# Games on strings with a limited ordering

### Elisabetta De Maria Angelo Montanari Nicola Vitacolonna

Dipartimento di Matematica e Informatica, Università di Udine.

GAMES 2008 September 8th - 11th, 2008 Warsaw, Poland



・ ロ ト ・ 戸 ト ・ 日 ト ・ 日 ト

# **Outline of the presentation**

- Basics on EF-Games
- Remoteness
- Labeled
- Local games on
- Local games on labeled
- Global games on labeled
- Efficient algorithm to compute remoteness
- Conclusions and future work



(日)

### **EF-Games**

- (Logical) combinatorial games
- The playground: two relational structures A and B (over the same finite vocabulary)
- Two players: Spoiler and Duplicator
- Move by Spoiler: select a structure and pick an element in it
- Move by Duplicator: pick an element in the opposite structure
- Round: a move by Spoiler followed by a move by Duplicator
- Game: sequence of rounds
- Duplicator tries to imitate Spoiler



・ロット (雪) (日) (日)

# Winning strategies

- Configuration:  $((\mathcal{A}, \vec{a}), (\mathcal{B}, \vec{b}))$ , with  $|\vec{a}| = |\vec{b}|$ 
  - Represents the relation  $\{ (a_i, b_i) \mid 1 \le i \le |\vec{a}| \}$
- A play from  $((\mathcal{A}, \vec{a}), (\mathcal{B}, \vec{b}))$  proceeds by extending the initial configuration with the pair of elements chosen by the two players, e.g.
  - if Spoiler picks c in A,
  - and Duplicator replies with d in  $\mathcal{B}$ ,
  - then the new configuration is  $((\mathcal{A}, \vec{a}, c), (\mathcal{B}, \vec{b}, d))$
- Ending condition: a player repeats a move or the configuration is not a partial isomorphism

### Definition

Duplicator has a winning strategy from  $((\mathcal{A}, \vec{a}), (\mathcal{B}, \vec{b}))$  if every configuration of the game until an ending configuration is reached is a partial isomorphism, no matter how Spoiler plays.



・ ロ ト ・ 雪 ト ・ 目 ト ・



- Duplicator must respect the adjacency relation...
- ... and pick nodes with the same label as Spoiler does





- Duplicator must respect the adjacency relation...
- ... and pick nodes with the same label as Spoiler does



A B A B
 A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A



- Duplicator must respect the adjacency relation...
- ... and pick nodes with the same label as Spoiler does





- Duplicator must respect the adjacency relation...
- ... and pick nodes with the same label as Spoiler does



(日)



- Duplicator must respect the adjacency relation...
- ... and pick nodes with the same label as Spoiler does





- Duplicator must respect the adjacency relation...
- ... and pick nodes with the same label as Spoiler does



A B A B
 A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

### Bounded and unbounded games

- Bounded game:  $\mathcal{G}_m(\mathcal{A}, \mathcal{B})$
- The number *m* of rounds is fixed
- The game ends after m rounds have been played
- Unbounded game:  $\mathcal{G}(\mathcal{A}, \mathcal{B})$
- The game goes on as long as either a player repeats a move, or the current configuration in not partial isomorphism
- Duplicator wins iff the final configuration is a partial isomorphism



A D > A P > A D > A D >

### Winning and optimal strategies

Winning strategy  $\neq$  Optimal strategy

- In unbounded EF-games, Spoiler wins unless  $\mathcal{A} \cong \mathcal{B}$
- "Play randomly" is a winning strategy for Spoiler
- But, how far actually is the end of a game?
- What are the best (optimal) moves?



(日)

### Remoteness

- Remoteness of  $\mathcal{G}$ : the minimum *m* such that Spoiler wins  $\mathcal{G}_m$ 
  - Simplified definition under the hypothesis  $\mathcal{A} \ncong \mathcal{B}$
- Optimal Spoiler's move: whatever Duplicator replies, the remoteness decreases
- Optimal Duplicator's move: no matter how Spoiler has played, the remoteness decreases at most by 1



# Main uses of EF-games

- Prove inexpressibility results (Ehrenfeucht's theorem)
- Establish normal forms for logics (Gaifman's theorem)
- Prove elementary equivalence (Hanf's theorem) and *m*-equivalence (Sphere lemma) of structures
- Determine how and where two structures differ: use of remoteness to measure the degree of similarity between two structures

#### Our aim

Compare biological sequences



(日)

## A simple example

Consider the following two sequences:

agggagtttttaga agttagtttagaagggga

The standard left-to-right comparison:

|  |   |  |  | t | t |  |  |  |  |
|--|---|--|--|---|---|--|--|--|--|
|  |   |  |  |   |   |  |  |  |  |
|  | t |  |  | t |   |  |  |  |  |

A more flexible way of comparing sequences:

<mark>agggagtttttaga</mark> agtta<mark>gtttag</mark>agggga



・ ロ ト ・ 同 ト ・ ヨ ト ・ ヨ ト

### A simple example

Consider the following two sequences:

agggagtttttaga agttagtttagaagggga

The standard left-to-right comparison:

| а | g | g | g | а | g | t | t | t | t | t | а | _ | — | _ | _ | g | а |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| а | g | t | t | а | g | t | t | t | а | g | а | а | g | g | g | g | а |

A more flexible way of comparing sequences:

<mark>agggagtttttaga</mark> agtta<mark>gtttag</mark>agggga



・ ロ ト ・ 雪 ト ・ ヨ ト ・

## A simple example

Consider the following two sequences:

agggagtttttaga agttagtttagaagggga

The standard left-to-right comparison:

| а | g | g | g | а | g | t | t | t | t | t | а | — | _ | _ | — | g | а |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| а | g | t | t | а | g | t | t | t | а | g | а | а | g | g | g | g | а |

A more flexible way of comparing sequences:

agggagtttttaga agtta<mark>gtttag</mark>agggga



・ロット (雪) (日) (日)

### Labeled successor structures

### Definition

Let  $\Sigma$  be a fixed alphabet and  $w \in \Sigma^*$ . A *labeled successor structure* is a pair  $(w, \mathbf{i}^n)$  where

- $w = (\{1, \dots, |w|\}, \textit{succ}, (P_a)_{a \in \Sigma})$
- $(i, j) \in \text{succ iff } j = i + 1 \text{ for all } i, j \in \{1, \dots, |w|\}$
- $i \in P_a$  iff w[i] = a for all  $i \in \{1, \dots, |w|\}$
- $\mathbf{i}^n$  are distinguished positions  $i_1, \ldots, i_n \in \{1, \ldots, |w|\}$

- Necessary and sufficient conditions for Duplicator to win *G*<sub>q</sub>((*w*, **i**<sup>n</sup>), (*w*', **j**<sup>n</sup>))
- Computation of remoteness in polynomial time using suffix trees (LPAR 2005, GAMES 2007)



### The relation <<sub>p</sub>

### What about the linear order relation <?

Locality is destroyed :(

We introduce a **limited** order relation  $(<_p)$  that lies in between the successor and the linear order relations:  $i <_p j$  iff i < j and  $j - i \le p$ 

The successor relation and the linear order relation are recovered as special cases of the limited order relation for p = 1 and  $p = \infty$ , respectively



(日)

## The relation $<_{\rho}$

### What about the linear order relation <?

Locality is destroyed :(

We introduce a **limited** order relation  $(<_p)$  that lies in between the successor and the linear order relations:  $i <_p j$  iff i < j and  $j - i \le p$ 

The successor relation and the linear order relation are recovered as special cases of the limited order relation for p = 1 and  $p = \infty$ , respectively



## The relation <<sub>p</sub>

What about the linear order relation <?

```
Locality is destroyed :(
```

We introduce a limited order relation  $(<_p)$  that lies in between the successor and the linear order relations:  $i <_p j$  iff i < j and  $j - i \le p$ 

The successor relation and the linear order relation are recovered as special cases of the limited order relation for p = 1 and  $p = \infty$ , respectively



# The relation <<sub>p</sub>

What about the linear order relation <?

```
Locality is destroyed :(
```

We introduce a limited order relation  $(<_p)$  that lies in between the successor and the linear order relations:  $i <_p j$  iff i < j and  $j - i \le p$ 

The successor relation and the linear order relation are recovered as special cases of the limited order relation for p = 1 and  $p = \infty$ , respectively



(日)

# **Our contribution**

- Necessary and sufficient conditions for Duplicator to win *G<sub>q</sub>((w, i<sup>n</sup>), (w', j<sup>n</sup>))* on *labeled* <<sub>p</sub> structures
- Algorithm to compute the remoteness in polynomial time

### Local and global strategy

- Local strategy: how Duplicator must reply when Spoiler plays in the neighborhoods of already selected positions
- Global strategy: how Duplicator must reply when Spoiler plays far from already selected positions



A D > A P > A D > A D >

### Local games on <p structures: pstep-safety

pstep: "signed distance" between two positions in terms of the number of intervals of length *p* separating them Let  $i, j, k, p \in \mathbb{N}$ , with i, j, p > 0 and  $k \ge p$ .

$$pstep_{k}^{(p)}(i,j) = \begin{cases} 0 & \text{if } i = j \\ \lceil \frac{j-i}{p} \rceil & \text{if } |i-j| \le k \text{ and } i < j \\ \lfloor \frac{j-i}{p} \rfloor & \text{if } |i-j| \le k \text{ and } i > j \\ \infty & \text{if } |i-j| > k \end{cases}$$

A configuration  $(w, w', \mathbf{i}^n, \mathbf{j}^n)$  is *pstep-safe* in the *k*-horizon if  $pstep_k^{(p)}(i_r, i_s) = pstep_k^{(p)}(j_r, j_s)$  for all  $r, s \in \{1 \dots n\}$ 

#### Lemma

Let  $w, w' \in \Sigma^*$ . If  $(w, w', \mathbf{i}^n, \mathbf{j}^n)$  is not pstep-safe in the  $(p \cdot 2^q)$ -horizon, then Spoiler wins  $\mathcal{G}_q((w, \mathbf{i}^n), (w', \mathbf{j}^n))$ .



(日) (圖) (E) (E)

### Example of *pstep*-safety



Figure: pstep-safety.



・ロット (雪) (日) (日)

### Local games on $<_{\rho}$ structures: $\theta$ -safety

 $\vartheta_k$ : truncated signed distance between two positions Let *i*, *j*, *k*  $\in \mathbb{N}$ , with *i*, *j*, *k* > 0.

$$artheta_k(i,j) = \left\{ egin{array}{cc} i-j & ext{if } |i-j| \leq k \ \infty & ext{otherwise} \end{array} 
ight.$$

A configuration  $(w, w', \mathbf{i}^n, \mathbf{j}^n)$  is  $\vartheta$ -safe in the *k*-horizon if  $\vartheta_k(i_r, i_s) = \vartheta_k(j_r, j_s)$  for all  $r, s \in \{1 \dots n\}$ 

#### Lemma

Let  $w, w' \in \Sigma^*$  and q > 0. If  $(w, w', \mathbf{i}^n, \mathbf{j}^n)$  is not  $\vartheta$ -safe in the  $(2^q - 1)$ -horizon, then Spoiler wins  $\mathcal{G}_q((w, \mathbf{i}^n), (w', \mathbf{j}^n))$ .



A D > A P > A D > A D >

# **Rigid and elastic intervals**

- The neighborhood of each position can be partitioned in rigid and elastic intervals (each position origins  $2^{q-2} + 1$  right and  $2^{q-2} + 1$  left *q*-rigid intervals)
- Oth *q*-rigid interval induced by *i*:  $\rho_{0,q}^+(i) = \rho_{0,q}^-(i) = [i - \alpha_q^0, i + \alpha_q^0]$ , where  $\alpha_q^0 = 2^{q-1} - 1$

 $q = 5; 2^{q-2} = 8$ 

 kth right *q*-rigid interval induced by *i*, with 0 < k ≤ 2<sup>q-2</sup>: ρ<sup>+</sup><sub>k,q</sub>(*i*) = (c − α<sup>z</sup><sub>q</sub>, c + α<sup>z</sup><sub>q</sub>], where c = i + kp and α<sup>z</sup><sub>q</sub> depends on q and on z = ⌈log<sub>2</sub> k⌉ + 1.



# Local games on <p structures: p-int-safety

### Definition

Let q > 0. A configuration  $(w, w', \mathbf{i}^n, \mathbf{j}^n)$  is *p-int-safe* in the *k*-horizon if for all  $r, s \in \{1, ..., n\}$ , with r < s, if there exists  $0 \le h \le 2^{k-1}$  such that  $i_s \in \rho_{h,k+1}^+(i_r)$  or  $j_s \in \rho_{h,k+1}^+(j_r)$ , then  $i_s - i_r = j_s - j_r$ 

#### Lemma

Let  $w, w' \in \Sigma^*$  and q > 0. If  $(w, w', \mathbf{i}^n, \mathbf{j}^n)$  is not p-int-safe in the q-horizon, then Spoiler wins  $\mathcal{G}_q((w, \mathbf{i}^n), (w', \mathbf{j}^n))$ .

#### Remark

If  $(w, w', \mathbf{i}^n, \mathbf{j}^n)$  is *p*-*int*-safe in the *q*-horizon, with q > 0, then it is  $\vartheta$ -safe in the  $(2^q - 1)$ -horizon.



# Local games on labeled <p structures

### Definition

Let  $w \in \Sigma^*$ ,  $q, p \in \mathbb{N}$ , with p > 1, and  $i \in \mathbb{Z}$ . The *q*-color of position *i* in *w*, denoted by q-col<sub>*w*</sub>(*i*), is inductively defined as follows:

- the 0-color of i in w is the label w[i];
- the (q+1)-color of *i* in *w* is the label w[*i*] plus the *q*-color of each of the 2<sup>q</sup> right intervals and of the 2<sup>q</sup> left intervals induced by *i*.

The *q*-color of the *j*th right interval [a, b] induced by *i*, with  $1 \le j \le 2^q$ , is the ordered tuple

$$t^w_a \dots t^w_{a+\gamma_1-1} \{t^w_{a+\gamma_1} \dots t^w_{b-\gamma_2}\} t_{b-\gamma_2+1} \dots t^w_b,$$

where for all  $a \le i \le b$ ,  $t_i^w = q - \operatorname{col}_w(i)$  and  $\gamma_1$  and  $\gamma_2$  depend on the radius of rigid intervals.



### cp-safety for q-colors

#### **Definition**

Let  $w, w' \in \Sigma^*$  and  $p, n, q \in \mathbb{N}$ , with p > 0. A configuration  $(w, w', \mathbf{i}^n, \mathbf{j}^n)$  is  $<_p$ -safe for q-colors if for all  $r \in \{1, ..., n\}$ , q-col<sub>w</sub> $(i_r) = q$ -col<sub>w'</sub> $(j_r)$ 

#### Lemma

Let  $w, w' \in \Sigma^*$ , and  $p, q \in \mathbb{N}$ , with p > 1. If  $(w, w', \mathbf{i}^n, \mathbf{j}^n)$  is not  $<_p$ -safe for q-colors, then Spoiler wins  $\mathcal{G}_q((w, \mathbf{i}^n), (w', \mathbf{j}^n))$ .



・ロット (雪) (日) (日)

### Example of $<_p$ -safety for q-colors

 $q = 2; \Sigma = \{a, b\}; p = 10$ 



$$q = 2; \Sigma = \{a, b\}; p = 10$$



Figure: Safety for *q*-colors.



# Main result (for the local case)

### Definition

A configuration  $(w, w', i^n, j^n)$  is *q-locally-safe* if it is *pstep-safe* in the  $(p \cdot 2^q)$ -horizon, *p-int-safe* in the *q*-horizon, and  $<_p$ -safe for *q*-colors.

#### Theorem

[Sufficient condition for Duplicator to win] Let  $w, w' \in \Sigma^*$ , and  $p, q \in \mathbb{N}$ , with p > 1. If  $(w, w', \mathbf{i}^n, \mathbf{j}^n)$  is q-locally-safe, then Duplicator wins  $\mathcal{G}_q((w, \mathbf{i}^n), (w', \mathbf{j}^n))$ .



# Global games on labeled $<_{p}$ structures

The two strings must have the same *q*-colors and, for each color, the same multiplicity and a similar distribution.

Let  $q, p \in \mathbb{N}^+$ , i<sup>n</sup> be a set of positions in *w* and  $\tau$  be a (q-1)-color.

- $P_{(q,p)}^{(w,\mathbf{i}^n)} = \{j \mid (q-1)\text{-}color_w(j) = \tau \land j \text{ falls "far" from } \mathbf{i}^n\}$
- *q*-multiplicity:  $\rho_{(q,p)}^{(w,i^n)}(\tau) = |P_{(q,p)}^{(w,i^n)}|$
- *k*-scattered set S: |a b| > k for all  $a, b \in S$
- *q*-scattering  $\sigma_{(q,p)}^{(w,i^n)}(\tau)$ : maximal cardinality of a  $(p2^q)$ -scattered subset of  $P_{(q,p)}^{(w,i^n)}$
- $\Delta_{(w',j^n)}^{(w,i^n)} = \{ \tau \mid \tau \text{ is a (q-1)-color}, q > 0, \text{ and } \sigma_{(q,p)}^{(w,i^n)}(\tau) \neq \sigma_{(q,p)}^{(w',j^n)}(\tau) \lor \rho_{(q,p)}^{(w,i^n)}(\tau) \neq \rho_{(q,p)}^{(w',j^n)}(\tau) \}.$



# Main result (for the global case)

#### Theorem

[Main Theorem] Let  $w, w' \in \Sigma^*$  and  $p, q \in \mathbb{N}$ , with p > 1. Duplicator wins  $\mathcal{G}_q((w, \mathbf{i}^n), (w', \mathbf{j}^n))$  if and only if the following conditions hold: 1.  $(w, w', \mathbf{i}^n, \mathbf{j}^n)$  is q-locally-safe; 2. for all (r - 1)-color  $\tau \in \Delta_{(w', \mathbf{j}^n)}^{(w, \mathbf{i}^n)}$ , with  $1 \le r \le q$ ,  $\sigma_{(i,p)}^{(w, \mathbf{i}^n)}(\tau) > q - r$  and  $\sigma_{(i,p)}^{(w', \mathbf{j}^n)}(\tau) > q - r$ .

Remoteness of 
$$\mathcal{G}$$
:  $r + \min(\sigma_{(r,p)}^{(w,i^n)}, \sigma_{(r,p)}^{(w',j^n)})$ .



A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

### **Complexity of remoteness**

- Compute in polynomial time scattering and multiplicity of a q-color in a string (O(p<sup>2</sup>n<sup>3</sup> log n))
- Compare in polynomial time two q-colors (O(p<sup>2</sup>n<sup>3</sup> log n))
- Each q-color is represented by a layered directed graph
- Bottom-up visit of the graphs





### **Conclusions and future work**

- We analyzed *EF-games* on labeled <<sub>p</sub> structures.
- We identified necessary and sufficient winning conditions for Spoiler and Duplicator, that allow one to compute the remoteness of a game and optimal strategies for both players.
- Next step: extensive experimentation of the proposed games on real biological data.



A D > A P > A D > A D >





(日)

# **Basic definitions**

- Vocabulary: finite set of relation symbols
- $\mathcal{A}$  and  $\mathcal{B}$  structures on the same vocabulary
- $\vec{a} = a_1, \ldots, a_k \in \operatorname{dom}(\mathcal{A})$
- $\vec{b} = b_1, \ldots, b_k \in \operatorname{dom}(\mathcal{B})$
- Configuration:  $((\mathcal{A}, \vec{a}), (\mathcal{B}, \vec{b}))$ , with  $|\vec{a}| = |\vec{b}|$ 
  - Represents the relation  $\{(a_i, b_i) \mid 1 \le i \le |\vec{a}|\}$

### Definition

 $((\mathcal{A}, \vec{a}), (\mathcal{B}, \vec{b}))$  is a partial isomorphism if it is an isomorphism of the substructures induced by  $\vec{a}$  and  $\vec{b}$ , respectively.



A D > A P > A D > A D >

### Main result

First-order EF-games capture *m*-equivalence

### Theorem (Ehrenfeucht, 1961)

Duplicator has a winning strategy in  $\mathcal{G}_m((\mathcal{A}, \vec{a}), (\mathcal{B}, \vec{b}))$  if and only if  $(\mathcal{A}, \vec{a})$  and  $(\mathcal{B}, \vec{b})$  satisfy the same FO-formulas of quantifier rank m and at most  $|\vec{a}|$  free variables, written  $(\mathcal{A}, \vec{a}) \equiv_m (\mathcal{B}, \vec{b})$ .

#### Corollary

A class  $\mathcal{K}$  of structures (on the same finite vocabulary) is FO-definable if and only if there is  $m \in \mathbb{N}$  such that Spoiler has a winning strategy whenever  $\mathcal{A} \in \mathcal{K}$  and  $\mathcal{B} \notin \mathcal{K}$ .



(日)

### **Expressiveness results**

Exploiting the corollary, we can prove negative expressiveness results.

#### Example

Let  $\mathcal{L}_k \stackrel{\text{def}}{=} (\{1, \dots, k\}, <)$ . It is known that

 $n = p \text{ or } n, p \ge 2^m - 1 \Rightarrow$  Duplicator wins  $\mathcal{G}_m(\mathcal{L}_n, \mathcal{L}_p)$ 

"The class of linear orderings of even cardinality is not FO-definable"

- Given *m*, choose  $\tilde{n} = 2^m$  and  $\tilde{p} = 2^m + 1$ ;
- then, Duplicator wins G<sub>m</sub>(L<sub>ñ</sub>, L<sub>p̃</sub>) (i.e., L<sub>ñ</sub> ≡<sub>m</sub> L<sub>p̃</sub>)



・ ロ ト ・ 雪 ト ・ 目 ト ・

### Example of $\vartheta$ -safety



**Figure:**  $\vartheta$ -safety.



ヘロト 人間 とくほ とくほ とう

## **Rigid and elastic intervals**

#### Definition

Let q > 1 and  $i \in \mathbb{N}$ . The 0th *q*-rigid interval induced by position *i* is the closed interval  $\rho_{0,q}^+(i) = \rho_{0,q}^-(i) = [i - \alpha_q^0, i + \alpha_q^0]$ , where  $\alpha_q^0 = 2^{q-1} - 1$ . The *k*th *right (resp., left) q-rigid interval induced by position i*, with  $0 < k \le 2^{q-2}$ , is the interval  $\rho_{k,q}^+(i) = (c - \alpha_q^z, c + \alpha_q^z]$  (resp.,  $\rho_{k,q}^-(i) = [c - \alpha_q^z, c + \alpha_q^z]$ ) where c = i + kp (resp., c = i - kp) and  $\alpha_q^z = 1 + \sum_{j=z-1}^{q-2} (2^j - 1)$ , where  $z = \lceil \log_2 k \rceil + 1$ .

$$q = 5; 2^{q-2} = 8$$





### Example of *p*-int-safety



#### Figure: *p-int-safety*.



# Local games on labeled <p structures

### Definition

Let  $w \in \Sigma^*$ ,  $q, p \in \mathbb{N}$ , with p > 1, and  $i \in \mathbb{Z}$ . The *q*-color of position *i* in *w*, denoted by q-col<sub>w</sub>(*i*), is inductively defined as follows:

- the 0-color of *i* in *w* is the label *w*[*i*];
- the (q+1)-color of *i* in *w* is the ordered tuple
   σ<sup>w</sup><sub>2q</sub> ··· σ<sup>w</sup><sub>1</sub> w[*i*]τ<sup>w</sup><sub>1</sub> ... τ<sup>w</sup><sub>2q</sub> where, for all 1 ≤ *j* ≤ 2<sup>q</sup>, τ<sup>w</sup><sub>j</sub> (resp.,
   σ<sup>w</sup><sub>j</sub>) is the q-color of the *j*-th right (resp., left) interval
   induced by *i*.

The *q*-color of the *j*th right (resp., left) interval [*a*, *b*] induced by *i*, with  $1 \le j \le 2^q$ , is the ordered tuple  $t_a^w \ldots t_{a+\gamma_1-1}^w \{t_{a+\gamma_1}^w \ldots t_{b-\gamma_2}^w\} t_{b-\gamma_2+1} \ldots t_b^w$  (resp.,  $t_a^w \ldots t_{a+\gamma_2-1}^w \{t_{a+\gamma_2}^w \ldots t_{b-\gamma_1}^w\} t_{b-\gamma_1+1} \ldots t_b^w$ )), where for all  $a \le i \le b$ ,  $t_i^w = q$ -col<sub>*w*</sub>(*i*) and  $\gamma_1$  and  $\gamma_2$  depend on the radius of rigid intervals.

### Example of safety for *q*-colors

 $q = 2; \Sigma = \{a, b\}; p = 10$ 



$$q = 2; \Sigma = \{a, b\}; p = 10$$



Figure: Safety for *q*-colors.



### **Suffix trees**



- Let n = |w| + |w'|
- Multiplicity values can be computed in O(n) time
- Scattering values can be computed in O(n log n) time



# Global games on labeled $<_p$ structures (1)

The two strings must have the same *q*-colors and, for each color, the same multiplicity and a similar distribution.

Let  $P \subseteq \mathbb{N}$  be a finite set. A *k*-blurred partition  $\mathcal{P}$  of P is a partition of *P* such that (i) for each  $A \in \mathcal{P}$  and for each  $a, b \in A$ ,  $\delta(a, b) \leq k$ , and (ii) there is not a partition  $\mathcal{P}'$  satisfying (i) such that  $|\mathcal{P}| > |\mathcal{P}'|$ . The number of classes of  $\mathcal{P}$  is called *k*-blurring. Let  $q, p \in \mathbb{N}^+$ , i<sup>n</sup> be a set of positions in w and  $\tau$  be a (q-1)-color.  $\rho_{(q,p)}^{(\mathbf{w},i^n)}(\tau)$ : number of occurrences of  $\tau$  which are "far" from  $\mathbf{i}^n$  $\sigma_{(q,p)}^{(w,i^{n})}(\tau)$ : (p2<sup>q</sup>)-blurring of occurrences of  $\tau$  which are "far" from i<sup>n</sup>  $\Delta^{(w,i^{n})}_{(w',j^{n})} = \{ \tau \mid \tau \text{ is a (q-1)-color}, q > 0, \text{ and } \sigma^{(w,i^{n})}_{(q,p)}(\tau) \neq 0 \}$  $\sigma_{(\boldsymbol{\alpha},\boldsymbol{p})}^{(\boldsymbol{w}',\boldsymbol{j}^{n})}(\tau) \vee \rho_{(\boldsymbol{\alpha},\boldsymbol{p})}^{(\boldsymbol{w},\boldsymbol{i}^{n})}(\tau) \neq \rho_{(\boldsymbol{\alpha},\boldsymbol{p})}^{(\boldsymbol{w}',\boldsymbol{j}^{n})}(\tau) \}.$ 

・ ロ ト ・ 雪 ト ・ ヨ ト ・