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via delle Scienze 206, 33100 Udine, Italy

{demaria,dovier,montana,piazza}@dimi.uniud.it

Abstract. In this paper we show how model checking can be used to
drive the solution search in the protein folding problem encoded as a
constraint optimization problem. The application of the model checking
technique allows us to distinguish between meaningful protein confor-
mations and bad ones. This classification of conformations can then be
exploited by constraint solvers to significatively prune the search space of
the protein folding problem. Furthermore, our approach seems promising
in the study of folding/energy landscapes of proteins.

1 Introduction

In this paper we show how model checking can be used to drive the solution
search in the protein folding problem encoded as a constraint optimization
problem. Given the molecular composition of a protein, i.e., a list of amino
acids, known as its primary structure, the protein structure prediction (or pro-
tein folding) problem consists in determining the 3D shape (tertiary structure
or conformation) that the protein assumes in normal conditions in biological
environments [5].

To solve the protein folding problem it is crucial to determine the confor-
mations of the amino acid sequences in the 3D space with minimum energy.
It is indeed widely accepted that a state with minimum energy represents the
protein’s natural shape (a.k.a. the native conformation). The energy of a con-
formation can be modeled by means of suitable energy functions, which express
the energy level in terms of the interactions between pairs of amino acids [3].
Since the protein folding problem is extremely complex, it is often simplified in
several respects. A common simplification consists in using lattice space models
to restrict the admissible positions of the amino acids in the space [11]. The
energy function can be simplified as well, e.g., by adopting the 20×20 poten-
tial matrix proposed by [7, 8] or the simpler HP model [1, 2]. For the sake of
simplicity, in the following we assume a 2D finite lattice included in N2 and the
HP energy model. However, our approach can be easily extended to 3D lattices.
Furthermore, it is not difficult to replace the HP model with a more refined
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energy model that keeps track of the variety of interactions among the 20 kinds
of amino acids.

In this work we show how model checking techniques can be exploited to
investigate the relationships among the different possible conformations of pro-
teins. We model the solution space of the protein folding problem as a finite
transition system whose states are all the possible conformations of a protein
and whose transitions represent admissible transformations of conformations.
Then, we take advantage of temporal logic to specify and check relevant proper-
ties of such a system. As an example, we show how to check whether there exists
a path from a given conformation to a conformation with an energy level below
a certain threshold whose length is less than or equal to a given value. In par-
ticular, we are interested in identifying patterns common to different proteins.
These patterns can be used to improve the solution search in existing constraint-
based protein folding algorithms as well as to understand protein functions. In
general, constraints allow one to easily model minimization problems. Once the
constraint model is defined, a constraint solver can indeed be used to search for
solutions. This search exploits the constraints to prune the solution space. In the
following, we show how model checking can be used to identify meaningful prop-
erties of protein conformations that can be encoded as additional constraints to
be used to further reduce the solution space.

The paper is organized as follows. In Section 2 we introduce the HP model. In
Section 3 we describe how to generate, for any given protein, the corresponding
finite transition system. In Section 4 we show how to express relevant properties
of protein conformations in temporal logic. In Section 5 we report preliminary
experimental results and we outline some ongoing developments of the work.

2 The HP model of proteins

The HP model on a 2D discrete lattice, where every conformation of a protein is
a self-avoiding walk in Z2, is commonly used to represent the conformations and
the energy function of proteins [12]. Such a model reduces the 20-letter alphabet
of amino acids to a two-letter alphabet {H,P}, where H (resp., P) represents
a hydrophobic (resp., polar) amino acid. The energy function states that the
energy contribution of a contact between two amino acids is -1 if both of them
are H amino acids, 0 otherwise.

Hereafter, we represent an HP sequence as an element in {0, 1}∗, where 1
(resp., 0) stands for an H (resp., P) amino acid. Furthermore, for i = 0, 1, . . . , n,
we denote by si the i-th element of a sequence s of n + 1 elements. The subset
of admissible protein conformations is defined as follows.

Definition 1 (Folding). A folding ω of a sequence s = s0 . . . sn is a function
ω : [0 . . . n] → Z2 such that

(i) ∀0 ≤ i < n (|ω(i)− ω(i + 1)| = 1), that is, if ω(i) = (Xi, Yi) and ω(i + 1) =
(Xi+1, Yi+1), then |Xi −Xi+1|+ |Yi − Yi+1| = 1;

(ii) ∀i 6= j(ω(i) 6= ω(j)) (ω is self avoiding).



We say that two amino acids si and sj of a given folding ω are connected neighbors
if j = i±1 and that they are topological neighbors if they are not connected and
|ω(i)− ω(j)| = 1.
In the HP model, the energy of a folding is given by the opposite of the number
of topological HH neighbors, e.g., if there exist k topological HH neighbors in ω,
then the energy of ω is −k.

Definition 2 (Folding Energy). Given a sequence s = s0 . . . sn, the energy of
a folding of s is:

E =
∑

1≤i+1<j≤n

Bi,j · δ(si, sj)

where Bi,j is equal to −1 whenever both si and sj are H amino acids, 0 otherwise,
and δ(si, sj) is 1 if si and sj are topological neighbors, 0 otherwise.

Hence, a folding has minimum energy if it maximizes the number of HH contacts.
Given a sequence s = s0 . . . sn, we assume its length to be n, i.e., it is equal to
the number of “segments” it is made of. To represent the conformations of a
sequence of length n, we use the subset L = {(i, j) : i ∈ [0, 2n], j ∈ [0, 2n]} of
N2.
Without loss of generality, we assume ω(0) = (n, n) and, in order to avoid simple
symmetries, we fix ω(1) = (n, n + 1).
Notice that, once the coordinates of a segment have been fixed, the next seg-
ment in the sequence can only assume three possible directions with respect to
the preceding one: left (l), forward (f ), and right (r). As a result, a folding of
a sequence of length n can be represented as a string of length n − 1 on the
alphabet {l, f, r} 1. As an example, the sequence of Figure 1 is represented by
the string rllf.

./figure/string.1

Fig. 1. String rllf on 10 × 10 lattice.

1 To avoid symmetries it is possible to consider only strings with prefixes of the form
f∗r.



The number of all possible foldings of a sequence of length n, where the
orientation of the first segment is fixed as above, is bounded by 3n−1. It is
commonly accepted that the number Cn of self-avoiding walks of length n grows
according to the following formula Cn = B ·µn ·nγ−1, where B ∼ 1.93, µ ∼ 2.63,
and γ = 43/32 [13], and thus the number of self-avoiding walks of length n, where
the orientation of the first segment is fixed, is Dn = Cn/4. In [15] Ngo and Marks
have shown that protein folding problem on 2D-lattices is NP-complete.

Now we formally define the set of valid transformations among foldings.
Roughly speaking, a valid transformation of a given folding f consists in se-
lecting at random a position in f and performing a rotation of the part of f
between this position and the ending position (pivot move).

Definition 3 (Pivot move). Let f = f2 . . . fn, with fi ∈ {l, f, r} for all 2 ≤
i ≤ n, be a folding of a sequence s of length n. A folding f ′ of s is obtained from
f through a pivot move with pivot k− 1, with 2 ≤ k ≤ n, if f ′i = fi for all i 6= k
and f ′k 6= fk.

Given a folding of a sequence of length n, since the number of possible pivots
is n− 1 and each one may give rise to two moves, i.e., rotations, the number of
successor foldings is at most 2(n−1) (some of these conformations could violate
the self avoiding condition). As an example, consider the sequence of length 4
whose folding is represented by the string ffl. The foldings obtained by pivot
moves are the 6 foldings lfl, rfl, fll, frl, fff, ffr. They are graphically depicted in
Figure 2. It is possible to show that pivot moves are ergodic, namely, they cover
the entire folding space [5].

./figure/move.1

Fig. 2. Pivot moves from string ffl.



3 Protein transition systems

In this section we propose an approach to the formal verification of interesting
protein conformation properties based on model checking [4]. Model checking al-
lows one to verify desirable properties of a system by an exhaustive enumeration
of all the states reachable by the system. We model the set of protein foldings
and their relationships as a finite transition system and we use (linear or branch-
ing) propositional temporal logic to specify relevant system properties [9, 17].

Definition 4 (Transition System). Let AP be a set of atomic propositions.
A transition system over AP is a tuple M = (Q,T, L), where

– Q is a finite set of states;
– T ⊆ Q×Q is a total transition relation, that is, for every state q ∈ Q there

is a state q′ ∈ Q such that T (q, q′);
– L : Q → 2AP is a labeling function that maps every state into the set of

atomic propositions that hold at it.

The 2D Protein Transition System is defined as follows:

Definition 5 (2D Protein Transition System). The 2D Protein Transition
System of a string P of length n over {0, 1} is a tuple MP = (Q, T, L), where

– Q is the set of all foldings of length n on the 2n× 2n 2D lattice;
– T ⊆ Q×Q contains the pairs of states (q1, q2) such that q2 can be obtained

from q1 by a pivot move;
– L : Q → 2AP is a labeling function over the set AP of atomic propositions

which consists of the following 3(n-1) predicates
2nd l, . . . , nth l, 2nd f, . . . , nth f, 2nd r, . . . , nth r,

plus the following three predicates
min en, inter en, max en,

where for all 2 ≤ i ≤ n, the predicate ith l (resp., ith f , ith r) holds at a
state q if the i-th segment of q has a left (resp., forward, right) orientation
and min en (resp., inter en, max en) holds at a state q if the energy of q
is minimum (resp., intermediate, 0).

It is possible to prove that the 2D Protein Transition System corresponding to
a given protein has the following properties.

Proposition 1 (Properties of the 2D Protein Transition System).

1. It is strongly connected, i.e., for each pair of states q1 and q2, there is a
path from q1 to q2.

2. It is symmetric, i.e., for each pair of states q1 and q2, if (q1, q2) belongs to
T , then (q2, q1) belongs to T.

3. The maximum incidence degree D=maxq∈Q |{(q, q′) : (q, q′) ∈ T}| is 2(n-1).



Item 1 of Proposition 1 holds since pivot moves are ergodic [5]. Item 2 of Propo-
sition 1 holds because, if state q2 can be obtained from state q1 performing a
pivot move, then q1 can be obtained from q2 performing the opposite move. Item
3 immediately follows from Definition 3.

As far as the energy of a protein is concerned, from our experimental results
it turns out that the majority of states has a high energy and that only a few
states have minimum energy. Furthermore, the value of the energy difference
between the source and destination nodes of most edges is 0.

4 Model checking properties of proteins

Temporal logics are formalisms for describing sequences of transitions between
states. We restrict our attention to two well-known fragments of the computation
tree logic CTL∗, namely, the branching time logic CTL and the linear time logic
LTL [9]. CTL∗ formulae describe properties of computation trees and they are
obtained by (repeatedly) applying Boolean connectives, path quantifiers, and
state quantifiers to atomic formulae. The path quantifier A (resp., E) can be
used to state that all paths (resp., some path) starting from a given state have
some property. The state quantifiers are the next time operator X, which can be
used to impose that a property holds at the next state of a path, the operator F
(sometimes in the future), that requires that a property holds at some state on
the path, the operator G (always in the future), that specifies that a property
is true at every state on the path, and the until binary operator U, which holds
if there is a state on the path where the second of its argument properties holds
and, at every preceding state on the path, the first of its two argument properties
holds.

CTL allows one to quantify over the paths starting from a given state. Unlike
CTL∗, it constrains every state quantifier to be immediately preceded by a path
quantifier. In LTL one may only describe events along a single computation path.
Its formulae are of the form Af , where f does not contain path quantifiers, but
it allows the nesting of state quantifiers. CTL and LTL have different expressive
powers [9]. We chose to use both of them to benefit from their advantages. On
the one hand, the complexity of model checking for CTL is linear in the number
of states and edges of the transition system, while the model checking problem
for LTL is PSPACE-complete. Furthermore, there are many tools for checking
if finite state systems satisfy CTL formulae (see, e.g., SMV [14]). On the other
hand, algorithms for on-the-fly model checking, a technique that allows one to
contrast the state explosion problem trying not to build the entire transition
system, mainly deals with LTL formulae. As a matter of fact, all the relevant
properties of Protein Transition Systems we identified belong to the intersection
of CTL and LTL.

Given a 2D Protein Transition System MP = (Q,T, L) and a temporal logic
formula f expressing some desirable property of the system, the model checking



problem consists in finding the set of all states in Q satisfying f :

JfK = {q ∈ Q : MP , q |= f}.

When a state does not satisfy a formula, model checking algorithms produce a
counterexample that falsifies it, thus providing an insight to understand failure
causes and important clues for fixing the problem.

We conclude the section by showing how meaningful properties of 2D Protein
Transition Systems can be encoded in both CTL and LTL.

F1: Does it exist a path of length at most k that reaches a state with mini-
mum energy?
CTL:min en ∨ EXmin en ∨ · · · ∨ EX . . . EX︸ ︷︷ ︸

k

min en ≡∨k
i=0 E1X1 . . . EiXimin en.

LTL: A(¬min en ∧X¬min en ∧XX¬min en ∧ · · · ∧X . . . X︸ ︷︷ ︸
k

¬min en) ≡

A(
∧k

i=0 X1 . . . Xi¬min en).

Notice that the property expressed in LTL actually is the negation of prop-
erty F1. However, it is sufficient to complement the set of states that satisfy this
property to obtain the set of states satisfying F1.

F2: Is energy the minimum one? Alternatively, if energy is the maximum one, is
it possible to reach a state with minimum energy without passing through states
with intermediate energy?
CTL, LTL: A(max en U min en).

F3: Is it possible to reach in one step a folding where the first half of the
sequence is a helix of the form rrllrr . . . ?
Here we must distinguish between the case in which m = bn/2c is even and that
in which it is odd.
If m is odd, we have:
CTL: EX(

∧m−1
i=2,i=2+4·j,j≥0(ith r∧i+1th r)∧

∧m−1
i=4,i=4+4·j,j≥0(ith l∧i+1th l)).

LTL: AX(
∨m−1

i=2,i=2+4·j,j≥0(¬ith r ∨ ¬i + 1th r) ∨∨m−1
i=4,i=4+4·j,j≥0(¬ith l ∨ ¬i + 1th l)).

If m = 2 + 4 · j, j ≥ 0, we have:
CTL: EX(

∧m−1
i=2,i=2+4·j,j≥0(ith r∧i+1th r)∧

∧m−1
i=4,i=4+4·j,j≥0(ith l∧i+1th l)∧

mth r).

LTL: AX(
∨m−1

i=2,i=2+4·j,j≥0(¬ith r ∨ ¬i + 1th r) ∨∨m−1
i=4,i=4+4·j,j≥0(¬ith l ∨ ¬i + 1th l) ∨ ¬mth r).



If m = 4 + 4 · j, j ≥ 0, we have:
CTL: EX(

∧m−1
i=2,i=2+4·j,j≥0(ith r∧i+1th r)∧

∧m−1
i=4,i=4+4·j,j≥0(ith l∧i+1th l)∧

mth l).

LTL: AX(
∨m−1

i=2,i=2+4·j,j≥0(¬ith r ∨ ¬i + 1th r) ∨∨m−1
i=4,i=4+4·j,j≥0(¬ith l ∨ ¬i + 1th l) ∨ ¬mth l).

F4: Is it true that every state which is at most k steps far from the current
one has maximum energy, i.e., energy equal to 0?
CTL: max en ∧AXmax en ∧ · · · ∧AX . . . AX︸ ︷︷ ︸

k

max en ≡∧k
i=0 A1X1 . . . AiXimax en.

LTL: A(max en ∧Xmax en ∧ · · · ∧X . . . X︸ ︷︷ ︸
k

max en) ≡

A(
∧k

i=0 X1 . . . Ximax en).
In the next section we report the outcomes of some experiments where we

model checked these (and other) properties on proteins of small dimension.

5 Experimental results and future developments

We implemented the proposed approach to the verification of properties of fold-
ings in SICStus Prolog and we experimented it on some simple test cases. More
precisely, we developed an algorithm for encoding 2D Protein Transition Sys-
tems, and then we implemented model checking algorithms to verify whether
some specific 2D Protein Transition Systems satisfy or not a set of relevant
properties, including F1-F4. We confined ourselves to test cases where protein
length was at most 10. As for F1, for instance, we searched for states with
energy equal to 0 that satisfy property F1 when k = 1, i.e., states with max-
imum energy that reach in one step a state with minimum energy. For n=8,
given the string 111111111, where min en = −4, it came out that only 8
states fulfil the request. They are (every state is followed by the state testi-
fying the satisfiabily of the property): lrflflf → llf lf lf , lfflflf → llf lf lf ,
rlfrfrf → rrfrfrf , rffrfrf → rrfrfrf , flflfrl → flflfll, flflffl →
flflfll, frfrflr → frfrfrr, and frfrffr → frfrfrr. Similar experiments
were performed in the cases of properties F2-F4. We used our tool to model
check a number of other meaningful properties. As an example, we used it to
check whether there exist states with an energy different from the minimum one
that may reach in one step a state with a greater energy which, in its turn, may
reach in a few steps (how many, it depends on the length of the protein) a state
with minimum energy. The answer is positive. For example, for n=7, given the
string 11111111, where min en = −3, the following state satisfies the property
(the entire witness path is reported and every state is followed by its energy):
lrlf ll(−2) → lrlffl(0) → lrllf l(−3). The existence of such paths shows that,



in order to decrease the number of edges of the 2D Protein Transition System,
it is not sound to cut edges connecting states where the source energy is lower
than the destination energy because from the destination state we could rapidly
reach states with minimum energy.

As for the future developments of our work, one of the main issues of model
checking is the state explosion problem. In our case, a protein of length n gives
rise to a transition system where the number of states is Θ(3n−1). This leads to
both time and space problems. On-the-fly model checking [6, 10] has been pro-
posed to cope with the state explosion problem. This approach in many cases
avoids the construction of the entire state space of the system, because the prop-
erty to test guides the construction of the system. When a state falsifying the
property under analysis is reached, the construction is stopped. Only in the worst
case (when the property is satisfied) the entire system must be built. Exploiting
on-the-fly model checking, we plan to apply our approach to proteins with a
significant length.
Another technique proposed to control the state-explosion problem is symbolic
model checking [14, 4]. Symbolic model checking is based on the use of Ordered
Binary Decision Diagrams (OBDDs) to compactly represent transition systems.
In the worst case, the OBDD and the represented system have the same size.
However, this is usually not the case when the transition system has some “reg-
ularities”. We intend to study what happens if we use OBDDs to represent 2D
Protein Transition Systems and, if possible, to exploit symbolic model checking
techniques.
Finally, we plan to extend our approach to 3D-lattices and to switch to an energy
model that considers all the 20 kinds of aminoacids. In this context we intend to
analyse the usefulness of our approach not only for the protein folding problem,
but more in general for the study of folding/energy landscapes of proteins.
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