
Module identification
using biological constraints

E. De Maria1, M. Zantoni1, A. Dovier1, and A. Policriti1,2

1 Dipartimento di Matematica e Informatica, Università di Udine
2 Istituto di Genomica Applicata, Udine.

Abstract. One of the main issues of computational biology consists in
the identification of short strings (motifs) that occur approximately in a
set of longer strings. A challenging problem is the one of extracting sets
of motifs (modules) that satisfy some constraints on the distance between
composing motifs and appear in a significant portion of the string input
data set. In this work, we encoded such a problem in CLP(FD) and we
tested our program on different data sets, obtaining significant results.

Introduction

After the first major effort in sequencing, the Human Genome Project, many
other genomes have been sequenced and the next big challenge is to build reliable
maps the functional elements. The essence of this challenge is finding specific
patterns in a vast amount of information, and it is therefore natural for the
fields of biology and information technology to cooperate in creating solutions
to meet it. The discovery/identification of short strings occurring approximately
in a set of longer strings/sequences is a classic in today’s computational biology.
In our particular case we refer to these short strings as motifs. The field of motif
discovery has seen, in recent years, a shift of attention from single motifs to sets
of motifs that cooperate in regulating the expression of a gene. This has resulted
in a new and more challenging objective. In biological terms, instead of finding
single Transcription Factor Binding Sites (TFBS, genomic motifs responsible for
the binding of Transcription Factors to Promoters and other regulative elements)
we now want to tackle the problem of finding (constrained) collections of TFBSs
modeled as composite motifs also known as modules.

In this paper we focus our attention on the problem of finding one or more
modules common to (a significant portion of) a given set of strings, imposing
and managing distance constraints on the collection of simple motifs generated
inspecting the input.

1 Biological Background

An important concept behind this work is gene regulation. Regulation is the
amount or timing of introduction of a functional product of a gene. The product
can be anything from mRNA to a protein or even a modified protein. In this

text the term is used as a descriptor of the affinity to transcribe a given gene. An
up-regulated gene has higher likelihood of being transcribed and is transcribed
more often.

A Transcription Factor is a description of proteins that attach themselves to
binding sites in a gene’s promoter region and, thereby, regulate the transcription
of the gene. For this reason the discovery of such functional elements in the non-
coding regions of DNA can be very valuable. The regulation of a gene is much
more complex than this description might suggest. Orientation and folding of the
DNA are significant, among many other factors. Still the search and determina-
tion of transcription factor binding sites are two of the most important functional
elements in any genome, for understanding regulation. TFBSs are usually short,
around 5-15 base pairs (bp), and are frequently degenerate sequence motifs. As
a result of this, potential binding sites can occur frequently by chance in large
genomes of higher eukaryotes. This makes the functional elements even harder
to find.

Predicting promoter elements or extracting their consensus sequence are im-
portant steps towards the global comprehension of the mechanisms undergoing
genes co-regulation. In order to achieve this goal, it is necessary to take into
consideration aspects like the correct combination and the precise spatial orga-
nization of the regulatory sites, as demonstrated in recent papers [6, 11]. The
order and relative distances between the binding sites, thus, can no longer be
considered negligible constraints, and whatever the method used to extract a
consensus sequence is, the prediction of precise promoters structure cannot be
considered completed unless more biological knowledge is used during the pre-
diction [1, 5, 8, 9]. Transcription Factor (TF) molecules interact with each other
and bind to DNA to establish a gene transcription signal. The number of differ-
ent TFs in a module, the number of TFBS, the spatial constraints, the order of
TFBS and relative strands of TFBS differ for different regulatory pathways.

It is possible to extend the concept of motifs searching from the single binding
site approach to a broader, module-based approach, to identify groups of at most
3-4 different TFBS that are conserved in different co-regulated genes and that
maintain a constant overall distance with respect to one another. More complex
modules composed by several motifs are difficult to localize, as they might be
distributed in a large portions of the DNA.

It is important to underline that the module search/determination is a follow-
up of the motif search activity. As a matter of fact, the goodness of the obtained
results is tightly linked to the accuracy of the motifs discovery model used.

In literature, the issue of motif discovery has been well studied [10, 2].

2 Finding a common substring

Finding a consensus sequence representing the best approximation of all the
similar results that have been obtained by a search, is crucial in order to recover
useful information from the examined (biological) sequences. The problem can
be formulated as follows: find a substring or a “similar” subsequence that is

common to many of the strings in the set. We use the Hamming distance dH to
define the concept of “similarity” among substrings, even though our results can
be easily adapted to a different notion of distance.

The problems we are interested in include the Closest String Problem (CStrP)
and the Closest Substring Problem (CSStrP), with or without a threshold.

Initially, guided by the needs of genomic research, statistical approaches were
used to give solutions for the CStrP. The problem had been previously studied
because of its connection with the area of coding theory, where it was proved to
be NP-hard [4]. The CSStrP models the more general situation where the strings
that must be compared do not have the same length, and one wants to find just
parts of the string that are similar. The CSStrP, being a generalization of the
CStrP, can be easily shown to be NP-hard. In terms of parameterized complexity,
the main results for the CSStrP is that it cannot be solved in polynomial time,
even when the distance parameter is fixed [3]. This is expressed, in terms of
parameterized complexity theory, by showing that the CSStrP is in the class
W[1]-hard.

As said before, it is important to underline that this task produces the input
for the module identification problem. As a matter of fact, the goodness of the
obtained results in the following is linked to the accuracy of the motifs discovery
model used.

The notion of module has been well formalized in [7] with the definition
of structured motif and the notion of module introduced below is a natural
adaptation to the case of discovery (as opposed to search).

The approach described in this paper is based on results obtained using the
algorithm ScanPro [13, 14, 15], which in turn was presented using a constraint
programming approach [12].

3 Finding sets of motifs

Let F = {s1, . . . , sα} be e a set of α strings, each one of length β or less,
over an alphabet Σ (i.e. nucleotides, aminoacids,. . .). Let K = {1 . . . α} and
H = {1 . . . β}. Let MT ⊆ Σ? be a set of finite strings (motifs) such that each
µ ∈ MT is a substring that occurs in one or more strings of F . We define the
motif alphabet Γ to be a set isomorphic to MT .

Definition 1. Let M : Γ → P(K × H), the instance function, be such that
given a motif µ ∈ Γ , M(µ) = {(k1, h1), . . . , (kt, ht)} is a set of pairs of integer
numbers representing the indices of elements of F where µ occurs (even with
repetitions) and the relative positions.

We denote by (M(µ))1 = {k1, . . . , kt} and (M(µ))2 = {h1, . . . , ht} the pro-
jections of M(µ), and by µki,hi the occurrence of the motif µ in string ki starting
at position hi (that is, ski [hi . . . |µ| − 1] = µ).

A module is defined as an ordered sequence of characters of Γ that orderly
occurs in a given input sequence and a pair of integers representing the minimum
and maximum distance between two adjacent motifs in the considered structured
motif. Let N⊥ = N ∪ {⊥}.

Definition 2 (Module). A module φ is a triple(
〈µj〉j∈〈1,...,J〉, dmin, dmax

)
∈ (Γ ? × N⊥ × N⊥),

such that for some k ∈ ((M(µj))1 ∩ (M(µj+1))1) and all j < J , there exist
(k, h) ∈ M(µj) and (k, h′) ∈ M(µj+1), for which

dmin ≤ |h′ − h| ≤ dmax.

Formalization of the problem

Our goal is to find all modules that occur in at least q different sequences of
F and satisfy constraint on composing motifs and their relative distances. Each
module occurrence (〈µ1µ2 . . . µJ〉, dmin, dmax) is a subsequence built with the
strings µ1, µ2, . . . , µJ (in this order) and satisfying d ≤ dmin and D ≥ dmax,
where d (resp. D) is the minimum (resp. maximum) distance between (starting
points of) µj and µj+1.

Fig. 1. For q = 1 (no constraints on the number of strings) there are 3 modules of length
2:[motif1, motif3], [motif2,motif3] and [motif3,motif2]. For q = 2 there is 1 module of
length 2: [motif1, motif3]. For q = 3 there are no modules. [motif1, motif2, motif3] is
not a module of length 3 because in String1 the distance between motif1 and motif2 is
lower than d.

The complexity of the problem is dominated by |Γ |J . If J is a constant, then
the complexity of the decision test and of finding all the solutions is polynomial.
Otherwise, if J is part of the input, |Γ |J grows exponentially on the inpout. In
this case, finding all the solutions is inherently exponential. We have to figure
out whether the associated decisional problem is NP complete or not.

4 Encoding in CLP(FD)

Given the alphabet Γ of motifs, a set F = {s1, . . . sk} of strings, and a list
holding the occurrences of each motif in each string, our aim is to find out all
the possible modules of length t with occurrences above a given threshold q, i.e.,
modules with at least t Γ -characters that appear in a number of strings greater
than or equal to q. Moreover, we require modules to satisfy minumum/maximum
constraints on relative distances between composing motifs. Whenever we find
a module, we want to count its occurrences in each one of the strings where
it is present and to keep track of the positions where it occurs. We decided to
encode this problem using Constraint Logic Programming over Finite Domains
(in particular, SICStus 4 with clpfd).

The main predicate is mod search(+M, +Q, +Lb, +Lb), where M is the num-
ber of motifs present in the string set F , Q is the lower bound on the number of
strings where each module must appear, and Lb (resp. Ub) is the lower (resp. up-
per) bound on the distance between subsequent motifs in a module. mod search
retrieves from a file a list L = {l1 . . . lk} of lists containing the occurrences of
each motif in each string. For each 1 ≤ i ≤ k, list li = {`i1 . . . `iM} is a list of
lists containing the occurrences of each motif in string si. For each 1 ≤ j ≤ M ,
list `ij contains the occurrences of the j-th motif in string si. As an example, list
L = [[[1, 38], [24], [55, 70]], [[12], [], [1, 25, 47]]] gives the information that there
are 2 strings and 3 motifs.
In the first string

– the first motif occurs in positions 1 and 38;
– the second motif occurs in position 24;
– the third motif occurs in positions 55 and 70.

In the second string

– the first motif occurs in position 12;
– the second motif does not occur;
– the third motif occurs in positions 1, 25, and 47.

Predicate mod search definition mainly exploits two predicates, callconstrain
and allsolutions. The first one looks for the presence of each structured motif
of length 2 in the different strings of F ; the second one distinguishes between the
structured motifs that appear in at least Q strings (modules) and the other ones.
For each module (structured motif of the former type), it counts its occurrences
in every string where it appears and it keeps trace of the positions where it
occurs.

As far as predicate callconstrain is concerned, to perform the search
of a single structured motif in a single string it takes advantage of predicate
onestring (+Lb, +Ub, +S, +[A,B], -V AB , -M AB, -N AB), where Lb and
Ub are the input lower and upper bounds, S is a list of lists, which contains the
occurrences of each motif in a given string, [A,B] is a structured motif of length
2 made by motif A and motif B, V AB is a boolean variable and M AB, N AB are

the positions where the structured motif occurs. Variable V AB is set to 1 if in
the given string there exists a pair of motif occurrence positions M AB and N AB
such that Lb ≤ N AB - M AB ≤ Ub; otherwise V AB is set to 0 and M AB and N AB
are set to -1.

The definition of predicate onestring/7 is the following:

onestring(Lb,Ub,S,[A,B],V_AB , M_AB,N_AB):-
nth1(A,S,L1), % L1 is the occurrences list of A in S
nth1(B,S,L2), % L2 is the occurrences list of B in S
list_to_fdset(L1,D1),
list_to_fdset(L2,D2),
M_AB in_set D1, % M_AB is the position of A in S
N_AB in_set D2, % N_AB is the position of B in S
N_AB-M_AB #>= Lb, N_AB-M_AB #=< Ub, !, V_AB #= 1. (*)

onestring(_,_,_,[_,_],0 , -1,-1).

Since in the library clpfd of SICStus Prolog the domains of variables are
internally represented as FD set terms, we use operation list to fdset to turn
the list of occurrence positions of each motif in each string into a FD set. Then
we take advantage of operation in set to state the belonging of the occurrence
position of each motif of the structured motif in each string in the proper FD
set.

As far as predicate allsolutions is concerned, its inputs are the threshold
Q and, for each structured motif, a list of boolean variables Bool and a list of
M AB and N AB values (the length of Bool equals |F| = k because we associate
a boolean variable to each string). Given a structured motif, if it appears in
at least Q strings, that is, sum(Bools,#>=,Q), then we count its occurrences in
each string where it is present; otherwise we avoid it. To count such occurrences
and to keep trace of them, we use a standard mechanism based on assert and
retract.
The source code is available at http://www.dimi.uniud.it/demaria/modules.html.

5 Results

We carried out several tests on an AMD Opteron 2.2 GHz Linux machine. First
of all, we tested our program on a data set consisting in 26 strings of length 500
containing 23 motifs of length 6. Following biologists suggestions, we constrained
the distance between subsequent motifs in a module to belong to the interval
[10,90] and we looked for modules of length 2 appearing in at least q strings,
with q ≥ 1. The results of the test are presented in Figure 2. As the threshold q
increases, the number of modules satisfying the constraint decreases. The mini-
mum q such that there are not modules which satisfy the constraint is 15. As far
as execution time is concerned, it decreases when q increases, that is, the number

of modules decreases. In fact, the less modules are, the less module occurrences
to count are and the less assert and retract operations are needed.

Quorum Modules Time(ms)

1 385 410
2 275 350
3 198 300
4 143 270
5 117 240
6 94 250
7 60 190
8 39 190
9 24 190
10 12 180
11 8 150
12 3 170
13 1 180
14 1 170
15 0 150

Fig. 2. Modules search on 26 strings of length 500. Decreasing of module number and
execution time according to the growth of the quorum.

The results of such tests were analyzed by biologists who extrapolated rele-
vant conclusions. In fact one of the input motifs, namely GCAGNG, was classified
by biologists as an unknown one. Surprisingly our test showed that such a motif, a
part from being abundant, is the first component of a module ([GCAGNG,GCTGNG])
that appears very often (in 11 strings). Such a result has a biological relevance
because it means that the unknown motif appears very often in combination
with other known motifs.

Another experiment consisted in testing our program on 7 data sets, each
one made by 20 strings of length 500, 1000, 1500, 2000, 2500, 3000, and 3500
respectively and containing 15, 21, 27, 33, 39, 42, and 50 motifs respectively. In
order to compare execution times, we launched our program on each data set
with q = 12 and, as in the previous experiment, we constrained the distance
between subsequent motifs in a module to belong to the interval [10,90]. The
results are present in Figure 3. Time increases quickly because at each step we
increase not only the strings length (and consequently the number of occurrences
of different motifs in each string) but also the number of motifs.

At last, we tested our program on 10 data sets consisting respectively of
10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 strings of length 500. Each data set
contains 15 motifs. We launched our program with q equal to the number of
strings divided by 2. The results are present in Figure 4.

String length Motif number Time(ms)

500 15 110
1000 21 650
1500 27 1960
2000 33 5100
2500 39 15800
3000 42 29170
3500 50 51450

Fig. 3. Modules search on data sets of 20 strings with increasing length and motif
number. Growth of execution time according to string length and motif number.

String number Time(ms)

10 110
20 130
30 210
40 300
50 360
60 410
70 500
80 550
90 620
100 710

Fig. 4. Modules search on data sets with increasing number of strings. Growth of
execution time according to the cardinality of the data set (string number).

6 Conclusions and Future work

Our program for extracting modules can be easily extended in several directions.
First of all, it is immediate to generalize it to the research of modules of lengths
greater than 2. Modules of length 3 could be thought as a combination of a motif
with a module of length 2. Using such an approach, modules of length greater
than 2 can be searched recursively. If we were asked to look for a restricted
number of modules, we could improve the research by adopting a strategy that
consists in considering at first motifs which occur in a greater number of strings,
maximizing in such a way the chances to find modules which respect the quorum
on the number of strings. We could start considering neighborhoods of radius
greater than Ub of the occurrence positions of the most frequent motif, then look
for occurrences of frequent motifs in these neighborhoods and so on.

Another possible extension concerns the constraints to impose when looking
for a module in a set of strings. As an example, it would be reasonable to consider
only modules that are sufficiently distant from the the beginning or the end of
the string. As another example, biologists are interested in modules whose set
of beginning positions in the different strings where they appear is limited by
a lower and an upper bound. Such constraints can be very easily added to our
program. After substituting the last line of predicate onestring (*) by the reified
constraint

V_AB #<=>(N_AB-M_AB #>= Lb #/\ N_AB-M_AB #=< Ub),

one can add in predicate allsolutions explained in Section 4 constraints on the
2 lists containing respectively V AB variables (one boolean variable is associated
to each string) and M AB and N AB values.

Acknowledgments This work is partially supported by MIUR projects PRIN05-
015491 and FIRB03-RBNE03B8KK.

References

[1] G.M. Church, A.M. Michelson, M.S. Halfon, and Y. Grad. Computation-based
discovery of related transcriptional regulatory modules and motifs using an ex-
perimentally validated combinatorial model. Genome Research, 12:1019–1028,
2002.

[2] I. Eidhammer, I. Jonassen, S. H. Grindhaug, D. Gilbert, and M. Ratnayake. A
constraint based structure description language for biosequences. Constraints,
6(2-3):173–200, 2001.

[3] M.R. Fellows, J. Gramm, and R. Niedermeier. On the parameterized intractability
of closest substring and related problems. Lecture Notes in Computer Science,
pages 262–273, 2002.

[4] M. Frances and A. Litman. On covering problems of codes. Theor. Comput. Syst.,
30:113–119, 1997.

[5] G. Kreiman. Identification of sparesely distributed clusters of cis-regulatory ele-
ments in sets of co-expressed genes. Nucleic Acid Research, 32, 2004.

[6] V.J. Makeev, A.P. Lifanov, A.G. Nazina, and D.A. Papatsenko. Distance prefer-
ences in the arrangement of binding motifs and hierarchical levels in organization
of transcription regulatory information. Nucleic Acids Research, 31(20):6016–
6026., October 2003.

[7] M. Morgante, A. Policriti, N. Vitacolonna, and A. Zuccolo. Structured motifs
search. Journal of Computational Biology, 12(8), October 2005.

[8] B.D. Pfeiffer, P. Tomancak, S. Celniker, M. Levine, G.M. Rubin, M.B. Eisen, B.P.
Berman, and Y. Nibu. Exploiting transcription factor binding site clustering to
indentify cis-regulatory modules involved in pattern formation in the drosophila
genome. PNAS, 99:757–762, 2001.

[9] R. Sharan, R. Shamir, Y. Shiloh, R. Elkon, and C. Linhart. Genomewide in silico
identification of transcriptional regulators controlling the cell cycle in human cells.
Genome Research, 13:773–780, 2003.

[10] R. Staden. Searching for patterns in protein and nucleic acid sequencies. Methods
in Enzymology, 183:193–211, 1990.

[11] G. Terai and T. Takagi. Predicting rules on organization of cis-regulatory ele-
ments, taking the order of elements into account. Bioinformatics, 20(7):1119–
1128, May 2004.

[12] M. Zantoni, E. Dalla, A. Policriti, and C. Schneider. Biological constraints for
the consensus subsequence problem. In Workshop on Constraint Based Methods
for Bioinformatics (WCB05), 2005.

[13] M. Zantoni, E. Dalla, A. Policriti, and C. Schneider. Finding regulatory elements
fixing error layouts. In International Symposium on Computational Biology &
Bioinformatics (ISBB), 2006.

[14] M. Zantoni, E. Dalla, A. Policriti, and C. Schneider. Motif discovery fixing mis-
match positions. In Communications to SIMAI Conferences, ISSN 1827-9015,
May 2006.

[15] M. Zantoni, E. Dalla, A. Policriti, and C. Schneider. TFBS discovery fixing lay-
outs. Extended Abstract - RECOMB 2006, April 2006.

