Games on strings with a limited ordering

Elisabetta De Maria
Angelo Montanari Nicola Vitacolonna

Dipartimento di Matematica e Informatica, Università di Udine.

GAMES 2008
September 8th - 11th, 2008
Warsaw, Poland

Outline of the presentation

- Basics on EF-Games
- Remoteness
- Labeled $<_{p}$ structures
- Local games on $<_{p}$ structures
- Local games on labeled $<_{p}$ structures
- Global games on labeled $<_{p}$ structures
- Efficient algorithm to compute remoteness
- Conclusions and future work

EF-Games

- (Logical) combinatorial games
- The playground: two relational structures \mathcal{A} and \mathcal{B} (over the same finite vocabulary)
- Two players: Spoiler and Duplicator
- Move by Spoiler: select a structure and pick an element in it
- Move by Duplicator: pick an element in the opposite structure
- Round: a move by Spoiler followed by a move by Duplicator
- Game: sequence of rounds
- Duplicator tries to imitate Spoiler

Winning strategies

- Configuration: $((\mathcal{A}, \vec{a}),(\mathcal{B}, \vec{b}))$, with $|\vec{a}|=|\vec{b}|$
- Represents the relation $\left\{\left(a_{i}, b_{i}\right)|1 \leq i \leq|\vec{a}|\}\right.$
- A play from $((\mathcal{A}, \vec{a}),(\mathcal{B}, \vec{b}))$ proceeds by extending the initial configuration with the pair of elements chosen by the two players, e.g.
- if Spoiler picks c in \mathcal{A},
- and Duplicator replies with d in \mathcal{B},
- then the new configuration is $((\mathcal{A}, \vec{a}, c),(\mathcal{B}, \vec{b}, d))$
- Ending condition: a player repeats a move or the configuration is not a partial isomorphism

Definition

Duplicator has a winning strategy from $((\mathcal{A}, \vec{a}),(\mathcal{B}, \vec{b}))$ if every configuration of the game until an ending configuration is reached is a partial isomorphism, no matter how Spoiler plays.

An example on graphs

- Duplicator must respect the adjacency relation...
- ... and pick nodes with the same label as Spoiler does

An example on graphs

- Duplicator must respect the adjacency relation...
- ... and pick nodes with the same label as Spoiler does

An example on graphs

- Duplicator must respect the adjacency relation...
- ... and pick nodes with the same label as Spoiler does

An example on graphs

- Duplicator must respect the adjacency relation...
- ... and pick nodes with the same label as Spoiler does

An example on graphs

- Duplicator must respect the adjacency relation...
- ... and pick nodes with the same label as Spoiler does

An example on graphs

- Duplicator must respect the adjacency relation...
- ... and pick nodes with the same label as Spoiler does

Bounded and unbounded games

- Bounded game: $\mathcal{G}_{m}(\mathcal{A}, \mathcal{B})$
- The number m of rounds is fixed
- The game ends after m rounds have been played
- Unbounded game: $\mathcal{G}(\mathcal{A}, \mathcal{B})$
- The game goes on as long as either a player repeats a move, or the current configuration in not partial isomorphism
- Duplicator wins iff the final configuration is a partial isomorphism

Winning and optimal strategies

Winning strategy \neq Optimal strategy

- In unbounded EF-games, Spoiler wins unless $\mathcal{A} \cong \mathcal{B}$
- "Play randomly" is a winning strategy for Spoiler
- But, how far actually is the end of a game?
- What are the best (optimal) moves?

Remoteness

- Remoteness of \mathcal{G} : the minimum m such that Spoiler wins \mathcal{G}_{m}
- Simplified definition under the hypothesis $\mathcal{A} \not \not \mathcal{B}$
- Optimal Spoiler's move: whatever Duplicator replies, the remoteness decreases
- Optimal Duplicator's move: no matter how Spoiler has played, the remoteness decreases at most by 1

Main uses of EF-games

- Prove inexpressibility results (Ehrenfeucht's theorem)
- Establish normal forms for logics (Gaifman's theorem)
- Prove elementary equivalence (Hanf's theorem) and m-equivalence (Sphere lemma) of structures
- Determine how and where two structures differ: use of remoteness to measure the degree of similarity between two structures

Our aim

Compare biological sequences

A simple example

Consider the following two sequences:

agggagttttaga agttagtttagaagggga

A simple example

Consider the following two sequences:

agggagtttttaga agttagtttagaagggga

The standard left-to-right comparison:

A simple example

Consider the following two sequences:

agggagtttttaga agttagtttagaagggga

The standard left-to-right comparison:

A more flexible way of comparing sequences:
agggagttttaga
agttagtttagagggga

Labeled successor structures

Definition

Let Σ be a fixed alphabet and $w \in \Sigma^{*}$. A labeled successor structure is a pair $\left(w, \mathbf{i}^{n}\right)$ where

- $w=\left(\{1, \ldots,|w|\}\right.$, succ, $\left.\left(P_{\mathrm{a}}\right)_{a \in \Sigma}\right)$
- $(i, j) \in \operatorname{succ}$ iff $j=i+1$ for all $i, j \in\{1, \ldots,|w|\}$
- $i \in P_{a}$ iff $w[i]=a$ for all $i \in\{1, \ldots,|w|\}$
- \mathbf{i}^{n} are distinguished positions $i_{1}, \ldots, i_{n} \in\{1, \ldots,|w|\}$
- Necessary and sufficient conditions for Duplicator to win $\mathcal{G}_{q}\left(\left(w, \mathbf{i}^{n}\right),\left(w^{\prime}, \mathbf{j}^{n}\right)\right)$
- Computation of remoteness in polynomial time using suffix trees (LPAR 2005, GAMES 2007)

The relation $<_{p}$

What about the linear order relation $<$?
Locality is destroyed :(

We introduce a limited order relation $\left(<_{p}\right)$ that lies in between
the successor and the linear order relations:

The relation $<_{p}$

What about the linear order relation $<$?
Locality is destroyed :(

We introduce a limited order relation $\left(<_{p}\right)$ that lies in between
the successor and the linear order relations:

The successor relation and the linear order relation are recovered as special cases of the limited order relation for

The relation $<_{p}$

What about the linear order relation <?
Locality is destroyed :(

We introduce a limited order relation $\left(<_{p}\right)$ that lies in between the successor and the linear order relations:

$$
i<{ }_{p} j \text { iff } i<j \text { and } j-i \leq p
$$

The relation $<_{p}$

What about the linear order relation $<$?
Locality is destroyed :(

We introduce a limited order relation $\left(<_{p}\right)$ that lies in between the successor and the linear order relations:

$$
i<{ }_{p} j \text { iff } i<j \text { and } j-i \leq p
$$

The successor relation and the linear order relation are recovered as special cases of the limited order relation for $p=1$ and $p=\infty$, respectively

Our contribution

- Necessary and sufficient conditions for Duplicator to win $\mathcal{G}_{q}\left(\left(w, \mathbf{i}^{n}\right),\left(w^{\prime}, \mathbf{j}^{n}\right)\right)$ on labeled $<_{p}$ structures
- Algorithm to compute the remoteness in polynomial time

Local and global strategy

- Local strategy: how Duplicator must reply when Spoiler plays in the neighborhoods of already selected positions
- Global strategy: how Duplicator must reply when Spoiler plays far from already selected positions

Local games on $<_{p}$ structures: pstep-safety

pstep: "signed distance" between two positions in terms of the number of intervals of length p separating them Let $i, j, k, p \in \mathbb{N}$, with $i, j, p>0$ and $k \geq p$.

$$
\operatorname{pstep}_{k}^{(p)}(i, j)=\left\{\begin{array}{cl}
0 & \text { if } i=j \\
{\left[\frac{j-i}{p}\right\rceil} & \text { if }|i-j| \leq k \text { and } i<j \\
\frac{\left.\left\lvert\, \frac{j-i}{p}\right.\right\rfloor}{} & \text { if }|i-j| \leq k \text { and } i>j \\
\infty & \text { if }|i-j|>k
\end{array}\right.
$$

A configuration ($w, w^{\prime}, \mathbf{i}^{n}, \mathbf{j}^{n}$) is pstep-safe in the k-horizon if $\operatorname{pstep}_{k}^{(p)}\left(i_{r}, i_{s}\right)=p \operatorname{step}_{k}^{(p)}\left(j_{r}, j_{s}\right)$ for all $r, s \in\{1 \ldots n\}$

Lemma

Let $w, w^{\prime} \in \Sigma^{\star}$. If $\left(w, w^{\prime}, \boldsymbol{i}^{n}, \boldsymbol{j}^{n}\right)$ is not pstep-safe in the $\left(p \cdot 2^{q}\right)$-horizon, then Spoiler wins $\mathcal{G}_{q}\left(\left(w, i^{\eta}\right),\left(w^{\prime}, j^{n}\right)\right)$.

Example of pstep-safety

Figure: pstep-safety.

Local games on $<_{p}$ structures: θ-safety

ϑ_{k} : truncated signed distance between two positions Let $i, j, k \in \mathbb{N}$, with $i, j, k>0$.

$$
\vartheta_{k}(i, j)=\left\{\begin{array}{cl}
i-j & \text { if }|i-j| \leq k \\
\infty & \text { otherwise }
\end{array}\right.
$$

A configuration ($w, w^{\prime}, \mathbf{i}^{n}, \mathbf{j}^{n}$) is ϑ-safe in the k-horizon if $\vartheta_{k}\left(i_{r}, i_{s}\right)=\vartheta_{k}\left(j_{r}, j_{s}\right)$ for all $r, s \in\{1 \ldots n\}$

Lemma

Let $w, w^{\prime} \in \Sigma^{\star}$ and $q>0$. If $\left(w, w^{\prime}, i^{\eta}, j^{n}\right)$ is not ϑ-safe in the $\left(2^{q}-1\right)$-horizon, then Spoiler wins $\mathcal{G}_{q}\left(\left(w, i^{n}\right),\left(w^{\prime}, \boldsymbol{j}^{n}\right)\right)$.

Rigid and elastic intervals

- The neighborhood of each position can be partitioned in rigid and elastic intervals (each position origins $2^{q-2}+1$ right and $2^{q-2}+1$ left q-rigid intervals)
- Oth q-rigid interval induced by i :
$\rho_{0, q}^{+}(i)=\rho_{0, q}^{-}(i)=\left[i-\alpha_{q}^{0}, i+\alpha_{q}^{0}\right]$, where $\alpha_{q}^{0}=2^{q-1}-1$
- k th right q-rigid interval induced by i, with $0<k \leq 2^{q-2}$: $\rho_{k, q}^{+}(i)=\left(c-\alpha_{q}^{z}, c+\alpha_{q}^{z}\right]$, where $c=i+k p$ and α_{q}^{z} depends on q and on $z=\left\lceil\log _{2} k\right\rceil+1$.

$$
q=5 ; 2^{q-2}=8
$$

Local games on $<_{p}$ structures: p-int-safety

Definition

Let $q>0$. A configuration ($w, w^{\prime}, \mathbf{i}^{n}, \mathbf{j}^{n}$) is p-int-safe in the k-horizon if for all $r, s \in\{1, \ldots, n\}$, with $r<s$, if there exists $0 \leq h \leq 2^{k-1}$ such that $i_{s} \in \rho_{h, k+1}^{+}\left(i_{r}\right)$ or $j_{s} \in \rho_{h, k+1}^{+}\left(j_{r}\right)$, then $i_{s}-i_{r}=j_{s}-j_{r}$

Lemma

Let $w, w^{\prime} \in \Sigma^{\star}$ and $q>0$. If $\left(w, w^{\prime}, \boldsymbol{i}^{n}, \boldsymbol{j}^{n}\right)$ is not p-int-safe in the q-horizon, then Spoiler wins $\mathcal{G}_{q}\left(\left(w, i^{h}\right),\left(w^{\prime}, j^{h}\right)\right)$.

Remark

If $\left(w, w^{\prime}, \mathbf{i}^{n}, \mathbf{j}^{n}\right)$ is p-int-safe in the q-horizon, with $q>0$, then it is ϑ-safe in the $\left(2^{q}-1\right)$-horizon.

Local games on labeled $<_{p}$ structures

Definition

Let $w \in \Sigma^{*}, q, p \in \mathbb{N}$, with $p>1$, and $i \in \mathbb{Z}$. The q-color of position i in w, denoted by $q-\operatorname{col}_{w}(i)$, is inductively defined as follows:

- the 0 -color of i in w is the label $w[i]$;
- the $(q+1)$-color of i in w is the label $w[i]$ plus the q-color of each of the 2^{q} right intervals and of the 2^{q} left intervals induced by i.
The q-color of the j th right interval $[a, b]$ induced by i, with $1 \leq j \leq 2^{q}$, is the ordered tuple

$$
t_{a}^{w} \ldots t_{a+\gamma_{1}-1}^{w}\left\{t_{a+\gamma_{1}}^{w} \ldots t_{b-\gamma_{2}}^{w}\right\} t_{b-\gamma_{2}+1} \ldots t_{b}^{w},
$$

where for all $\boldsymbol{a} \leq \boldsymbol{i} \leq \boldsymbol{b}, t_{i}^{w}=\mathrm{q}-\operatorname{col}_{w}(i)$ and γ_{1} and γ_{2} depend on the radius of rigid intervals.

${ }^{2}$-safety for q-colors

Definition

Let $w, w^{\prime} \in \Sigma^{*}$ and $p, n, q \in \mathbb{N}$, with $p>0$. A configuration ($w, w^{\prime}, \mathbf{i}^{n}, \mathbf{j}^{n}$) is $<_{p}$-safe for q-colors if for all $r \in\{1, \ldots, n\}, q-\operatorname{col}_{w}\left(i_{r}\right)=q-\operatorname{col}_{w^{\prime}}\left(j_{r}\right)$

Lemma

Let $w, w^{\prime} \in \Sigma^{\star}$, and $p, q \in \mathbb{N}$, with $p>1$. If $\left(w, w^{\prime}, i^{n}, j^{n}\right)$ is not $<_{p}$-safe for q-colors, then Spoiler wins $\mathcal{G}_{q}\left(\left(w, i^{n}\right),\left(w^{\prime}, j^{n}\right)\right)$.

Example of ${ }^{p}$-safety for q-colors

$$
q=2 ; \Sigma=\{a, b\} ; p=10
$$

$$
q=2 ; \Sigma=\{a, b\} ; p=10
$$

Figure: Safety for q-colors.

Main result (for the local case)

Definition

A configuration ($w, w^{\prime}, \mathbf{i}^{n}, \mathbf{j}^{n}$) is q-locally-safe if it is pstep-safe in the $\left(p \cdot 2^{q}\right)$-horizon, p-int-safe in the q-horizon, and $<_{p}$-safe for q-colors.

Theorem

[Sufficient condition for Duplicator to win] Let $w, w^{\prime} \in \Sigma^{\star}$, and $p, q \in \mathbb{N}$, with $p>1$. If $\left(w, w^{\prime}, i^{n}, j^{n}\right)$ is q-locally-safe, then Duplicator wins $\mathcal{G}_{q}\left(\left(w, i^{n}\right),\left(w^{\prime}, j^{n}\right)\right)$.

Global games on labeled $<_{p}$ structures

The two strings must have the same q-colors and, for each color, the same multiplicity and a similar distribution.

Let $q, p \in \mathbb{N}^{+}, \mathbf{i}^{n}$ be a set of positions in w and τ be a ($q-1$)-color.

- $P_{(q, p)}^{\left(w, i^{n}\right)}=\left\{j \mid(q-1)\right.$-color $_{w}(j)=\tau \wedge j$ falls "far" from $\left.\mathbf{i}^{n}\right\}$
- q-multiplicity: $\rho_{(q, p)}^{\left(w, i^{n}\right)}(\tau)=\left|P_{(q, p)}^{\left(w, i^{n}\right)}\right|$
- k-scattered set $S:|a-b|>k$ for all $a, b \in S$
- q-scattering $\sigma_{(q, p)}^{\left(w, i^{\eta}\right)}(\tau)$: maximal cardinality of a ($p 2^{q}$)-scattered subset of $P_{(q, p)}^{\left(w, i^{n}\right)}$
- $\Delta_{\left(w^{\prime}, j^{n}\right)}^{\left(w, i^{n}\right)}=\left\{\tau \mid \tau\right.$ is a $(q-1)$-color, $q>0$, and $\sigma_{(q, p)}^{\left(w, i^{n}\right)}(\tau) \neq$ $\left.\sigma_{(q, p)}^{\left(w^{\prime}, j^{n}\right)}(\tau) \vee \rho_{(q, p)}^{\left(w, i^{n}\right)}(\tau) \neq \rho_{(q, p)}^{\left(w^{\prime}, j^{n}\right)}(\tau)\right\}$.

Main result (for the global case)

Theorem

[Main Theorem]
Let $w, w^{\prime} \in \Sigma^{*}$ and $p, q \in \mathbb{N}$, with $p>1$. Duplicator wins $\mathcal{G}_{q}\left(\left(w, i^{n}\right),\left(w^{\prime}, j^{n}\right)\right)$ if and only if the following conditions hold:

1. ($\left.w, w^{\prime}, i^{n}, j^{n}\right)$ is q-locally-safe;
2. for all $(r-1)$-color $\tau \in \Delta_{\left(w^{\prime}, j^{n}\right)}^{\left(w, r^{\prime}\right)}$, with $1 \leq r \leq q$,

$$
\sigma_{(i, p)}^{\left(w, r^{\prime}\right)}(\tau)>q-r \text { and } \sigma_{(i, p)^{\prime}}^{\left(w^{\prime}, r^{n}\right)}(\tau)>q-r .
$$

Remoteness of $\mathcal{G}: r+\min \left(\sigma_{(r, p)}^{\left(w, r^{n}\right)}, \sigma_{(r, p)}^{\left(w^{\prime}, \boldsymbol{j}^{n}\right)}\right)$.

Complexity of remoteness

- Compute in polynomial time scattering and multiplicity of a q-color in a string $\left(O\left(p^{2} n^{3} \log n\right)\right)$
- Compare in polynomial time two q-colors $\left(O\left(p^{2} n^{3} \log n\right)\right)$
- Each q-color is represented by a layered directed graph
- Bottom-up visit of the graphs

Conclusions and future work

- We analyzed EF-games on labeled $<_{p}$ structures.
- We identified necessary and sufficient winning conditions for Spoiler and Duplicator, that allow one to compute the remoteness of a game and optimal strategies for both players.
- Next step: extensive experimentation of the proposed games on real biological data.

退要
4，
（5N3145

Basic definitions

- Vocabulary: finite set of relation symbols
- \mathcal{A} and \mathcal{B} structures on the same vocabulary
- $\vec{a}=a_{1}, \ldots, a_{k} \in \operatorname{dom}(\mathcal{A})$
- $\vec{b}=b_{1}, \ldots, b_{k} \in \operatorname{dom}(\mathcal{B})$
- Configuration: $((\mathcal{A}, \vec{a}),(\mathcal{B}, \vec{b}))$, with $|\vec{a}|=|\vec{b}|$
- Represents the relation $\left\{\left(a_{i}, b_{i}\right)|1 \leq i \leq|\vec{a}|\}\right.$

Definition

$((\mathcal{A}, \vec{a}),(\mathcal{B}, \vec{b}))$ is a partial isomorphism if it is an isomorphism of the substructures induced by \vec{a} and \vec{b}, respectively.

Main result

First-order EF-games capture m-equivalence

Theorem (Ehrenfeucht, 1961)

Duplicator has a winning strategy in $\mathcal{G}_{m}((\mathcal{A}, \vec{a}),(\mathcal{B}, \vec{b}))$ if and only if (\mathcal{A}, \vec{a}) and (\mathcal{B}, \vec{b}) satisfy the same FO-formulas of quantifier rank m and at most $|\vec{a}|$ free variables, written $(\mathcal{A}, \vec{a}) \equiv_{m}(\mathcal{B}, \vec{b})$.

Corollary

A class \mathcal{K} of structures (on the same finite vocabulary) is FO-definable if and only if there is $m \in \mathbb{N}$ such that Spoiler has a winning strategy whenever $\mathcal{A} \in \mathcal{K}$ and $\mathcal{B} \notin \mathcal{K}$.

Expressiveness results

Exploiting the corollary, we can prove negative expressiveness results.

Example

Let $\mathcal{L}_{k} \stackrel{\text { def }}{=}(\{1, \ldots, k\},<)$. It is known that

$$
n=p \text { or } n, p \geq 2^{m}-1 \Rightarrow \text { Duplicator wins } \mathcal{G}_{m}\left(\mathcal{L}_{n}, \mathcal{L}_{p}\right)
$$

"The class of linear orderings of even cardinality is not FO-definable"

- Given m, choose $\tilde{n}=2^{m}$ and $\tilde{p}=2^{m}+1$;
- then, Duplicator wins $\mathcal{G}_{m}\left(\mathcal{L}_{\tilde{n}}, \mathcal{L}_{\tilde{p}}\right)$ (i.e., $\left.\mathcal{L}_{\tilde{n}} \equiv{ }_{m} \mathcal{L}_{\tilde{p}}\right)$

Example of ϑ-safety

Figure: ϑ-safety.

Rigid and elastic intervals

Definition

Let $q>1$ and $i \in \mathbb{N}$. The 0th q-rigid interval induced by position i is the closed interval $\rho_{0, q}^{+}(i)=\rho_{0, q}^{-}(i)=\left[i-\alpha_{q}^{0}, i+\alpha_{q}^{0}\right]$, where $\alpha_{q}^{0}=2^{q-1}-1$. The kth right (resp., left) q-rigid interval induced by position i, with $0<k \leq 2^{q-2}$, is the interval
$\rho_{k, q}^{+}(i)=\left(c-\alpha_{q}^{z}, c+\alpha_{q}^{z}\right]\left(\right.$ resp., $\left.\rho_{k, q}^{-}(i)=\left[c-\alpha_{q}^{z}, c+\alpha_{q}^{z}\right)\right)$
where $c=i+k p$ (resp., $c=i-k p$) and $\alpha_{q}^{z}=1+\sum_{j=z-1}^{q-2}\left(2^{j}-1\right)$, where $z=\left\lceil\log _{2} k\right\rceil+1$.

$$
q=5 ; 2^{q-2}=8
$$

Example of p-int-safety

Figure: p-int-safety.

Local games on labeled $<_{p}$ structures

Definition

Let $w \in \Sigma^{*}, q, p \in \mathbb{N}$, with $p>1$, and $i \in \mathbb{Z}$. The q-color of position i in w, denoted by $q-c o l_{w}(i)$, is inductively defined as follows:

- the 0 -color of i in w is the label $w[i]$;
- the $(q+1)$-color of i in w is the ordered tuple $\sigma_{2 q}^{w} \cdots \sigma_{1}^{w} w[i] \tau_{1}^{w} \ldots \tau_{2 q}^{w}$ where, for all $1 \leq j \leq 2^{q}, \tau_{j}^{w}$ (resp., σ_{j}^{w}) is the q -color of the j-th right (resp., left) interval induced by i.
The q-color of the j th right (resp., left) interval $[a, b]$ induced by i, with $1 \leq j \leq 2^{q}$, is the ordered tuple $t_{a}^{w} \ldots t_{a+\gamma_{1}-1}^{w}\left\{t_{a+\gamma_{1}}^{w} \ldots t_{b-\gamma_{2}}^{w}\right\} t_{b-\gamma_{2}+1} \ldots t_{b}^{w}$ (resp., $\left.t_{a}^{w} \ldots t_{a+\gamma_{2}-1}^{w}\left\{t_{a+\gamma_{2}}^{w} \ldots t_{b-\gamma_{1}}^{w}\right\} t_{b-\gamma_{1}+1} \ldots t_{b}^{w}\right)$), where for all $\boldsymbol{a} \leq \boldsymbol{i} \leq \boldsymbol{b}, t_{i}^{w}=\mathrm{q}-\mathrm{col}_{w}(i)$ and γ_{1} and γ_{2} depend on the radius of rigid intervals.

Example of safety for q-colors

$$
q=2 ; \Sigma=\{a, b\} ; p=10
$$

$$
q=2 ; \Sigma=\{a, b\} ; p=10
$$

Figure: Safety for q-colors.

Suffix trees

- Let $n=|w|+\left|w^{\prime}\right|$
- Multiplicity values can be computed in $O(n)$ time
- Scattering values can be computed in $O(n \log n)$ time

Global games on labeled $<_{p}$ structures (1)

The two strings must have the same q-colors and, for each color, the same multiplicity and a similar distribution.

Let $P \subseteq \mathbb{N}$ be a finite set. A k-blurred partition \mathcal{P} of P is a partition of P such that (i) for each $A \in \mathcal{P}$ and for each $a, b \in A$, $\delta(a, b) \leq k$, and (ii) there is not a partition \mathcal{P}^{\prime} satisfying (i) such that $|\mathcal{P}|>\left|\mathcal{P}^{\prime}\right|$. The number of classes of \mathcal{P} is called k-blurring. Let $q, p \in \mathbb{N}^{+}, \mathbf{i}^{n}$ be a set of positions in w and τ be a ($q-1$)-color.
$\rho_{(q, p)}^{\left(w, \mathbf{i}^{n}\right)}(\tau)$: number of occurrences of τ which are "far" from \mathbf{i}^{n}
$\sigma_{(q, p)}^{\left(w, i^{n}\right)}(\tau):\left(p 2^{q}\right)$-blurring of occurrences of τ which are "far" from \mathbf{i}^{n}
$\Delta_{\left(w^{\prime}, j^{n}\right)}^{\left(w, i^{n}\right)}=\left\{\tau \mid \tau\right.$ is a (q-1)-color, $q>0$, and $\sigma_{(q, p)}^{\left(w, \mathbf{i}^{n}\right)}(\tau) \neq$
$\left.\sigma_{(q, p)}^{\left(w^{\prime}, \mathbf{j}^{n}\right)}(\tau) \vee \rho_{(q, p)}^{\left(w, \mathbf{i}^{n}\right)}(\tau) \neq \rho_{(q, p)}^{\left(w^{\prime}, \mathbf{j}^{n}\right)}(\tau)\right\}$.

