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1. Abstraction in Systems Biology

Models are built in Systems Biology with two contradictory perspectives :

1) Models for representing knowledge : the more concrete the better

detailed mechanistic reaction models (SBML), gene ontologies, protein

functions, protein interactions, structures ...

2) Models for making predictions : the more abstract the better.

schematic reaction models (SBML), variable elimination, approximations,

stationary states, influence graph ...

These perspectives can be reconciled by organizing models into hierarchies

of abstractions.

“To understand a system is not to know everything about it but to know

abstraction levels that are sufficient for answering questions about it”
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The Theory of Abstract Interpretation

In this setting [Cousot Cousot 77], a domain is a lattice D(⊑,⊥,⊤,⊔,⊓)

where ⊑ is the “information loss” ordering.

Often just a power-set P(S)(⊆, ∅,S,∪,∩) ordered by set inclusion.
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The Theory of Abstract Interpretation

In this setting [Cousot Cousot 77], a domain is a lattice D(⊑,⊥,⊤,⊔,⊓)

where ⊑ is the “information loss” ordering.

A Galois connection C →α A between two lattices C and A is defined by

two abstraction and concretization functions α : C → A and γ : A → C that

are monotonic:

• ∀ x, y ∈ C x ⊑C y ⇒ α(x) ⊑A α(y),

• ∀ x, y ∈ A x ⊑A y ⇒ γ(x) ⊑C γ(y),

and are adjoint:

• ∀c ∈ C, ∀y ∈ A : x ⊑C γ(y)⇔ α(x) ⊑A y.

If γ ◦ α is the identity, the abstraction α loses no information, and C and A

are isomorphic from the information standpoint (although α may be not

onto and γ not one-to-one).
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Properties of Galois Connections

1. γ ◦ α is extensive (i.e. x ⊑C γ ◦ α(x)) and represents the information

lost by the abstraction;

2. α ◦ γ is contracting (i.e. α ◦ γ(y) ⊑A y);

3. γ ◦ α is the identity iff γ is onto iff α is one-to-one.

4. α preserves ⊔, and γ preserves ⊓;

5. γ(a) = max α−1(↓ a) = ⊔α−1(↓ a)

6. α(c) = min γ−1(↑ c) = ⊓γ−1(↑ c)

where ↓ a = {b | b ⊑ a} and ↑ a = {b | a ⊑ b}.

It is equivalent in the definition of Galois connections to replace the

condition of adjointness by conditions 1 and 2,

or by condition 5 which also entails the monotonicity of γ.
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Systems Biology Markup Language SBML Models

Formally, the concrete domain of reaction models is the powerset of all

possible reaction rules ordered by set inclusion :

Def. 1 Given a finite set M of molecule names, the universe of reactions

is the set of rules

R = {e for S=>S′ | e is a kinetic expression,

and S and S′ are solutions of molecules in M}.

The domain of SBML reaction models is CR = (P(R),⊆).
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Systems Biology Markup Language SBML Models

Formally, the concrete domain of reaction models is the powerset of all

possible reaction rules ordered by set inclusion :

Def. 2 Given a finite set M of molecule names, the universe of reactions

is the set of rules

R = {e for S=>S′ | e is a kinetic expression,

and S and S′ are solutions of molecules in M}.

The domain of SBML reaction models is CR = (P(R),⊆).

In the SBML exchange format, no semantics are defined.

In BIOCHAM, three semantics are considered:

1. boolean : non-deterministic asynchronous transition system

2. differential : ODE (or hybrid system)

3. stochastic : continuous time Markov chain.
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Stochastic Semantics

For a given volume Vk of the location where the compound xk resides, a

concentration Ck for a molecule is translated into a number of molecules

Nk = ⌊Ck × Vk ×NA⌋, where NA is Avogadro’s number.

The kinetic expression ei for each reaction i evaluates on numbers of

molecules for each compound, instead of concentrations, in a (positive)

reaction weight τi.

An element s of the domain precisely defines a Markov chain, where the

probability pij of transition from state Si to Sj is obtained by normalizing

the reaction rate τi,j =
∑

(Si,Sj ,τ)∈s τ in

pij =
τij∑

(Si,Sk,τik)∈s τik
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Stochastic Semantics Domain

Def. 3 Let a discrete state be a vector of integers of dimension |M|. The

universe S of stochastic transitions is the set of triplets (Si, Sj, τij) where

Si and Sj are discrete states and τij ∈ R
+.

The domain of stochastic transitions is DS = (P(S),⊆).

Discrete states and solutions in reaction rules have the same mathematical

structure, and can both be represented by |M|-dimensional vectors of

integers.
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Galois Connection Syntactical → Stochastic Domain

Proposition 4 Let αRS : CR → DS be the function associating to a

reaction model the state transition graph labelled with thte τi,j’s. Let

γRS(s) = ∪αRS
−1(↓ s). CR

−→αRS

←−γRS
DS is a Galois connection.

Proof: It is sufficient to show that αRS is monotonic and

γRS(s) = max αRS
−1(↓ s). αRS is monotonic as the addition of reaction

rules cannot decrease the set of stochastic transitions. Let s be a set of

stochastic transitions and m = γRS(s) = ∪αRS
−1(↓ s), m is the model

obtained by union of all the rules of models in αRS
−1(↓ s). We have to

show that m ∈ αRS
−1(↓ s). Let us consider αRS(m), each of its edges

comes from a rule of m, hence there exists a set of stochastic transitions

s′ ⊆ s such that the rule belongs to a model m′ with αRS(m′) = s′. The

same edge is thus in s′ and hence in s. Therefore αRS(m) ⊆ s. �
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Stochastic Semantics Domain

αRS is not one-to-one.
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Stochastic Semantics Domain

αRS is not one-to-one.

For instance, the reaction models m1 = { e for A => B} and m2 = m1 ∪ {

e for 2*A => A+B} have the same set of stochastic transitions. γ ◦ α is

thus not the identity, the information lost by the stochastic abstraction is

the elimination of redundant rules in the reaction model.

αRS is neither onto as the stochastic transitions obtained from a reaction

model enjoy some particular properties, such as for instance the following

stability property w.r.t. the number of molecules in the states:

Proposition 5 If two states S1, S2 are such that S1 ≤ S2 pointwise, then

for any model m and all transitions Si, τi such that (S1, Si, τi) ∈ αRS(m),

there exist states Sj = Si + S2 − S1 (pointwise) such that

(S2, Sj , τi) ∈ αRS(m), i.e. all rules that apply in S1 apply in S2 with the

same changes.

Proof: By definition of αRS . �
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Discrete Semantics

Def. 6 The universe D of discrete transitions is the set of pairs of discrete

states. The domain of discrete transitions is DD = (P(D),⊆).

The discrete semantics is the classical Petri net semantics of reaction

models [RML93ismb,SHK06bmcbi,Chaouiya07bioinfo,GHL07cmsb].

Classical Petri net analysis tools can be used for the analysis of reaction

models at this abstraction level.

For instance, the elementary mode analysis of metabolic networks

[SPM02bioinfo] has been shown in [ZS03insilicobio] to be equivalent to the

classical analysis of Petri nets by T-invariants.
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Discrete Semantics

Proposition 7 Let αSD : DS → DD be the function associating to a set of

stochastic transitions the discrete transitions obtained by projection on the

two first components, and γSD(d) = ∪αSD
−1(↓ d). DS

−→αSD

←−γSD
DD is a

Galois connection.

Proof: Here again, it suffices to show that αSD is monotonic and

γSD(d) = max αSD
−1(↓ d). Clearly αSD is monotonic as adding stochastic

transitions will only increase the set of discrete transitions. Now let

s = ∪αSD
−1(↓ d) = ∪αSD

−1(↓ d), for all discrete transitions in αSD(s)

there exists s′ and d′ ⊆ d such that this transition corresponds to a

stochastic transition in a s′ and d′ = αSD(s′). The same transition is thus

in d′ and hence in d. Therefore αSD(s) ⊆ d, i.e. αSD(s) ∈↓ d, and thus

s ∈ αSD
−1(↓ d) q.e.d. �

Remark that αSD is onto, but not one-to-one as the transition rates are

simply forgotten.
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Boolean Semantics

Def. 8 Let a boolean state be a vector of booleans of dimension |M|

indicating the presence of each molecule in the state. The universe B of

boolean transitions is the set of pairs of boolean states.

The domain of boolean transitions is DB = (P(B),⊆).
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Boolean Semantics

Def. 9 Let a boolean state be a vector of booleans of dimension |M|

indicating the presence of each molecule in the state. The universe B of

boolean transitions is the set of pairs of boolean states.

The domain of boolean transitions is DB = (P(B),⊆).

Let αNB : N
|M| → B

|M| be the zero/non-zero abstraction (or threshold

abstraction) from the integers to the booleans, and its pointwise extension

from discrete states to boolean states.

Proposition 10 Let αDB : DD → DB be the set extension of αNB. Let

γDB(b) = ∪αDB
−1(↓ b). DD

−→αDB

←−γDB
DB is a Galois connection.

Proof: αDB is monotonic as the addition of discrete transitions can only

augment the set of boolean transitions, and ∪αDB
−1(↓ b) ∈ αDB

−1(↓ b) as

all transitions in the image of γDB(b) are in b. �
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BIOCHAM Boolean Semantics

Given a reaction model R, let us denote by SBB the set of boolean

transitions obtained by considering all pssible consumption of reactants.

For instance, a rule like A+B=>C+D is interpreted by four boolean transition

rules :

• A ∧B −→ A ∧B ∧ C ∧D

• A ∧B −→ ¬A ∧B ∧ C ∧D

• A ∧B −→ A ∧ ¬B ∧ C ∧D

• A ∧B −→ ¬A ∧ ¬B ∧ C ∧D

Note that in Boolean Petri nets, or in Pathway Logic, complete

consumption is always assumed.

Representing all possible consumptions is necessary for getting an

over-approximation result.
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BIOCHAM Boolean Semantics in the hierarchy of semantics

Proposition 11 For any reaction model R, αDB(αSD(αRS(R))) ⊆ SBB.

Proof: Since all our abstractions are defined pointwise, it is enough to

prove it for only one rule in R. Let us consider e for S=>S′. By abuse of

notation we will denote by S and S′ the discrete states corresponding to

solutions of same name. We have

αRS(R) = {(Si, Sj , e)|Si ≥ S, Sj = Si − S + S′} and thus

αSD(αRS(R)) = {(Si, Sj)|Si ≥ S, Sj = Si − S + S′}, which leads to

αDB(αSD(αRS(R))) = {(S′
i, S

′
j)|Si ≥ S, Sj = Si − S + S′, S′

i =

αNB(Si), S′
j = αNB(Sj)}. Since SBB = {(T, T ′)|T ≥

αNB(S), αNB(S′) ∨ (T ∧ ¬αNB(S)) ≤ T ′ ≤ αNB(T ) ∨ αNB(S′)} the

property holds as Si ≥ S implies S′
i ≥ αNB(S), and since Si ≥ S we have

Sj = Si − S + S′ ⇒ Si − S + S′ ≤ Sj ≤ Si + S′ ⇒ αNB(Si − S + S′) =

αNB(S′)∨ (αNB(Si)∧¬αNB(S)) ≤ S′
j ≤ αNB(Si +S′) = αNB(Si)∨αNB(S′)

�
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Differential Semantics ?

The differential semantics of reaction models interprets a set of reaction

rules {ei for Si=>S′
i}i=1,...,n over molecular concentration variables

{x1, ..., xm}, by the following system of Ordinary Differential Equations

(ODE):

dxk/dt =
n∑

i=1

ri(xk) ∗ ei −
n∑

j=1

lj(xk) ∗ ej

where we recall that ri(xk) (resp. li) is the stoichiometric coefficient of xk

in the right (resp. left) member of rule i.

• synchronous semantics (evolution of variables in parallel)

• deterministic semantics (average behavior)

• not compatible with the rule set inclusion ordering

• infinite number of molecules

• infinitesimal time steps
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Type Checking/Inference by Abstract Interpretation

A type system A for a concrete domain C is a Galois connection C →α A.
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Type Checking/Inference by Abstract Interpretation

A type system A for a concrete domain C is a Galois connection C →α A.

The type inference problem is

INPUT a concrete element x ∈ C (e.g. a reaction model)

OUTPUT its typing α(x) (e.g. the protein functions of the model).
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Type Checking/Inference by Abstract Interpretation

A type system A for a concrete domain C is a Galois connection C →α A.

The type inference problem is

INPUT a concrete element x ∈ C (e.g. a reaction model)

OUTPUT its typing α(x) (e.g. the protein functions of the model).

The type checking problem is,

INPUT x ∈ C (e.g. a reaction model)

and a typing y ∈ A (e.g. a set of protein functions),

OUTPUT determine whether x ⊑C γ(y)

(i.e. whether the reactions are compatible with the protein functions)

or equivalently α(x) ⊑A y (the typing contains the inferred types)
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Type Checking/Inference by Abstract Interpretation

A type system A for a concrete domain C is a Galois connection C →α A.

The type inference problem is

INPUT a concrete element x ∈ C (e.g. a reaction model)

OUTPUT its typing α(x) (e.g. the protein functions of the model).

The type checking problem is,

INPUT x ∈ C (e.g. a reaction model)

and a typing y ∈ A (e.g. a set of protein functions),

OUTPUT determine whether x ⊑C γ(y)

(i.e. whether the reactions are compatible with the protein functions)

or equivalently α(x) ⊑A y (the typing contains the inferred types)

Algorithms in O(n) if the abstractions can be computed rule per rule.
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Protein Functions as Types

Abstract domain AF = P({kinase(A)|A ∈M} ∪ {phosphatase(A)|A ∈M})

The typing of reactions by protein functions is defined by the abstraction :

αF (A =[B]=> C) = {kinase(B)} if C is strictly more phosphorylated than A

αF (A =[B]=> C) = {phosphatase(B)} if C is strictly less phosphorylated

αF (A + B => A-B, A-B => C + B) = { kinase(B)}

if C is strictly more phosphorylated than A

αF (A + B => A-B, A-B => C + B) = { phosphatase(B)}

if C is strictly less phosphorylated than A
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Protein Functions as Types

Abstract domain AF = P({kinase(A)|A ∈M} ∪ {phosphatase(A)|A ∈M})

The typing of reactions by protein functions is defined by the abstraction :

αF (A =[B]=> C) = {kinase(B)} if C is strictly more phosphorylated than A

αF (A =[B]=> C) = {phosphatase(B)} if C is strictly less phosphorylated

αF (A + B => A-B, A-B => C + B) = { kinase(B)}

if C is strictly more phosphorylated than A

αF (A + B => A-B, A-B => C + B) = { phosphatase(B)}

if C is strictly less phosphorylated than A

Proposition 12 Let γF (f) = ∪αF
−1(↓ f), CR

−→αF

←−γF
AF is a Galois

connection.
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More Precise Protein Function Typing

In SBML : no typing possible as there is no syntax for phosphorylation

In BIOCHAM : typing is possible but the syntax does not distinguish

between phosphorylation, acetylation etc.

More precise protein function types:

τ ::= kinase|phosphatase|kinase(τ)|phosphatase(τ)|T

where T denotes some basic types of proteins, with the subtyping relations

kinase(τ) � kinase and phosphatase(τ) � phosphotase.
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Evaluation Results in BIOCHAM

• MAPK model [Levchenko et al. 00]

the kinase function of RAFK, RAF~{p1} and MEK~{p1,p2} is inferred;

the phosphatase function of RAFPH, MEKPH and MAPKPH is inferred;

the kinase function of MAPK~{p1,p2} is not visible and not inferred.
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Evaluation Results in BIOCHAM

• MAPK model [Levchenko et al. 00]

the kinase function of RAFK, RAF~{p1} and MEK~{p1,p2} is inferred;

the phosphatase function of RAFPH, MEKPH and MAPKPH is inferred;

the kinase function of MAPK~{p1,p2} is not visible and not inferred.

• Model of the mammalian cell cycle control after [Kohn 99] 165 proteins

and genes, 500 variables and 800 rules. Type inference in < 1sec CPU :

– No compound is both a kinase and a phosphatase;

– cdc25A and cdc25C are the only phosphatases found together with

the deacetylase HDAC1.

– The cdk are inferred to be kinases only in complexes with cyclins;

– the acetylases pCAF, p300 are identified to kinases.
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Use of Protein Functions Types

• Check the consistency of reaction models.

• Restrict the search space for reaction rules in model revision or network

inference.

• Build modules according to protein functions
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Influence Graphs as Types

AI = P({A activates B | A, B ∈M} ∪ {A inhibits B | A, B ∈M}).

The influence graph of a reaction model is defined by αRI : CR → AI

αRI(x) = {A inhibits B | ∃(ei for Si ⇒ S′
i) ∈ x,

li(A) > 0 and ri(B)− li(B) < 0}

∪{A activates B | ∃(ei for Si ⇒ S′
i) ∈ x,

li(A) > 0 and ri(B)− li(B) > 0}
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Influence Graphs as Types

AI = P({A activates B | A, B ∈M} ∪ {A inhibits B | A, B ∈M}).

The influence graph of a reaction model is defined by αRI : CR → AI

αRI(x) = {A inhibits B | ∃(ei for Si ⇒ S′
i) ∈ x,

li(A) > 0 and ri(B)− li(B) < 0}

∪{A activates B | ∃(ei for Si ⇒ S′
i) ∈ x,

li(A) > 0 and ri(B)− li(B) > 0}

αRI({A + B => C}) = { A inhibits B, A inhibits A, B inhibits A,

B inhibits B, A activates C, B activates C}

αRI({A = [C] => B}) = { C inhibits A, A inhibits A, A activates B, C activates B

αRI({A = [B] => }) = { B inhibits A, A inhibits A}

αRI({ = [B] => A}) = { B activates A}
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Influence Graphs as Types

AI = P({A activates B | A, B ∈M} ∪ {A inhibits B | A, B ∈M}).

The influence graph of a reaction model is defined by αRI : CR → AI

αRI(x) = {A inhibits B | ∃(ei for Si ⇒ S′
i) ∈ x,

li(A) > 0 and ri(B)− li(B) < 0}

∪{A activates B | ∃(ei for Si ⇒ S′
i) ∈ x,

li(A) > 0 and ri(B)− li(B) > 0}

Proposition 13 Let γRI(f) = ∪αRI
−1(↓ f), CR

−→αRI

←−γRI
AI is a Galois

connection.
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MAPK model: Reaction Graph →α Influence Graph

rule_1

RAF-RAFK

RAF

RAFK

rule_2rule_21

rule_3

RAFPH-RAF~{p1}

RAFPH

RAF~{p1}

rule_5

rule_7

rule_4 rule_22

MEK-RAF~{p1}

MEK

rule_6rule_24

MEK~{p1}-RAF~{p1}

MEK~{p1}

rule_9

rule_8rule_23

MEKPH-MEK~{p1}

MEKPH

rule_11

rule_10 rule_25

MEKPH-MEK~{p1,p2}

MEK~{p1,p2}

rule_13

rule_15

rule_12 rule_26

MAPK-MEK~{p1,p2}

MAPK

rule_14 rule_27

MAPK~{p1}-MEK~{p1,p2}

MAPK~{p1}

rule_17

rule_16 rule_28

MAPKPH-MAPK~{p1}

MAPKPH

rule_19

rule_18 rule_29

MAPKPH-MAPK~{p1,p2}

MAPK~{p1,p2}

rule_20rule_30

RAF

RAF-RAFK

RAFK RAF~{p1}

RAFPH

RAFPH-RAF~{p1}

MEK

MEK-RAF~{p1}

MEK~{p1}

MEK~{p1}-RAF~{p1}

MEKPH

MEKPH-MEK~{p1}

MEK~{p1,p2}

MEKPH-MEK~{p1,p2}

MAPK

MAPK-MEK~{p1,p2}

MAPK~{p1}

MAPK~{p1}-MEK~{p1,p2}

MAPKPH

MAPKPH-MAPK~{p1}

MAPK~{p1,p2}

MAPKPH-MAPK~{p1,p2}

Thomas’s conditions

for multistationarity

and oscillations apply here :
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P53-Mdm2: Reaction Graph →α Influence Graph

rule_1

p53

rule_2

rule_3

rule_13

p53~{u}

Mdm2::n

rule_6

rule_17 rule_19 rule_20

rule_4rule_5

p53~{uu}

rule_7rule_8

rule_9

DNAdam

rule_10

rule_11

Mdm2::c

rule_12rule_14

Mdm2~{p}::c

rule_15 rule_16 rule_18

p53

p53~{u}

Mdm2::c

p53~{uu}

Mdm2::n

Mdm2~{p}::c DNAdam

Inhitions hidden in the kinetic expressions are missed
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Use of Influence Types

• Check the consistency of reaction models

• Analyze the dynamics of the reaction model (multistationarity,

oscillations, ...)

• Restrict the search space for reaction rules in model revision or network

inference

• Build modules according to the influence graph
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Influence Graph Abstraction from the Differential Semantics

Let us denote by β the mapping from CR to DJ that extracts ẋk and hence

the Jacobian from the kinetic expressions in the reaction rules.

Def. 14 The differential influence abstraction αJI : DJ → AI is the

function

αJI(x) = {A activates B | ∂ ˙xB/∂xA > 0 in some point of the phase space}

∪{A inhibits B | ∂ ˙xB/∂xA < 0 in some point of the phase space}

defined purely from the kinetic expressions... compatibility with the rules ?
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Monotonic Kinetics

Def. 15 A kinetic expression ei is monotonic w.r.t. a reaction model x iff

for all molecules xk we have

1. for all points of the phase space ∂ei/∂xk ≥ 0

2. if there exists a point in the phase space s.t. ∂ei/∂xk > 0 then

li(xk) > 0

The model x will be said to have monotonic kinetics if each of its reaction

rules has a monotonic kinetic expression.

The mass action law kinetics, ei = k ∗Πxi
li , are monotonic

Hill’s kinetics (and Michaelis-Menten kinetics when n = 1)

ei = Vm ∗ xs
n/(Km + xs

n) where Vm = k ∗ (xe + xe ∗ xs/Km) for an

enzymatic reaction xs = [xe] => xp, are also monotonic.
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Comparison to the Syntactical Influence Graph

Proposition 16 For any reaction model x with monotonic kinetics,

αJI ◦ β(x) ⊆ αRI(x).

Proof: If (A activates B) ∈ αJI ◦ β(x) then ∂Ḃ/∂A > 0. Hence there

exists a term (ri(B)− li(B)) ∗ ei in the ODE with ∂ei/∂A of the same sign

as ri(B)− li(B). Let us suppose that ri(B)− li(B) > 0 then ∂ei/∂A > 0

and since ei is monotonic we get that li(A) > 0 and thus that (A activates

B) ∈ αRI(x). If on the contrary ri(B)− li(B) < 0 then ∂ei/∂A < 0,

impossible.

If (A inhibits B) ∈ αJI ◦ β(x) then ∂Ḃ/∂A < 0. Hence there exists a term

(ri(B)− li(B)) ∗ ei with ∂ei/∂A of sign opposite to that of ri(B)− li(B).

Let us suppose that ri(B)− li(B) > 0 then ∂ei/∂A < 0, impossible. If on

the contrary ri(B)− li(B) < 0 then ∂ei/∂A > 0 and since ei is monotonic

we get that li(A) > 0 and thus that (A activates B) ∈ αRI(x).

�
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Comparison to the Syntactical Influence Graph

Even with mass action law kinetics, there is no equality between αJI ◦ β

and αRI .
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Comparison to the Syntactical Influence Graph

Even with mass action law kinetics, there is no equality between αJI ◦ β

and αRI .

For instance let x be the following model :

k1 ∗A for A => B

k2 ∗A for = [A] => A

We have αRI(x) = {A activates B, A activates A, A inhibits A}, however

Ȧ = (k2 − k1) ∗A, hence ∂Ȧ/∂A can be made always positive or always

negative or always null, resulting in the absence from αJI ◦ β(x) of,

respectively, A inhibits A, A activates A or both.
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Non-monotonicity of β

β is not monotonic since adding rules can compensate an existing rule in

the differential expression and eliminate terms in the differential equations.

The differential semantics is thus not an abstraction of the reaction models

ordered by set inclusion in the sense of abstract interpretation.

The above case shows that αJI ◦ β applied to the first rule contains A

inhibits A, whereas its application to the set of two rules (greater in CR)

may not.

A sufficient condition for β to be monotonic is that in the model no kinetic

expression can compensate another one in the Jacobian. That is :

∀xi, xj∃?k s.t. rk(xi) 6= lk(xi) and ∂ek/∂xj 6= 0.
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Precise Kinetics

Def. 17 A kinetic expression ei is precise w.r.t. a reaction model x iff for

all molecules xk we have

1. for all points of the phase space ∂ei/∂xk ≥ 0

2. there exists a point in the phase space s.t. ∂ei/∂xk > 0 iff li(xk) > 0

Note that precise implies monotonic.

Proposition 18 Mass action law, Michaelis Menten, and Hill kinetics are

precise.

Theorem 19 If x has precise kinetics and no molecule is at the same time

an activator and an inhibitor of the same target molecule, then

αRI(x) = αJI ◦ β(x).

François Fages 48



Precise Kinetics

Proposition 20 Let x be a model with precise kinetics, and A and B be

two molecules.

If A activates B is in αRI(x) but A inhibits B is not in αRI(x) then A

activates B is in αJI ◦ β(x) (and reciprocally for inhibitions).

Proof: Since ∂Ḃ/∂A =
∑n

i=1(ri(B)− li(B)) ∗ ∂ei/∂A and all ei are

monotonic we get that ∂Ḃ/∂A =
∑

{i≤n|li(A)>0}(ri(B)− li(B)) ∗ ∂ei/∂A.

Now if A activates B is in αRI(x) but A inhibits B is not in αRI(x) then

all rule such that li(A) > 0 verify ri(B)− li(B) ≥ 0 and there is at least one

rule for which the inequality is strict. We thus get that ∂Ḃ/∂A is a sum of

positive numbers, amongst which one is such that ri(B)− li(B) > 0 and

li(A) > 0 which, since x is precise, implies that there exists a point in the

phase space for which ∂ei/∂A > 0 thus ∂Ḃ/∂A > 0 at that point and A

activates B is in αJI ◦ β(x).
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