
An automaton-based approach to the verification of timed workflow schemas

Elisabetta De Maria, Angelo Montanari, Marco Zantoni
University of Udine, Italy

{demaria,montana,zantoni}@dimi.uniud.it

Abstract

Nowadays, the ability of providing an automated sup-
port to the management of business processes is commonly
recognized as a main competitive factor for companies. One
of the most critical resources to deal with is time, but, un-
fortunately, the time management support offered by most
workflow systems is rather limited. In this paper we focus
our attention on the modeling and verification of workflows
extended with time constraints. We propose timed automata
as an effective tool to specify timed workflow schemas and
to check their consistency.

1. Introduction

Nowadays, workflow system ability of providing an au-
tomated support to the management of business processes is
widely recognized as a main competitive factor for compa-
nies [17]. There exist sophisticated tools for the specifica-
tion and validation of workflow schemas, that allow one, for
instance, to detect inconsistencies in process constraints and
to identify process bottlenecks, as well as tools for monitor-
ing and managing process execution. One of the most crit-
ical resources to deal with is time. Unfortunately, the time
management support offered by most workflow systems is
rather limited. The few existing approaches are all based
on graph-theoretic techniques [4, 6, 11, 13, 14, 15], that ba-
sically extend workflow graphs by embedding time-related
information about activities into graph activity nodes and/or
by adding time edges that express time constraints between
activities.

One of the most elaborated approaches to timed work-
flow schema is the one proposed by Eder et al. in a series
of papers [6, 7, 8] (a similar approach has been followed
by Sadiq et al. [15]). It exploits an extension of the Crit-
ical Path Method, commonly used in project planning, to
associate a range of possible execution durations with every
activity. Moreover, different scenarios are taken into ac-
count by introducing conditional and optional activities. For
every scenario, the algorithm computes the earliest time at
which a given activity can terminate and the latest time at

which it can terminate to guarantee minimal execution time
for the whole process. Times associated with the last ac-
tivity to be executed (without loss of generality, we may
assume that there exists a single final activity) give infor-
mation about the duration of the whole process. By com-
paring time information associated with the internal activ-
ity nodes with information about the duration of the whole
process one can detect execution paths that may lead to time
violations. The authors outline a number of techniques to
reason about timed workflow graphs at build time, instan-
tiation time, and execution time. In particular, they present
an algorithm for consistency checking at build time which
looks for a workflow execution that satisfies all time con-
straints. A different solution to the problem of checking
the consistency (schedulability) and boundedness of work-
flow schemas extended with time constraints has been re-
cently proposed by Li et al. [11]. To deal with timed work-
flows, they refine Petri-nets into Timing Constraint Work-
Flow nets (TCWF nets) and they solve the schedulability
and boundedness problems for a meaningful class of TCWF
nets (acyclic and free-choice). As a matter of fact, the only
external time constraints they consider are those between
events that terminate activities and events that initiate their
successor activities.

In this paper we focus our attention on the modeling and
verification of workflows extended with time constraints.
We propose timed automata as an effective tool to specify
workflow schemas with time constraints and to check their
consistency [12]. More precisely, we reduce the consistency
problem for these workflow schemas to the emptiness prob-
lem for timed automata, making it possible to exploit the
machinery developed to solve the latter to address the for-
mer. Furthermore, we take advantage of such a reduction
to solve other relevant problems, such as, for instance, the
problem of checking whether there exists an execution of a
consistent workflow that satisfies some specific conditions
(e.g., passing through some specific subpaths). From a tech-
nical point of view, we first show how the basic workflow
constructs for activity composition can be rendered in terms
of the automata operations of concatenation, union, product,
and intersection. Then, we show how the time constraints of

a timed workflow schema can be encoded into constraints
on the finite set of real-valued clocks of a timed automa-
ton. Putting together these two ingredients, we define a
translation algorithm that maps a large class of timed work-
flow schemas into a decidable class of timed automata. Fi-
nally, we apply the proposed approach to a concrete exam-
ple. Possible extensions to the proposed solution are briefly
discussed in the conclusions.

2. Workflow schemas with time constraints

A workflow is a collection of activities, agents, and de-
pendencies between activities [6, 7, 8]. Activities corre-
spond to individual steps in a business process, agents (soft-
ware systems or humans) are responsible for the enactment
of activities, and dependencies determine the execution se-
quence of activities and the data flow between them. Ac-
tivities can be executed sequentially, repeatedly in a loop,
or in parallel. Parallel executions can be unconditional (all
activities are executed), conditional (only activities that sat-
isfy a certain condition are executed) or alternative (only
one activity among several alternative ones is executed). In
addition, workflows may contain optional activities (activi-
ties that may be executed or not). Workflows can naturally
be modeled as graphs, whose nodes represent activities and
whose edges capture dependencies between activities. An
and-split denotes an activity with two or more immediate
successor activities, all of which are executed in parallel.
A conditional split denotes an activity whose immediate
successor activities to be executed (one or more) are deter-
mined by evaluating some Boolean expression. An or-split
denotes an activity whose immediate successor activity to
be executed (exactly one) is chosen according to workflow
policies. An example of a workflow graph is given in Fig-
ure 1. First, activity A takes place; then either B or C are
executed (or-split). D is followed by E, F, or both E and F
(conditional split). E is followed by L, and G is possibly
executed in between E and L (G is optional). F is followed
by H and I, which are executed in parallel once F has been
completed (and-split). When both H and I terminate, M
starts its execution. N is the final activity. Then, the whole
process is repeated.

The control structure of the workflow implicitly defines
a number of (qualitative) time constraints, called structural
time constraints, which constrain an activity to start only
when its predecessor activities have been completed. Ex-
plicit (qualitative or quantitative) time constraints can be
added to take into account time restrictions on activities im-
posed by organizational rules, laws, and commitments. Ex-
plicit time constraints can be associated with the start or the
end of an activity A2 to constrain the time elapsed from the
start or the end of an activity A1. As an example, if we
assume that A1 takes place before A2, by constraining the

time elapsed from the end of A1 when A2 starts, we can
impose a condition on the delay between A1 and A2. If we
take A1 = A2, by constraining the time elapsed from the
start of A1 when A1 ends, we can impose a condition on the
duration of A1. Explicit time constrains can also be used to
constrain the start of an activity A3 to the temporal order or
temporal distance between the start or the end of two (other)
activities A1, A2. To express these constraints, we associate
two events, called start and end events, with an activity,
which respectively initiate and terminate the activity. Fol-
lowing Eder et al. [7], we assume the duration of an activity
to be deterministic (it can be viewed as the expected execu-
tion duration) and expressed in some basic time unit, and we
consider only constraints between the occurrence times of
end events. In such a way, the time elapsing between the ex-
ecution of two activities and the variations in the duration of
an activity can be dealt with in a uniform way. Both the case
in which an activity is delayed/anticipated with respect to its
scheduled time and the case in which it takes longer/shorter
than its expected duration can indeed be modeled by con-
straining the temporal relations between its end time and
the end times of the preceding activities.

Figure 1. A workflow graph

We distinguish two basic kinds of explicit time con-
straints that link a source event s (the end of an activity) to
a destination event d (the end of another activity), namely,
the lower-bound (resp., upper-bound) constraint lbc(s,d,δ)
(resp., (ubc(s,d,δ)). The lower-bound (resp., upper-bound)
constraint states that the time distance between s and d must
be greater (resp., smaller) than or equal to δ time units. Ex-
plicit time constraints can also be used to express the condi-
tion of a conditional (parallel) composition of two or more
activities. As an example, they allow one to select the activ-
ities to be executed depending on whether a given activity
started its execution before another activity or not.

3. Timed automata

Timed automata are one of the most widely used for-
malisms for the specification and verification of real-time
systems. They have been introduced by Alur and Dill in
[2], where decidability results for some meaningful classes

of them are provided. Most contributions focus on timed
automata over infinite words, but all results can be easily
transferred to the finite case. In the following, we summa-
rize the main features of timed automata (a detailed presen-
tation can be found in [2]).

Definition 1 A time sequence τ = τ1τ2 · · · is a sequence
of time values τi ∈ R+ such that (i) τ increases strictly
monotonically, that is, for all i ≥ 1 τi < τi+1 (monotonic-
ity) and (ii) for every t ∈ R+, there is some i ≥ 1 such that
τi ≥ t (progress). A timed word over an alphabet Σ is a
pair (σ, τ), where σ = σ1σ2 · · · is a word over Σ and τ is
a time sequence over R+. A timed language over Σ is a set
of timed words over Σ.

The timed word (σ, τ) can be viewed as an input to an
automaton, which presents the symbol σi (an event occur-
rence) at time τi (its occurrence time). Language-theoretic
operations, such as intersection, union, and complementa-
tion, are defined as usual. In addition, we define an Untime
operation which projects a time word (σ, τ) on its first com-
ponent.

Timed automata are obtained from classical ones by
adding a finite set of real-valued clock variables (clocks for
short). The vertices of the graph are called locations and
the edges are called switches. While switches are instan-
taneous, time can elapse in a location. All the clocks in-
crease at a uniform rate counting time with respect to a fixed
global time. When transitions take place, clocks can possi-
bly be reset, that is, their values can be set to zero. The
value of a clock at any instant thus equals the time elapsed
since the last time it was reset. We associate a clock con-
straint with each switch and we require that the switch may
be taken only if the current values of the clocks satisfy the
constraint. We also associate a clock constraint with each
location, called its invariant, and we require that time can
elapse in a location only as long as its invariant stays true.

Definition 2 For a given set X of clock variables, the set
Φ(X) of diagonal-free clock constraints δ is defined induc-
tively by δ ::= x ∼ c | ¬δ | δ1 ∧ δ2, where x is a clock in
X , c is a constant in Q, and ∼∈ {<,≤,=, 6=,≥, >}.

A clock interpretation ν for a set X of clocks assigns a real
value to each clock. We say that a clock interpretation ν
for X satisfies a clock constraint δ over X iff δ evaluates to
true under the interpretation ν. For t ∈ R, t + ν denotes the
clock interpretation which maps every clock x to the value
t + ν(x), while the clock interpretation t · ν assigns to each
clock x the value t·ν(x). For Y ⊆ X , [Y 7→ t]ν denotes the
clock interpretation for X which assigns t to each x ∈ Y
and agrees with ν over X \ Y .

Definition 3 A timed automaton A is a tuple
〈S, S0,Σ, C, I, E, F 〉, where S is a finite set of locations,

S0 ⊆ S is a set of initial locations, Σ is an input alphabet,
C is a finite set of clocks, I is a mapping from S to a set of
clock constraints Φ(C), E ⊆ S × S ×Σ× 2C ×Φ(C) is a
set of switches, and F ⊆ S is a set of final locations.

For any location s, I specifies the time constraints that must
be satisfied to remain in s (invariant set). As soon as an
invariant is violated due to the elapse of time, we must exit
the location. A switch 〈s, s′, a, λ, δ〉 represents a transition
from location s to location s′ on input symbol a; the set
λ ⊆ C specifies the clocks to be reset by the transition,
while δ is a clock constraint over C that specifies when the
switch is enabled.

Definition 4 A run r of a timed automaton A =
〈S, S0,Σ, C, I, E, F 〉 over a timed word (σ, τ), denoted by
(s, ν), is a sequence of the form

r : 〈s0, ν0〉
σ1−→
τ1

〈s1, ν1〉
σ2−→
τ2

〈s2, ν2〉
σ3−→
τ3

· · · ,

where for all i ≥ 0, si ∈ S, and the clock interpretation νi

is a mapping from C to R such that (i) s0 ∈ S0 and ν0(x) =
0 for all x ∈ C (initiation) and (ii) for all i ≥ 1, there is an
edge (si−1, si, σi, λi, δi) in E such that νi−1 + (τi − τi−1)
satisfies δi and νi equals [λi 7→ 0](νi−1 + (τi − τi−1))
(consecution).

A run r over an infinite timed word is accepting iff Inf(r)∩
F 6= ∅, where Inf(r) is the set of locations through which
the computation passes infinite times. In the finite case, r
is accepting if it starts at an initial location and it ends in a
final one. A timed word w is accepted by A is there exists
an accepting run of A on w. The language of A, denoted by
L(A), is the set of accepted timed words.

Theorem 1 The class of timed automata / languages is
closed under concatenation, union, intersection, and prod-
uct (the locations of the product automaton are obtained by
pairing locations of the component automata, the location
invariants are the conjunction of the invariants of the com-
ponent locations, and the switches are obtained by properly
merging pairs of switches of the component automata).

We restrict our attention to deterministic timed automata
which have one run over a given timed word. The empti-
ness problem for a deterministic timed automaton A is the
problem of checking whether L(A) is empty or not. The
next theorem proves that such a problem is decidable [1].

Theorem 2 Let A be a deterministic timed automaton,
whose clock constraints only compare clocks with con-
stants. The emptiness problem for L(A) is PSPACE-
complete.

In [3], Bouyer et al. propose a natural extension of Alur
and Dill’s deterministic timed automata that allows one to
update the clock value in a more general way than simply
reset it to 0 and it generalizes the set of admissible clock
constraints according to the following definition.

Definition 5 Given set X of clock variables, the set Φ(X)
of generic clock constraints δ is defined inductively by δ ::=
x ∼ c | x − y ∼ c | ¬δ | δ1 ∧ δ2, where x, y are clocks in
X , c is a constant in Q, and ∼∈ {<,≤,=, 6=,≥, >}.

They prove that the addition of simple resets, such as x := c
and x := y, with c ∈ Q+ and x, y ∈ X , and generic clock
constraints preserves PSPACE-completeness. In the next
section, we will take advantage of generic clock constraints
to express the conditions of conditional (parallel) composi-
tions.

4. From workflow schemas to timed automata

In this section we show how to reduce the problem of
consistency checking for timed workflow schemas (as well
as other relevant problems) to the emptiness problem for de-
terministic timed automata with generic clock constraints:
given a timed workflow schema, we map it into a timed
automaton such that workflow constraints are satisfiable if
and only if the language recognized by the automaton is not
empty. Details of the reduction are given in [12]. As a pre-
liminary step, we introduce some basic notions.

Definition 6 (Workflow schema) Given a set of activities
Act, a workflow schema W on Act consists of a directed
graph 〈N,E〉, where N ⊆ Act and E ⊆ N ×N , and a set
of temporal constraints C. N identifies the set of relevant
activities and it includes an initial activity I and a final one
F ; E defines the dependencies between activities. W can
be inductively defined as follows:

• Base case. W = 〈{A}, ∅〉, where A ∈ Act (single
activity) and I = F = A.

• Inductive step (in the following, we denote by Ii and Fi

the initial activity and the final activity of a workflow
schema Wi).

- Sequential composition. W =; (I,W1,W2, F) is the
concatenation of the workflow schemas W1 and W2,
where I = I1, F = F2, and if F1 6= I2, then there
exists an edge from F1 to I2.
- Parallel composition. W = ||(I,W1,W2, F) is the
parallel composition of the workflow schemas W1 and
W2, where there exists an edge from I to I1 (resp. I2)
and there exists an edge from F1 (resp. F2) to F .
- Alternative composition. W = |(I,W1,W2, F) is
the alternative composition of the workflow schemas

W1 and W2, where there exists an edge from I to I1

(resp. I2) and there exists an edge from F1 (resp. F2)
to F . The edges which exit from I are marked as alter-
native ones.
- Conditional (parallel) composition. W =
||C(I,W1,W2, F) is the conditional (parallel) compo-
sition of the workflow schemas W1 and W2, where C
is a Boolean condition, there exists an edge from I to
I1 (resp. I2), and there exists an edge from F1 (resp.
F2) to F . The edges which exit from I are marked by
the condition C. Conditions can be either temporal
or atemporal. Temporal conditions allow one to check
the temporal order or the temporal distance between
the start/end of pairs of activities.
- Optional workflow. W = O(W1), where W1 is a
workflow schema.
- Repetition. W = ∗(I,W1, F) is the repetition of the
workflow schema W1 (0 or more times), where I = I1,
F = F1, and there exists an edge from F to I .

C specifies a (deterministic) duration for every activity and
a set of lower/upper bound constraints between the ends of
pairs of activities.

Note that, without loss of generality, we defined
composition operators on pair of activities (to obtain
more compact definitions of workflow schemas, we can
generalize them to cope with more than two activities)
and we assumed the existence of exactly one initial
activity and one final activity. The workflow schema
in Figure 1 can be encoded by the expression W =
∗(A, ; (A, |(A,B, C, D), ||C(D, ; (E,E,O(G), L, L),
||(F,H, I,M), N), N), N).

Definition 7 (Workflow schema consistency) Given a
workflow schema W with activity set N , a workflow
instance I of W is a list of pairs (Ai, ei), where, for every
1 ≤ i ≤ |N |, Ai ∈ N and ei is its ending time with respect
to the workflow beginning time. Pairs in I are first ordered
by topological order and then by their second component.
A timed workflow schema W is consistent if and only if
there exists an instance of W which satisfies all temporal
constraints.

Let W be the set of timed workflow schemas built up
according to Definition 6 and let CA be the set of determin-
istic timed automata with generic clock constraints. The al-
gorithm Translation(W,A), with W ∈ W andA ∈ CA, de-
fines a mapping τ : W → CA such that, for each W ∈ W ,
W is consistent iff L(τ(W)) 6= ∅ (see Theorem 3 below).

We assume the names of both workflow activities and
automaton locations to be pairwise disjoint. Furthermore,
for all A ∈ N , we denote by A.d the duration of A. Finally,
we introduce the following notion of macro-label.

Definition 8 (Macro-label) A macro-label is a set of
atomic labels of the forms aS (the beginning of activity A),
aE (the end of A), CS (the beginning of a conditional com-
position with condition C), and CE (the end of a condi-
tional composition with condition C).

Translation(W,A) consists of two main procedures.
The first one, Automation(W,S), maps W into a pseudo-
automaton S (devoid of initial and final locations), which
features (at least) one location labeled by A for every activ-
ity A, and models temporal delays by means of clock con-
straints and additional waiting locations. It works induc-
tively and calls the procedure Constrain(T, S) in order to
encode lbc and ubc. The second one, Completion(S,A),
turns the pseudo-automaton S into a timed automaton A by
defining initial and final locations.

Algorithm 1 Automation(W,S)
1: CASE OF
2: W ∈ N → Base(W,T); //structural constraints
3: W = ◦(W1, . . . ,Wn) → Cseq(W1, . . . ,Wn, T);
4: W = ||(W1, . . . ,Wn) → Cpar(W1, . . . ,Wn, T);
5: W = |(W1, . . . ,Wn) → Calt(W1, . . . ,Wn, T);
6: W = |C(W1, . . . ,Wn) →Ccond(W1, . . . ,Wn, C, T);
7: W = ∗(W1) → Rep(W1, T).
8: ENDCASE
9: Constrain(T, S). //explicit constraints

As a preliminary step, we rewrite the workflow schema
expression in a more compact way. Such a rewriting will
simplify the synthesis of the algorithm Translation. The
alternative notation we propose uses ‘◦’ to denote a gener-
alized sequential composition, ‘||’ for the parallel composi-
tion (of two or more branches), ‘|’ for the alternative com-
position (of two or more branches), ‘||C’ for the conditional
(parallel) composition (of two or more branches), ‘O’ for
an optional activity, and ‘∗’ for repetitions. A generalized
sequential composition can be either a sequential compo-
sition of two or more activities (previously denoted by ;),
or the connection of an activity to two or more immediate
successor activities (split) or the connection of two or more
activities to an immediate successor one (join). As an ex-
ample, the workflow schema of Figure 1 can be expressed
as follows: W = ∗(◦(A, |(B,C), D, ||C(◦(E,O(G), L),
◦(F, ||(H, I),M)), N)).

Activity. The procedure Base(W,T) deals with the case
of a single activity A. Given an activity A, with duration
A.d, we constrain the pseudo-automaton T to remain in the
location A exactly A.d time units.

Sequential composition. The sequential composition of
two workflow schemas is dealt with by inserting a waiting
location between the corresponding automata, which ac-
counts for the temporal delay between the end of the first

process and the beginning of the second one. The gener-
alization to n workflows is immediate. The treatment of
sequential composition is exemplified in Figure 2.

Parallel composition. The parallel composition of two
(resp. n) workflow schemas is captured by the prod-
uct of the corresponding automata. To avoid undesired
clashes, we constrain the sets of clocks of the two (resp.
n) component automata to be disjoint. Given Ai =
〈Si, S

0
i ,Σi, Ci, Ii, Ei, Fi〉, where, for 1 ≤ i ≤ n, Σi is a

set of macro-labels, the product automaton ‖Ai is defined
as follows:

‖Ai =

(
n∏

i=1

Si,
n∏

i=1

S0
i ,

n∏
i=1

Σi,
n⋃

i=1

Ci, I, E,
n∏

i=1

Fi

)
, with

- I(s1, . . . , sn) =
∧n

i=1 Ii(si);

- each switch e ∈ E is labeled by a set of macro-labels
{Aj1 , . . . , Ajk

} ⊆ {A1, . . . , An} ∈
∏n

i=1 Σi;

- if e = ((l1, . . . , ln), (m1, . . . ,mn), {Aj1 , . . . , Ajk
},

λ, φ) is a switch exiting from (l1, . . . , ln), then
- if Ai ∈ {Aj1 , . . . , Ajk

}, then there exists a switch
from li to mi in Ai labeled by Ai, otherwise mi = li;
- λ is

⋃
Aji

∈{Aj1 ,...,Ajk
} λji

, where λji
is the set of

clocks to be reset in correspondence of the switch from
lji to mji labeled by Aji in Aji ;
- φ is

∧
Aji

∈{Aj1 ,...,Ajk
} φji

, where φji
is the clock

constraint associated with the switch from lji
to mji

labeled by Aji
in Aji

.

Figure 2. The sequential case

The resulting product automaton captures all possible
parallel executions of the different branches.

Figure 4 contains a workflow schema with a parallel
structure and the corresponding product automaton. Ob-
serve that, in the product automaton, for each location of
the form (l1, l2), where both l1 and l2 are not final locations,
there are three switches exiting from it: the switch labelled
by a symbol belonging to the first automaton, the one la-
belled by a symbol belonging to the second automaton, and
the one containing a couple of symbols.

Alternative composition and optional activity. If the
workflow schema contains an alternative composition and

we are only interested in the existence of a consistent ex-
ecution, without minding which alternative is chosen, we
can proceed as follows. The algorithm first generates an
automaton for each alternative branch; then, it introduces
a waiting location and connects it to the initial locations
of the automata; finally, it introduces another location and
connects the final locations of the automata to it. In such a
way, the problem of establishing the existence of a consis-
tent alternative in the given workflow can be reduced to the
emptiness problem for the resulting automaton. The treat-
ment of alternative composition is exemplified in Figure 3.
Later, we will show how to solve the problem of checking
whether a specific alternative is consistent (see forcing au-
tomata below). The case of optional activities can be easily
reduced to the case of alternative composition. It suffices,
as a preliminary step, to replace the branch including the
optional activity by two alternative branches, one including
the optional activity, the other excluding it, and then to pro-
ceed as in the case of alternative composition.

Figure 3. The alternative case

Conditional composition. In the case of conditional
composition, the choice of the branches to follow depends
on the current state of the specific workflow instance at run
time. Let φ be the Boolean condition whose truth value de-
termines the set of branches to follow. At build time, we
partition the set of conditional branches into two sets: a set
B1, including all branches to execute in case φ is true, and a
set B2, including all branches to execute if it is false. Next,
we build an automaton for every branch in B1 and then we
combine them into a product automaton PB1 . We do the
same with B2. Finally, we merge the product automata PB1

and PB2 , as in the case of alternative composition, and we
add the constraint φ (resp. ¬φ) to the switch entering the
initial location of PB1 (resp. PB2). In addition, we add
the label CS (start of conditional) to the switches entering
the first location of PB1 and PB2 and the label CE (end of
conditional) to the switches exiting from the last location
of PB1 and PB2 . Condition φ can be of temporal nature.
As an example, consider a workflow schema containing a
conditional composition whose condition φ checks whether
the activity A started its execution before the activity B or
not (in the schema both A and B precede the conditional

composition). If x (resp. y) is the clock which has been
reset at the beginning of activity A (resp. B), the temporal
constraint to add to the switch entering the initial location
of PB1 (resp. PB2) is x > y (resp. x ≤ y). As in the case
of alternative composition, forcing automata can be used to
check the existence of a consistent execution in case φ turns
out to be true (resp. false).

Repetition. The repetition of a workflow schema is dealt
with by connecting the last location of the corresponding
automaton to the first one and inserting a waiting location
between them in order to let time elapse between an execu-
tion and the following one.
It is possible to prove that (the proof is by induction on the
structure of the workflow schema):

Theorem 3 For all W ∈ W , W is consistent iff
L(τ(W)) 6= ∅.

To check the existence of workflow instances passing
through a specific branch, we can take advantage of an aux-
iliary automaton, that we call forcing automaton. (Notice
that, to force one workflow instance to pass through a given
alternative or conditional branch, it suffices to force it to
pass through the first activity of that branch.) Given a work-
flow schema W , we first build the corresponding timed au-
tomaton A by means of Translation(W,A). Then, we build
an auxiliary automaton B that only recognizes workflow in-
stances passing through the desired branch. Finally, we in-
tersect A and B. In such a way, we reduce the considered
problem to the emptiness problem for the resulting inter-
section automaton. As an example, consider the workflow
schema of Figure 3 and suppose that we are interested in
the existence of a consistent execution in case we choose
the first alternative branch. To this end, it suffices to inter-
sect the timed automaton of Figure 3 with a simple timed
automaton that forces the passing through B (such an au-
tomaton consists of 2 states, an initial state and a final one,
both provided with a self loop, labelled by all symbols, and
a switch from the initial to the final state, labelled by bS).

5. A concrete example

We illustrate the potentialities of the proposed approach
by applying it to a concrete example. The workflow schema
of Figure 5 is a variant of a schema originally proposed by
van der Aalst to model the process of insurance claim han-
dling [16]. The deterministic duration of each activity is
denoted by a number on the top right of the corresponding
node. Its basic structure can be described as follows. First,
every claim is classified according to its complexity by the
Classify activity. On the basis of the result of the classifi-
cation (condition C1), the appropriate conditional branch is
chosen. The first alternative (Open simple) consists in the
parallel execution of two activities, while the second one

Figure 4. The parallel case

Figure 5. A concrete example

(Open complex) results into the parallel execution of three
branches. In both cases, the analysis of the claim termi-
nates with an evaluation of the outcomes (Eval outcomes).
If 60 days, or more, have passed from the beginning of the
process to the beginning of Eval outcomes(condition C2),
Fast answ is chosen, otherwise Standard answ is chosen (if
x1 is the clock reset at the beginning of the workflow and x2

the clock reset at the beginning of Eval outcomes, the cor-
responding automaton encodes condition C2 by the clock
constraint x1 − x2 ≥ 60). In case the claim is accepted
(condition C3), the payment phase begins. If the insurance
company decides to pay by instalments, at least 30 days
must elapse between an instalment and the next one. The
iteration of the activity By instalments is modeled by a loop
(the component of the corresponding timed automaton deal-
ing with the payment by instalments is reported at the right
bottom of Figure 5).
An upper-bound constraint imposes that between the end
of Payment method and the end of Verify account no more
than 365 days can elapse. Timed automata can be used to
check automaton satisfiability of such a workflow schema
(cf. Section 3). Moreover, the forcing technique makes
it possible to check the existence of a consistent instance
which involves some specific activities. As an example,
one may be interested in establishing whether there exists
(at least) one instance where the answer to a complex claim
(Open complex) is managed in the standard way (Stan-
dard answ). This can be done by the forcing automaton
at the left bottom of Figure 5. It is possible to prove that the
automaton obtained by intersecting this forcing automaton
with the automaton obtained by applying the Translation al-
gorithm to the given workflow schema recognizes the empty
language. Since at least 62 days elapse from the beginning
of the workflow to the beginning of Eval outcomes when-
ever an instance passes through Open complex, condition
C2 is always satisfied and Fast answ must be taken.

6. Conclusions

In this paper we proposed timed automata as an effective
tool to specify timed workflow schemas and to check their
consistency. Such an approach allows one to obtain a com-
pact and uniform representation of structural and explicit
time constraints: all basic constructs of workflow schemas
(sequential composition, and-split, or-split, etc.) can be ex-
pressed in terms of basic operations on automata (concate-
nation, product, union, etc.), while explicit time constraints
(duration of activities, relative deadlines, upper bound and
lower bound constraints) can be expressed in terms of suit-
able clock constraints. Moreover, to check the consistency
of timed workflow schemas, one does not need to develop
ad hoc algorithms, but he/she can take advantage of the ex-
isting machinery for timed automata (since the beginning

of the ’90s, many tools for the specification and verifica-
tion of real-time systems based on timed automata have
indeed been developed and successfully applied, including
UPPAAL [10], COSPAN [9], and KRONOS [5]).

References

[1] R. Alur. Timed automata. In Proc. 11th Int. Conference on
Computer-Aided Verification, LNCS 1633:8–22, 1999.

[2] R. Alur and D. L. Dill. A theory of timed automata. Theo-
retical Compututer Science, 126(2):183–235, 1994.

[3] P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Updata-
ble timed automata. Theoretical Computer Science, 321(2-
3):291–345, 2004.

[4] S. J. Chinn and G. R. Madey. Temporal representation
and reasoning for workflow in engineering design change
review. IEEE Transactions on Engineering Management,
47(4):485–492, 2000.

[5] C. Daws, A. Olivero, S. Tripakis, and S. Jovine. The tool
KRONOS. In Hybrid Systems III: Verification and Control,
LNCS 1066:208–219, 1990.

[6] J. Eder. Workflow management systems (abstract). In AD-
BIS, page 210, 1997.

[7] J. Eder, W. Gruber, and E. Panagos. Temporal modeling of
workflows with conditional execution paths. In Proc. DEXA,
LNCS 1873:243–253, 2000.

[8] J. Eder, E. Panagos, and M. Rabinovich. Time constraints in
workflow systems. In Proc. CAiSE, LNCS 1626:286–300,
1999.

[9] R. Hardin, Z. Har’El, and R. Kurshan. COSPAN. In Proc.
8th Int. Conference on Computer-Aided Verification, LNCS
1102:423–427, 1996.

[10] K. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell.
Springer International Journal of Software Tools for Tech-
nology Transfer, 1:134–152, 1997.

[11] J. Li, Y. Fan, and M. Zhou. Timing constraint workflow nets
for workflow analysis. IEEE Transactions on Systems, Man,
and Cybernetics, Part A, 33(2):179–193, 2003.

[12] E. D. Maria, A. Montanari, and M. Zantoni. Checking work-
flow schemas with time constraints using timed automata.
Technical Report UDMI/06/05, University of Udine, Math-
ematics and Computer Science Dept., 2005 (an extended ab-
stract appeared in Proc. of the OTM Workshops 2005, LNCS
3762:1-2). http://www.dimi.uniud.it/zantoni/.

[13] O. Marjanovic and M. E. Orlowska. On modeling and ver-
ification of temporal constraints in production workflows.
Knowledge Information System, 1(2):157–192, 1999.

[14] E. Panagos and M. Rabinovich. Predictive workflow man-
agement. In Proc. 3rd Workshop NGITS, pages 193–197,
1997.

[15] W. Sadiq, O. Marjanovic, and M. E. Orlowska. Managing
change and time in dynamic workflow processes. Int. J. Co-
operative Inf. Syst., 9(1-2):93–116, 2000.

[16] W. van der Aalst. Process-oriented architectures for elec-
tronic commerce and interorganizational workflow. Infor-
mation Systems, 24(8):639–671, 1999.

[17] W. van der Aalst and K. van Hee. Workflow management
models, methods and systems. MIT Press, 2004.

