide a general computational framework based on temporal
logic and Kitano’s definition that can be used to evaluate the
robustness of broad types of dynamical properties and perturbations.

Formally, the robustness of the system is defined as:

Rs
φ,P =

∫

p∈P

prob(p) sd(Tp, φ) dp, (4)

where φ is the specification of the functionality in temporal logic
and Tp is the trace representing the behavior of the system under
perturbation p. This notion of robustness corresponds to a mean
functionality, that is, describes on average how the system behaves
under perturbations. To illustrate this, consider the plots 1-2 of
Fig. 3 that describe the performance Ds

a -or equivalently in our case,
the satisfaction degree- of two hypothetical systems in the face of
perturbations p. Because these two plots have the same average,
the robustness of these three systems would be equal for evenly-
distributed perturbations. For example in a bioengineering context,
if the “property” reflects the quantity of some product exported by
cells, these two systems will indeed produce on average the same
quantity of the desired product.

3.2 Relative robustness
When comparing plots 1 and 2 of Fig 3, it appears that the
consequences of perturbations of the nominal behavior are not the
same, with T0 the nominal behavior. In system 1, perturbations
degrade the system’s performance more severely than in system
2. So, with a different meaning of robustness, one could say that
system 2 is more robust than system 1. These two robustness
interpretations (as average behavior or as impact of perturbations on
nominal behavior) have been indiscriminately used in the literature
(see e.g. [39, 13]). To reflect this second interpretation, let us define
the relative robustness of a system w.r.t. a nominal behavior as the
system’s robustness divided by its nominal performance, that is, by
the satisfaction degree of the reference behavior.

Rs,p∗
φ,P = Rs

φ,P /sd(Tp∗, φ), (5)
where Tp∗ denotes the unperturbed, nominal behavior of the
system. In Fig. 3, one can distinguish the relative robustness of

systems 1 and 2 w.r.t. their nominal performance, reflecting that the
performance is more impacted by perturbations in system 1 than
in system 2. The performance function of system 3 equals half of
the performance function of system 1. Consequently, these systems
have the same relative robustness w.r.t. their nominal performance,
although they have different absolute robustness.

3.3 Robust satisfaction degree
Using the notion of satisfaction domain, we can also define the
distance from robust satisfaction of a property φ with respect to
a set of perturbations P as dist(∩pDTp , φ). This distance reflects
the minimal change in the formula such that it holds for all
perturbations. Then, we define the robust satisfaction degree as:

Rsds
φ,P =

1

1 + dist(∩pDTp , φ)
(6)
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Fig. 4. Representation of satisfaction domains for three perturbations p1,
p2, and p3 ∈ P . Dpi denotes DTpi

,φ(y). Left: the intersection of
satisfaction domains (shaded) is not empty and Rsds

φ,P = 3. The property
φ(ỹ) = φ(3, 4) = F([A] > 3 ∧ F [A] < 4) is satisfied for all
perturbations. Right: the intersection of satisfaction domains is empty and
Rsds

φ,P = ∞.

This notion allows us to distinguish whether it is possible to
relax the specification to have it satisfied for all perturbations or
not. In the first case of Figure 4, one can guarantee that the
system always presents a (possibly suboptimal) behavior. Moreover,
the closest property φ(ỹ) robustly satisfied (i.e. such that ỹ =
argminy∈∩pDTp

dist(∩pDTp , φ)) can provide interesting hints for
the system’s design: because ỹ = (0, 3), it suggests that only the
first value in φ (i.e. the maximum of [A] in T) needs to be modified.

3.4 Implementation
For the computation of Rs

φ,P , Rs,p∗
φ,P , and Rsds

φ,P , one needs
to distinguish whether the set of perturbations is finite (e.g.
gene knockouts) or infinite (e.g. normally-distributed parameter
variations). In the first case, the values can be computed exactly,
whereas in the second case, they can be estimated by sampling the
perturbation set for sufficiently many perturbations.

The following algorithm is implemented in version 2.8 of the
freely-available tool BIOCHAM, a modeling environment for the
analysis of biological systems [7].Given an ODE model f , a set P
of perturbations of initial conditions or parameters, and (QF)LTL
properties φ and φ(y), the tool computes the robustness, the
relative robustness and the robust satisfaction degree of the property
with respect to the given perturbations. The computation of the
trace Tp is done by numerical integration. The computation of the
satisfaction domain DTp,φ(y) is made by induction on the formula
structure, using for each subformula a direct implementation of
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Fig. 3. Systems having same absolute robustness (1 and 2) or same relative robustness (1 and 3), assuming evenly-distributed perturbations. Performance
functions of system 1 and 2 have same the average, whereas the performance function of system 3 is half of the one of system 1.

Algorithm 1 Robustness computation
// input: a (model of the) system f , (QF)LTL formulae φ and φ(y), a set of perturbations P and their probabilities, and nominal behavior
p∗

// output: robustness estimates Rφ,P , Rp∗
φ,P , and Rsdφ,P

1: for every perturbation p ∈ P ∪ {p∗} do
2: Tp := COMPUTE TRACE(f, p)
3: DTp,φ(y) := COMPUTE SAT DOMAIN(Tp, φ(y))
4: end for
5: Rφ,P :=

∑
p∈P prob(p)(1 + dist(DTp,φ(y), φ))−1

6: Rp∗
φ,P := Rφ,P ∗ (1 + dist(DTp∗ ,φ(y), φ))

7: Rsdφ,P := (1 + dist(∩p∈PDTp,φ(y), φ)))−1

the definition. Polytopes operations are implemented in BIOCHAM
using a standard polyhedral library [2].

4 APPLICATION TO ROBUSTNESS ANALYSIS OF
A TRANSCRIPTIONAL CASCADE

We consider the design of a synthetic transcriptional cascade
that could be used for the temporal sequencing of events in
synthetic biology applications. This cascade has already been built
by Hooshanghi and colleagues [24] and here we investigate the
robustness of a desired behavior, and the possibilities to make it
more robust. To do so, after having introduced the system, we
formalize the expected behavior, develop a model of the system
taking into account the observed variability, and apply the method
presented previously to investigate the robustness of the desired
property.

4.1 System description
We consider a cascade of transcriptional inhibitions built in
E.coli [24]. The network is represented in Figure 5. It is made of
four genes: tetR, lacI , cI , and eyfp that code respectively for three
repressor proteins, TetR, LacI, and CI, and the fluorescent protein
EYFP. The fluorescence of the system, due to the protein EYFP, is
the measured output. The system can be controlled by the addition
or removal of a small diffusible molecule, aTc, in the growth media.
More precisely, aTc binds to TetR and relieves the repression of
lacI . The aTc concentration thus serves as a controllable input to the
system. It is intuitively clear that the output (i.e. the fluorescence)
of the system at steady state will be low for low inputs (i.e. aTc
concentration), and high for high inputs. Moreover, it has been
shown that the time response of the system to an inducer addition
is characterized by a rapid increase of the fluorescence, preceded by
a significant lag-phase. Unfortunately, a high cell-to-cell variability
has also been observed. The heterogeneity of the cell responses

makes it difficult to use this system as a biological timer, for
example for developmental programs as suggested in [24]. In this
context, as for many synthetic biology applications, having even a
low proportion of cells sending a signal too early or too long might
compromise the correct functioning of the whole system. Our goal
here is precisely to investigate the possibilities to obtain a robustly
“well-timed” system, that is to ensure that all cells will indeed
change state in a given time window.

4.2 Specifying the expected behavior
Here we consider that the system is well-timed if the fluorescence
remains below 103 for at least 150 minutes, then exceeds 105 after
at most 450 minutes, and switches rapidly from low to high levels,
that is, in less than 150 minutes. These specifications are consistent
with the experimentally observed behavior of the cell population.
These specifications are graphically-represented in Fig. 6 and can
be formalized in temporal logic as follows:

φ(t1, t2) = G(time < t1 → [EYFP] < 103)
∧ G(time > t2 → [EYFP] > 105)
∧ t1 > 150 ∧ t2 < 450 ∧ t2 − t1 < 150

which is abstracted into

φ(t1, t2, b1, b2, b3) = G(time < t1 → [EYFP] < 103)
∧ G(time > t2 → [EYFP] > 105)
∧ t1 > b1 ∧ t2 < b2 ∧ t2 − t1 < b3

for the computation of validity domains and satisfaction degree in a
given trace.

4.3 Modeling the system’s variability
There are many ways to model cell variability (see for
example [29]). Our goal here is to construct a simple model
such that the predicted behavior and standard deviation are in
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TetR LacI EYFPCI

tetR cI eyfp

aTc

lacI

Fig. 5. Synthetic transcriptional cascade. TetR represses lacI , LacI represses cI , and CI represses eyfp. aTc controls the repression of lacI by TetR. The
fluorescence of the protein EYFP is the output.
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Fig. 6. Graphical representation of a “well-timed” behavior: fluorescence
remains below 103 until time t1, exceeds 105 after time t2 and switches
between low and high levels in ∆t time. One expects that t1 > 150, t2 <
450 and ∆t < 150. Crosses represent experimental data from [24].

agreement with the available experimental data. We first develop
a simple ODE model similar to [5] but using Hill functions, with
parameters fitted to experimental data (Fig 7(a) and (b)). These
parameter reference values are denoted p∗ in the sequel. Second, we
consider various ways to model cell variability, including stochastic
differential equations with either additive or multiplicative noise
and random parameter variations with (log)normal distributions.
We have obtained a good qualitative and quantitative agreement
between the predicted and observed mean and standard deviation
for log-normally distributed parameters, as shown in Fig 8(a)
and (b). So we selected these log-normal parameter distributions
as our “perturbation model”. Using either stochastic differential
equations or normally-distributed parameters, we have not been able
to find an agreement between model predictions and experimental
observations (not shown). This could be partially explained by
the very high cell-to-cell variability. In particular, the observed
coefficient of variation reaches 1.4 at some time point, meaning that
the standard deviation is higher than the mean.

4.4 Improving robustness of the desired behavior
Having specified the “well-timed” behavior and found an ODE
model and a perturbation model, we wondered whether the system
is robustly well-timed, and to what degree. When considering
5000 log-normally distributed parameter values, we estimated the
robustness of the system as R̂φ,P = 0.9: the specification is not
robustly satisfied. As expected, the property holds for the reference
parameter values p∗ (i.e. sd(Tp∗ , φ) = 1), and consequently the
robustness and absolute robustness are equal (R̂p∗

φ,P = 0.9). The
distribution of the satisfaction degree is represented in Fig 8(d),
showing that although the majority of timed traces satisfies the
specification, this is not always the case.

As said earlier, for most synthetic biology applications, a more
robust timer would be needed. Can we find other parameters
so as to improve the robustness of the system with respect to

similar parameter perturbations? To do so, we use the state-of the-
art non-linear optimization tool CMAES that uses a covariance
matrix adaptation evolution strategy [23], with the robustness as
optimization criteria (i.e. as fitness function).

We found the following parameter values:

p̃=(κ0, κ, γ, θ, η)=((2.30, 4.20, 3.78), (1234.5, 514.5, 5174.3), (0.024,
0.015, 0.012), (1647.2, 662.8, 936.4), (4.8, 3.7, 8.4))

The comparison between original parameters p∗ and so-called
optimized parameters p̃ reveals that the EYFP production rate and
the Hill coefficients η have been significantly increased. Given that
one wants to ensure a fast transition between the low and high states,
these parameters were obvious targets for optimizations. Because
tuning Hill coefficients is experimentally difficult, we looked for
and found parameters with unchanged Hill coefficients that ensure
a robust well timed behavior.
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Fig. 9. (a) Numerical simulations of the ODE model with log-normally
distributed parameters with mean p̃. (b) Temporal evolution of the coefficient
of variation of the fluorescence following addition of aTc. Crosses and
solid line represent coefficient of variations obtained from experimental
data in [24] and from 5000 numerical simulations of the ODE model with
log-normally distributed parameters with mean p̃, respectively.

Numerical integrations illustrate that the expected behavior is
indeed more robustly obtained (compare Fig 8(c) and Fig 9(a)).
Interestingly, the coefficient of variation suggests that cell-to-cell
variability will be significantly decreased when the time constraints
hold (for time < 150) and is significantly increased otherwise (for
150 < time < 450, see Fig 9(b)). It would be interesting to study
whether this feature appears systematically for parameter variations
improving the robustness of the desired behavior. This could reveal
trade-offs between robustness and fragility [26].

4.5 Parameter influence on robust behavior
To obtain a more comprehensive picture of the variations of the
robustness of the expected behavior, we sample the parameter space
for large parameter variations, and for each parameter, we compute
the robustness.

More precisely, we consider grids on the parameter space
centered on the reference parameter values p∗ and corresponding
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ẋlacI = κ
0
lacI + κlacI
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ηaTc
aTc + u

ηaTc
aTc

− γlacI xlacI ,

ẋcI = κ
0
cI + κcI

θ
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θ
ηlacI
lacI + x

ηlacI
lacI

− γcI xcI ,

ẋeyfp = κ
0
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θ
ηcI
cI

θ
ηcI
cI + x

ηcI
cI

− γeyfp xeyfp ,

u̇aTc = 0.

κ0
lacI 3.0 θaTc 1100

κ0
cI 5.1 θlacI 380

κ0
eyfp 3.2 θcI 1000

κlacI 1150 ηaTc 3.0

κcI 538 ηlacI 2.1

κeyfp 3617 ηcI 4.0

γlacI 0.017

γcI 0.015

γeyfp 0.012

P ↪→ LogN(ln(p∗)− ln(1 + σ2)/2,
√

ln(1 + σ2)),

with σ =





0.064 for γ, θ, η,

0.128 for κ0,

0.256 for κ

and such that E(P ) = p∗ and σ(P ) = σp∗

(a) (b) (c)

Fig. 7. (a) ODE model of the transcriptional cascade. The concentrations of protein LacI, CI, EYFP and of aTc are denoted by xlacI , xcI , xeyfp , and
uaTc , respectively. The concentration of the constitutively expressed protein TetR is assumed constant. (b) Reference parameter values p∗ and (c) parameter
distributions modeling system’s variability. σ is a noise intensity parameter vector.
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Fig. 8. (a) Temporal evolution of the fluorescence following addition of aTc. Crosses, dotted line and solid line represent experimental data from [24],
predictions obtained using the ODE model with reference parameters p∗, and average of 5000 numerical simulations of the ODE model with log-normally
distributed parameters, respectively. (b) Temporal evolution of the coefficient of variation of the fluorescence following addition of aTc. Crosses and solid
line represent coefficient of variations obtained from experimental data in [24] and from 5000 numerical simulations of the ODE model with log-normally
distributed parameters with mean p∗, respectively. (c) Numerical simulations of the ODE model with log-normally distributed parameters with mean p∗. (d)
Distribution of satisfaction degrees for 5000 numerical traces of the perturbed transcriptional cascade model. The corresponding robustness is R̂φ,P = 0.9.

to ±10 fold parameter variations of either 2 parameters (κeyfp and
γ; 2D grids) or 8 parameters (κ0,κ, γ, and uaTc ; 8D grids). Then,
for each grid point -taken as reference value for relative robustness
computations- we estimate the robustness of the network behavior
when all 16 parameters vary. Note that we consider the initial aTc
concentration as a parameter. The γ parameter correspond to a
scaling factor of all degradation parameters γlacI , γcI , and γeyfp ,
with γ∗ = 1. It is used to assess the impact of growth rate variations,
affecting similarly all protein dilution rates, and consequently, all
degradation rates.

For the 2D grid, results can be visually displayed. In Figure 10,
the satisfaction degree, the robustness and the relative robustness
are represented in the (κeyfp , γ) parameter space. It appears that the
constraints on γ are much tighter than the constraints on κeyfp . Both
for the satisfaction degree and for the robustness, γ has to remain
in a narrow interval, whereas κeyfp simply has to exceed some
value. This result can be explained by the fact that high production
rates of the fluorescent protein helps the system to have a fast and
marked response, whereas variations in protein degradation rates γ
has subtle effects on the behavior, since it lowers the concentration
of the fluorescent protein and of its repressor. It seems that the
nominal behavior, and even more the average behavior, are rather
fragile to growth rate variations.

The robustness landscape appears like a blurred version of the
satisfaction degree landscape. This corresponds to the fact that
parameter variations corresponding to cell to cell variability used
for computing the robustness are generally smaller than parameter
perturbations considered when exploring the parameter space.
However, one should also stress that the robustness takes into

account parameter variations in all dimensions and with particular
distributions (here log-normal, with various noise intensities σ).
Thus Fig 10(b) is not merely a blurred version of Fig 10(a).

In Fig 10(c), it appears that the relative robustness that quantifies
how different the average behavior is from the nominal one,
efficiently identifies regions where the satisfaction degree changes
significantly. In the context of system design, this information
is of great interest. This could be compared with the sensitivity
of satisfaction degree with respect to parameter perturbations.
However, contrary to the sensitivities, the relative robustness takes
into account a given perturbation model.

The preceding analysis is naturally not possible when considering
parameter variations in higher dimensions. To carry the analysis on
8D grids, we use a variance-based global sensitivity method [33].
When a measure (in our case the robustness) is affected by variations
of several parameters, one can statistically assess the importance of
the variations of each parameter by computing its sensitivity index:

Si =
Var(E(R | Pi))

Var(R)
∈ [0, 1],

These sensitivity indices and higher order sensitivity indices
quantify how the variance of a parameter Pi or a group of
parameters contributes to the variance of R.

We consider 8D grids defined as follows. Each grid is defined
by 3 parameter values (p1

i , p
2
i , p

3
i ) in each dimension. These values

-or more precisely their log- are obtained by dividing evenly the
parameter domain [ln(pi/10), ln(10pi)] in 3 subintervals and by
choosing randomly a value in each subinterval.
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Fig. 10. (a) Satisfaction degree, (b) robustness and (c) relative robustness represented in the (κeyfp , γ) parameter space.

The first and most significant second order sensitivity indices are
given in table 1. They correspond to average values obtained on 10
similarly defined grids.

Sγ 20.2 % Sκeyfp ,γ 8.7 %

Sκeyfp
7.4 % SκcI ,γ 6.2 %

SκcI
6.1 % S

κ0
cI

,γ
5.0 %

S
κ0
lacI

3.3 % S
κ0
cI

,κeyfp
2.8 %

S
κ0
cI

2.0 % SκcI ,κeyfp
1.8 %

SκlacI
1.5 % S

κ0
eyfp

,γ
1.5 %

S
κ0
eyfp

0.9 % S
κ0
cI

,κcI
1.1 %

SuaTc
0.4 % S

κ0
cI

,κlacI
0.5 %

total first order 40.7 % total second order 31.2 %

Table 1. First and most significant second order sensitivity indices defined
for the robustness with respect to large parameter variations and computed
on 8D grids.

The analysis of the first order sensitivity indices corroborates our
previous finding that γ variations have a very strong impact on the
robust behavior of the cascade. The variations of this parameter
alone are responsible for 20% of the robustness variations. In
contrast, aTc variations seem to have a very low impact on the
cascade behavior. Although it might seem in contradiction with the
ultrasensitivity of the input/output behavior [24], it simply indicates
that the aTc concentrations used for inducing the cascade are high
enough to make the network insensitive to even large aTc variations.

A surprizing outcome of this analysis is the very different
importance of variation in the basal and regulated EYFP production
rates, κ0

eyfp and κeyfp (Table 1). Given that the specification imposes
similar constraints on the “low” and “high” EYFP levels, and that
these levels are under mild approximations proportional to the ratio
κ0

eyfp/γeyfp and κeyfp/γeyfp , respectively, one could have expected
similar sensitivity indices for κ0

eyfp and κeyfp . In fact the low EYFP
levels also depends -and in a non-linear way- on the steady state
value of CI, itself proportional to κcI /γcI . Because κcI variations
have strong effects on robust behavior of the cascade, our results
suggest that when uninduced, the basal production of EYFP is due
to an incomplete repression of the promoter by CI, explaining the
high effect of κcI variations, rather than a constitutive leakage
of the promoter, explaining the low effect of κ0

eyfp variations.
This hypothesis is also consistent with the second order sensitivity
indices we found: SκcI ,γ > Sκ0

eyfp
,γ .

The analysis of second order sensitivity indices indicates that joint
variations of production and degradation rates play a significant role
in robustness variations. This comes with no surprize, since as said

earlier, the ratios κi/γi largely determine the steady state levels of
the proteins.

5 DISCUSSION
We have presented a general and computational framework for the
definition of the robustness of biological functions with respect to a
set of perturbations. This framework is general because it applies
(i) to any biological function expressible in the temporal logic
LTL, an expressive language for specifying dynamical behaviors
widely-used in computer science and engineering, and (ii) to any
perturbation set, provided that the behaviors of the perturbed system
can be obtained as numerical timed traces, for example by numerical
integration of ODEs. In this setting, the computation of robustness
can be fully automated. It is implemented in the free software
BIOCHAM [7].

When formalizing the robustness notion, we found that several
notions of robustness can be proposed. In particular, one can
distinguish the absolute robustness, quantifying the average
performance of a perturbed system, from the relative robustness,
quantifying the performance degradation (or improvement) due to
perturbations.

To illustrate the applicability of our approach and demonstrate
its biological relevance, we considered the possibility to improve
the robustness of the timed response of a transcriptional cascade
to an addition of inducer. The significant cell-to-cell variability
makes it difficult to use this system as a reliable biological timer for
synthetic biology applications. We found parameter modifications
for which a desired timed behavior is robustly obtained. Moreover,
we explored the impact of possibly-large parameter variations on the
robustness of the desired behavior. Using global sensitivity analysis,
we obtained several interesting results that could potentially help for
the optimization of the system.

Central to our approach is the notion of satisfaction degree
of temporal logic formulae. In systems and synthetic biology,
many computational approaches use a rather simple measure of
the performance of the system, either for parameter searching,
robustness computation or local and global sensitivity analysis.
Finding a relevant measure of the system performance limits the
applicability of the above-mentioned approaches. Examples of such
measures are the gain of a response, and the perturbation of a
steady state or of the period of oscillations [21, 20, 22]. In
contrast, using the satisfaction degree as a performance measure
allows us to take advantage of the expressivity of temporal logics
and consequently to significantly broaden the applicability of
these techniques. In [32], we showed that using the satisfaction
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degree, one can efficiently find parameter values for which complex
dynamical behaviors are observed. In this article, we show
how using the same notion, one can define and estimate the
robustness of any dynamical behavior expressible in LTL with
respect to a set of perturbations, and how one can apply global
sensibility analysis to find the effect of parameter variations on
the robustness of any LTL specification of an expected behavior.
Other approaches have been proposed that use temporal logic to
define robustness of biological systems [34, 5]. However, these
approaches use a Boolean interpretation of temporal logic that
is not well-adapted to defining a quantitative notion of robustness.

The relations between robustness and evolvability, and between
robustness and modularity have been extensively studied in systems
biology (i.e. [11, 26]). In synthetic biology however not much work
has focused on robustness analysis. For obvious reasons, achieving
a robust behavior despite cell variability and environmental
fluctuations is a central issue in synthetic biology. Because large
synthetic networks are very likely to be modular [10, 30], one
could envision an approach in which each module is designed to
robustly present a given behavior such that one has some guarantee
that when included in a more complex system the module still
functions as expected. In this context, input/output robustness [35]
and insulation [38] are notions of particular interest.
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