Computational Methods in Systems and Synthetic Biology

François Fages Constraint Programming Group INRIA Paris-Rocquencourt

mailto:Francois.Fages@inria.fr

http://contraintes.inria.fr

Overview of the Lectures

- 1. Formal molecules and reaction models in BIOCHAM
- 2. Kinetics
- 3. Qualitative properties formalized in temporal logic CTL
- 4. Quantitative properties formalized in LTL(R) and pLTL(R)
- 5. Reaction hypergraphs and influence graphs
 - Differential Influence Graph
 - Syntactical Influence Graph
 - Over-approximation and Equivalence theorems
 - Application to models of Cell Cycle control, MAPK signalling and P53/Mdm2
- 6. Hierarchy of semantics and typing for systems biology by abstract interpretation

7. ...

Related Publications

F. Fages and S. Soliman. From reaction models to influence graphs and back: a theorem *Formal Methods in Systems Biology*, Springer-Verlag, Lecture Notes in Bioinformatics, LNBI 5054. June 2008

F. Fages and S. Soliman. Abstract Interpretation and Types for Systems Biology. *Theoretical Computer Science* 403, pp.52-70, 2008

F. Fages and S. Soliman. Type inference in Systems Biology. Computational Methods in Systems Biology, CMSB'06 Trento, Springer-Verlag, Lecture Notes in Bioinformatics, LNBI 4210, pp. 48-62, 2006.

Implemented in the Biochemical Abstract Machine modeling environment http://contraintes.inria.fr/BIOCHAM

Biologists like Diagrams ...

... also on Computers

Reaction Hypergraphs and Influence Graphs

k1*[A] for $A = [C] \Rightarrow B$.

k2*[B]*[D] for B+D => E.

Reaction Hypergraphs and Influence Graphs

- k1*[A] for $A = [C] \Rightarrow B$.
- $k_{2*}[B] * [D] \text{ for } B+D => E.$

René Thomas's Conditions Apply on Influence Graphs

Originally introduced to reason about gene regulatory networks [Thomas 73, 81] :

- The existence of positive circuits in the influence graph is a necessary condition for multistationarity (e.g. cell differentiation).
 proved for :
 ODE systems [Soulé 03] ... [Snoussi 89]
 Boolean networks [Rémy Ruet Thieffry 05] ...
 Discrete networks [Richard 06] ...
- The existence of negative circuits is a necessary condition for oscillations (e.g. homeostasis).
 ODE systems [Snoussi 89]

Reaction Rules Models

In SBML (Systems Biology Markup Language) and BIOCHAM, a reaction model R is a set of reaction rules of the form

$$e \text{ for } l => r$$

where l is a multiset of molecule names,

r is the transformed multiset,

and e is a differentiable positive kinetic expression.

Reaction Rules Models

In SBML (Systems Biology Markup Language) and BIOCHAM, a reaction model R is a set of reaction rules of the form

$$e \text{ for } l => r$$

where l is a multiset of molecule names,

r is the transformed multiset,

and e is a differentiable positive kinetic expression.

```
k1 for _ => A
k2*[A] for A => _
k3*[A]*[B] for A + B => C
k4*[C] for C => A + B
V5*[A]/(K5+[A]) for A =[B]=> Ap
k6*r*[Acyt] for Acyt => Anuc
```


Differential Semantics of Reaction Models

Differential Semantics of Reaction Models

Definition 1 The differential semantics of a reaction model

$$R = \{e_i \text{ for } l_i => r_i\}_{i=1,...,n}$$

is the ODE system

$$dx_k/dt = \dot{x_k} = \sum_{i=1}^n (r_i(x_k) - l_i(x_k)) * e_i$$

where $r_i(x_k)$ (resp. l_i) is the stoichiometric coefficient of x_k in the right (resp. left) hand side of rule i.

Differential Influence Graph (DIG)

Consider a reaction model R and its differential semantics. The Jacobian matrix J is formed of the partial derivatives

$$J_{ij} = \partial \dot{x_i} / \partial x_j$$

Definition 2 The differential influence graph (DIG) of a reaction model R is the graph of molecules with two kinds of edges: $DIG(R) = \{A \xrightarrow{+} B \mid \partial \dot{x_B} / \partial x_A > 0 \text{ in some point of the phase space}\}$ $\cup \{A \xrightarrow{-} B \mid \partial \dot{x_B} / \partial x_A < 0 \text{ in some point of the phase space}\}$

Not necessarily immediate to compute.

Example of DIG

k1 for _ => A k2*[A] for A => _ k3*[A]*[B] for A + B => C $\dot{x_A} = k1 - k2 * x_A - k3 * x_A * x_B$ $\dot{x_B} = -k3 * x_A * x_B$ $\dot{x_C} = k3 * x_A * x_B$

DIG = ?

Example of DIG

k1 for _ => A k2*[A] for A => _ k3*[A]*[B] for A + B => C $\dot{x_A} = k1 - k2 * x_A - k3 * x_A * x_B$ $\dot{x_B} = -k3 * x_A * x_B$ $\dot{x_C} = k3 * x_A * x_B$

 $DIG = \{ A \xrightarrow{-} A, B \xrightarrow{-} A, A \xrightarrow{-} B, B \xrightarrow{-} B, A \xrightarrow{+} C, B \xrightarrow{+} C \}$

Stoichiometric Influence Graph (SIG)

Definition 3 The stoichiometric influence graph (SIG) of a reaction model R is defined by $SIG(R) = \{A \xrightarrow{+} B \mid \exists (e_i \text{ for } l_i \Rightarrow r_i) \in R, \\ l_i(A) > 0 \text{ and } r_i(B) - l_i(B) > 0\}$ $\cup \{A \xrightarrow{-} B \mid \exists (e_i \text{ for } l_i \Rightarrow r_i) \in R, \\ l_i(A) > 0 \text{ and } r_i(B) - l_i(B) < 0\}$

Stoichiometric Influence Graph (SIG)

Definition 3 The stoichiometric influence graph (SIG) of a reaction model R is defined by $SIG(R) = \{A \xrightarrow{+} B \mid \exists (e_i \text{ for } l_i \Rightarrow r_i) \in R, \\ l_i(A) > 0 \text{ and } r_i(B) - l_i(B) > 0\}$ $\cup \{A \xrightarrow{-} B \mid \exists (e_i \text{ for } l_i \Rightarrow r_i) \in R, \\ l_i(A) > 0 \text{ and } r_i(B) - l_i(B) < 0\}$

 $SIG(\{ = [B] \Rightarrow A\}) = \{ B \xrightarrow{+} A\}$ $SIG(\{A = [B] \Rightarrow \}) = \{ B \xrightarrow{-} A, A \xrightarrow{-} A\}$ $SIG(\{A = [C] \Rightarrow B\}) = \{ C \xrightarrow{-} A, A \xrightarrow{-} A, A \xrightarrow{+} B, C \xrightarrow{+} B\}$ $SIG(\{A = [C] \Rightarrow C\}) = \{ A \xrightarrow{+} C, B \xrightarrow{+} C, A \xrightarrow{-} B, B \xrightarrow{-} A, A \xrightarrow{-} A, B \xrightarrow{-} B, B \xrightarrow{-} A, A \xrightarrow{-} A, B \xrightarrow{-} B, B \xrightarrow{-} A, A \xrightarrow{-} A, B \xrightarrow{-} B, B \xrightarrow{-} A, A \xrightarrow{-} A, B \xrightarrow{-} B, B \xrightarrow{-} A, A \xrightarrow{-} A, B \xrightarrow{-} B, B \xrightarrow{-} A, A \xrightarrow{-} A, B \xrightarrow{-} B, B \xrightarrow{-} A, A \xrightarrow{-} A, B \xrightarrow{-} B, B \xrightarrow{-} A, A \xrightarrow{-} A, B \xrightarrow{-} B, B \xrightarrow{-} B, B \xrightarrow{-} A, A \xrightarrow{-} A, B \xrightarrow{-} B, B \xrightarrow{-} B \xrightarrow{-} B, B \xrightarrow{-} B \xrightarrow{-}$

Stoichiometric Influence Graph (SIG)

Definition 3 The stoichiometric influence graph (SIG) of a reaction model R is defined by

 $SIG(R) = \{A \xrightarrow{+} B \mid \exists (e_i \text{ for } l_i \Rightarrow r_i) \in R,$ $l_i(A) > 0 \text{ and } r_i(B) - l_i(B) > 0$ $\cup \{ A \xrightarrow{-} B \mid \exists (e_i \text{ for } l_i \Rightarrow r_i) \in R,$ $l_i(A) > 0 \text{ and } r_i(B) - l_i(B) < 0$ $SIG(\{ = [B] \Rightarrow A\}) = \{ B \xrightarrow{+} A \}$ $SIG(\{A = [B] \Rightarrow \}) = \{B \rightarrow A, A \rightarrow A\}$ $SIG(\{A = [C] \Rightarrow B\}) = \{C \xrightarrow{-} A, A \xrightarrow{-} A, A \xrightarrow{+} B, C \xrightarrow{+} B\}$ $SIG(\{A + B \Rightarrow C\}) = \{A \xrightarrow{+} C, B \xrightarrow{+} C, A \xrightarrow{-} B, A \xrightarrow{-} B, A \xrightarrow{-} B\}$ $B \xrightarrow{-} A, A \xrightarrow{-} A, B \xrightarrow{-} B, \}$

Proposition 4 The SIG of n reaction rules is computable in O(n) time

Trançois Fages

The SIG of Kohn's Map of the Mammalian Cell Cycle

Reaction model:

500 variables

800 reaction rules

Stoic. Influence Graph:computed in 0.2 sec.1231 activation edges1089 inhibition edges

no molecule is at the same time an activator and an inhibitor of a same target molecule

Trançois Fages

MAPK Signalling Cascade

Purely directional "cascade" of reactions: no negative feedback

MAPK Signalling Cascade

Purely directional "cascade" of reactions: no negative feedback sustained oscillations observed [Qiao et al. 07]

MAPK Signalling Cascade

Purely directional "cascade" of reactions: no negative feedback sustained oscillations observed [Qiao et al. 07] multistability observed [Kholodenko et al. 06]

Trançois Fages

Trançois Fages

Increasing Kinetics

Definition 5 In a reaction model $R = \{e_i \text{ for } l_i = r_i \mid i \in I\}$, we say that a kinetic expression e_i is increasing iff for all molecules x_k we have

- 1. $\frac{\partial e_i}{\partial x_k} \geq 0$ in all points of the phase space,
- 2. $l_i(x_k) > 0$ whenever $\partial e_i / \partial x_k > 0$ in some point of the phase space.

Increasing Kinetics

Definition 5 In a reaction model $R = \{e_i \text{ for } l_i = r_i \mid i \in I\}$, we say that a kinetic expression e_i is increasing iff for all molecules x_k we have

- 1. $\frac{\partial e_i}{\partial x_k} \geq 0$ in all points of the phase space,
- 2. $l_i(x_k) > 0$ whenever $\partial e_i / \partial x_k > 0$ in some point of the phase space.

Proposition 6 The mass action law kinetics, $e = k * \Pi x_i^{l_i}$, Michaelis-Menten and Hill's kinetics $e = V_m * x_s^n / (K_m^n + x_s^n)$ are increasing.

Negative Hill kinetics $e_i = V_m / (K_m^n + x_s^n)$ are not increasing (used for inhibitions).

Trançois Fages

Theorem 7 For any reaction model R with increasing kinetics, the DIG is a subgraph of the SIG: $DIG(R) \subseteq SIG(R)$.

Theorem 7 For any reaction model R with increasing kinetics, the DIG is a subgraph of the SIG: $DIG(R) \subseteq SIG(R)$.

PROOF: If $(A \xrightarrow{+} B) \in DIG(R)$ then $\partial \dot{x_B} / \partial x_A > 0$ in some point of the phase space.

Theorem 7 For any reaction model R with increasing kinetics, the DIG is a subgraph of the SIG: $DIG(R) \subseteq SIG(R)$.

PROOF: If $(A \xrightarrow{+} B) \in DIG(R)$ then $\partial \dot{x_B} / \partial x_A > 0$ in some point of the phase space. Hence there exists a term in the differential semantics, of the form $(r_i(B) - l_i(B)) * e_i$ with $\partial e_i / \partial x_A$ of the same sign as $r_i(B) - l_i(B)$.

Theorem 7 For any reaction model R with increasing kinetics, the DIG is a subgraph of the SIG: $DIG(R) \subseteq SIG(R)$.

PROOF: If $(A \xrightarrow{+} B) \in DIG(R)$ then $\partial \dot{x_B} / \partial x_A > 0$ in some point of the phase space. Hence there exists a term in the differential semantics, of the form $(r_i(B) - l_i(B)) * e_i$ with $\partial e_i / \partial x_A$ of the same sign as $r_i(B) - l_i(B)$.

Let us suppose that $r_i(B) - l_i(B) > 0$, then $\partial e_i / \partial x_A > 0$ and,

Theorem 7 For any reaction model R with increasing kinetics, the DIG is a subgraph of the SIG: $DIG(R) \subseteq SIG(R)$.

PROOF: If $(A \xrightarrow{+} B) \in DIG(R)$ then $\partial \dot{x_B} / \partial x_A > 0$ in some point of the phase space. Hence there exists a term in the differential semantics, of the form $(r_i(B) - l_i(B)) * e_i$ with $\partial e_i / \partial x_A$ of the same sign as $r_i(B) - l_i(B)$.

Let us suppose that $r_i(B) - l_i(B) > 0$, then $\partial e_i / \partial x_A > 0$ and, since e_i is increasing, we get that $l_i(A) > 0$ and thus that $(A \xrightarrow{+} B) \in SIG(R)$.

Theorem 7 For any reaction model R with increasing kinetics, the DIG is a subgraph of the SIG: $DIG(R) \subseteq SIG(R)$.

PROOF: If $(A \xrightarrow{+} B) \in DIG(R)$ then $\partial \dot{x_B} / \partial x_A > 0$ in some point of the phase space. Hence there exists a term in the differential semantics, of the form $(r_i(B) - l_i(B)) * e_i$ with $\partial e_i / \partial x_A$ of the same sign as $r_i(B) - l_i(B)$.

Let us suppose that $r_i(B) - l_i(B) > 0$, then $\partial e_i / \partial x_A > 0$ and, since e_i is increasing, we get that $l_i(A) > 0$ and thus that $(A \xrightarrow{+} B) \in SIG(R)$.

If on the contrary $r_i(B) - l_i(B) < 0$, then $\partial e_i / \partial x_A < 0$, which is not possible for an increasing kinetics.

The proof is symmetrical for $(A \rightarrow B)$.

Theorem 7 For any reaction model R with increasing kinetics, the DIG is a subgraph of the SIG: $DIG(R) \subseteq SIG(R)$.

PROOF: If $(A \xrightarrow{+} B) \in DIG(R)$ then $\partial \dot{x_B} / \partial x_A > 0$ in some point of the phase space. Hence there exists a term in the differential semantics, of the form $(r_i(B) - l_i(B)) * e_i$ with $\partial e_i / \partial x_A$ of the same sign as $r_i(B) - l_i(B)$.

Let us suppose that $r_i(B) - l_i(B) > 0$, then $\partial e_i / \partial x_A > 0$ and, since e_i is increasing, we get that $l_i(A) > 0$ and thus that $(A \xrightarrow{+} B) \in SIG(R)$.

If on the contrary $r_i(B) - l_i(B) < 0$, then $\partial e_i / \partial x_A < 0$, which is not possible for an increasing kinetics.

The proof is symmetrical for $(A \rightarrow B)$.

 $DIG(R) \neq SIG(R)$ for $R = \{k_1 * A \text{ for } A => _ k_2 * A \text{ for } _ = [A] => A\}$ as $\dot{x_A} = (k_2 - k_1) * x_A$ can be made always positive, null or negative.

Definition 8 In a reaction model $R = \{e_i \text{ for } l_i = r_i \mid i \in I\}$, a kinetic expression e_i is strongly increasing iff for all molecules x_k we have

- 1. $\partial e_i / \partial x_k \geq 0$ in all points of the phase space,
- 2. $l_i(x_k) > 0$ if and only if there exists a point in the phase space s.t. $\partial e_i / \partial x_k > 0$

Definition 8 In a reaction model $R = \{e_i \text{ for } l_i = r_i \mid i \in I\}$, a kinetic expression e_i is strongly increasing iff for all molecules x_k we have

- 1. $\partial e_i / \partial x_k \geq 0$ in all points of the phase space,
- 2. $l_i(x_k) > 0$ if and only if there exists a point in the phase space s.t. $\partial e_i / \partial x_k > 0$

Proposition 9 Mass action law, Michaelis Menten, and Hill kinetics are strongly increasing.

Lemma 10 Let R be a reaction model with strongly increasing kinetics. If $(A \xrightarrow{+} B) \in SIG(R)$ and $(A \xrightarrow{-} B) \notin SIG(R)$ then $(A \xrightarrow{+} B) \in DIG(R)$. If $(A \xrightarrow{-} B) \in SIG(R)$ and $(A \xrightarrow{+} B) \notin SIG(R)$ then $(A \xrightarrow{-} B) \in DIG(R)$.

Lemma 10 Let R be a reaction model with strongly increasing kinetics. If $(A \xrightarrow{+} B) \in SIG(R)$ and $(A \xrightarrow{-} B) \notin SIG(R)$ then $(A \xrightarrow{+} B) \in DIG(R)$. If $(A \xrightarrow{-} B) \in SIG(R)$ and $(A \xrightarrow{+} B) \notin SIG(R)$ then $(A \xrightarrow{-} B) \in DIG(R)$. PROOF: Since $\partial \dot{B}/\partial A = \sum_{i=1}^{n} (r_i(B) - l_i(B)) * \partial e_i/\partial A$ and all e_i are increasing we get that $\partial \dot{B}/\partial A = \sum_{\{i \leq n | l_i(A) > 0\}} (r_i(B) - l_i(B)) * \partial e_i/\partial A$.

. . .

Lemma 10 Let R be a reaction model with strongly increasing kinetics. If $(A \xrightarrow{+} B) \in SIG(R)$ and $(A \xrightarrow{-} B) \notin SIG(R)$ then $(A \xrightarrow{+} B) \in DIG(R)$. If $(A \xrightarrow{-} B) \in SIG(R)$ and $(A \xrightarrow{+} B) \notin SIG(R)$ then $(A \xrightarrow{-} B) \in DIG(R)$. PROOF: Since $\partial \dot{B}/\partial A = \sum_{i=1}^{n} (r_i(B) - l_i(B)) * \partial e_i/\partial A$ and all e_i are increasing we get that $\partial \dot{B}/\partial A = \sum_{\{i \leq n | l_i(A) > 0\}} (r_i(B) - l_i(B)) * \partial e_i/\partial A$. Now if $A \xrightarrow{+} B \in SIG$, but not $(A \xrightarrow{-} B)$, then all rules such that $l_i(A) > 0$ verify $r_i(B) - l_i(B) \ge 0$ and there is at least one rule for which the inequality is strict.

Lemma 10 Let R be a reaction model with strongly increasing kinetics. If $(A \xrightarrow{+} B) \in SIG(R)$ and $(A \xrightarrow{-} B) \notin SIG(R)$ then $(A \xrightarrow{+} B) \in DIG(R)$. If $(A \rightarrow B) \in SIG(R)$ and $(A \rightarrow B) \notin SIG(R)$ then $(A \rightarrow B) \in DIG(R)$. **PROOF:** Since $\partial \dot{B} / \partial A = \sum_{i=1}^{n} (r_i(B) - l_i(B)) * \partial e_i / \partial A$ and all e_i are increasing we get that $\partial \dot{B} / \partial A = \sum_{\{i < n \mid l_i(A) > 0\}} (r_i(B) - l_i(B)) * \partial e_i / \partial A.$ Now if $A \xrightarrow{+} B \in SIG$, but not $(A \xrightarrow{-} B)$, then all rules such that $l_i(A) > 0$ verify $r_i(B) - l_i(B) \ge 0$ and there is at least one rule for which the inequality is strict. We thus get that $\partial B/\partial A$ is a sum of positive numbers, amongst which one is such that $r_i(B) - l_i(B) > 0$ and $l_i(A) > 0$ which, since M is strongly increasing, implies that there exists a point in the space for which $\partial e_i/\partial A > 0$. Hence $\partial \dot{B}/\partial A > 0$ at that point, and $A \xrightarrow{+} B \in DIG$.

Lemma 10 Let R be a reaction model with strongly increasing kinetics. If $(A \xrightarrow{+} B) \in SIG(R)$ and $(A \xrightarrow{-} B) \notin SIG(R)$ then $(A \xrightarrow{+} B) \in DIG(R)$. If $(A \rightarrow B) \in SIG(R)$ and $(A \rightarrow B) \notin SIG(R)$ then $(A \rightarrow B) \in DIG(R)$. **PROOF:** Since $\partial \dot{B} / \partial A = \sum_{i=1}^{n} (r_i(B) - l_i(B)) * \partial e_i / \partial A$ and all e_i are increasing we get that $\partial \dot{B} / \partial A = \sum_{\{i < n \mid l_i(A) > 0\}} (r_i(B) - l_i(B)) * \partial e_i / \partial A.$ Now if $A \xrightarrow{+} B \in SIG$, but not $(A \xrightarrow{-} B)$, then all rules such that $l_i(A) > 0$ verify $r_i(B) - l_i(B) \ge 0$ and there is at least one rule for which the inequality is strict. We thus get that $\partial B/\partial A$ is a sum of positive numbers, amongst which one is such that $r_i(B) - l_i(B) > 0$ and $l_i(A) > 0$ which, since M is strongly increasing, implies that there exists a point in the space for which $\partial e_i/\partial A > 0$. Hence $\partial \dot{B}/\partial A > 0$ at that point, and $A \xrightarrow{+} B \in DIG$. Same reasoning for inhibitions with opposite sign for $r_i(B) - l_i(B)$.

Equivalence Theorem

Main Theorem 11 Let R be a reaction model with strongly increasing kinetics and where no molecule is at the same time an activator and an inhibitor of the same target molecule, then SIG(R) = DIG(R).

Equivalence Theorem

Main Theorem 11 Let R be a reaction model with strongly increasing kinetics and where no molecule is at the same time an activator and an inhibitor of the same target molecule, then SIG(R) = DIG(R).

Corollary 12 The DIG of a reaction model is independent of the kinetic expressions as long as they are strongly increasing, if there is no activation+inhibition pair in the SIG.

Equivalence Theorem

Main Theorem 11 Let R be a reaction model with strongly increasing kinetics and where no molecule is at the same time an activator and an inhibitor of the same target molecule, then SIG(R) = DIG(R).

Corollary 12 The DIG of a reaction model is independent of the kinetic expressions as long as they are strongly increasing, if there is no activation+inhibition pair in the SIG.

Corollary 13 The DIG of a reaction model of n rules with strongly increasing kinetics is computable in time O(n) if there is no activation+inhibition pair in the SIG.

Cell Cycle Control Models

The SIG of Kohn's map contains no activation+inhibition pair hence the DIGs of Kohn's map are the same for any strongly increasing kinetics and any strictly positive parameter values.

Cell Cycle Control Models

Cell Cycle Control Models

Trançois Fages

Reaction Inhibitors

In Ciliberto et al.'s Model of P53/Mdm2 [CNT05cc]

P53 \rightarrow the phosphorylation of Mdm2

k1*Mdm2/(k2+P53) for Mdm2 => Mdm2p

the kinetic expression is not increasing

Trançois Fages

Reaction Rules with Antagonists

Let us denote by $(e \text{ for } l = [/a] \Rightarrow r)$ a generalized reaction rule with antagonists a.

Reaction Rules with Antagonists

Let us denote by $(e \text{ for } l = [/a] \Rightarrow r)$ a generalized reaction rule with antagonists a.

Definition 14 The generalized stoichiometric influence graph (GSIG) is the graph:

$$\{A \xrightarrow{-}B \mid \exists (e_i \text{ for } l_i = [/a_i] \Rightarrow r_i) \in M, \\ l_i(A) > 0 \text{ and } r_i(B) - l_i(B) < 0 \} \\ \cup \{A \xrightarrow{-}B \mid \exists (e_i \text{ for } l_i = [/a_i] \Rightarrow r_i) \in M, \\ a_i(A) > 0 \text{ and } r_i(B) - l_i(B) > 0 \} \\ \cup \{A \xrightarrow{+}B \mid \exists (e_i \text{ for } l_i = [/a_i] \Rightarrow r_i) \in M, \\ l_i(A) > 0 \text{ and } r_i(B) - l_i(B) > 0 \} \\ \cup \{A \xrightarrow{+}B \mid \exists (e_i \text{ for } l_i = [/a_i] \Rightarrow r_i) \in M, \\ a_i(A) > 0 \text{ and } r_i(B) - l_i(B) < 0 \} \\ \cup \{A \xrightarrow{+}B \mid \exists (e_i \text{ for } l_i = [/a_i] \Rightarrow r_i) \in M, \\ a_i(A) > 0 \text{ and } r_i(B) - l_i(B) < 0 \}$$

Reaction Rules with Antagonists

Let us denote by $(e \text{ for } l = [/a] \Rightarrow r)$ a generalized reaction rule with antagonists a.

Definition 14 The generalized stoichiometric influence graph (GSIG) is the graph:

$$\{A \xrightarrow{-}B \mid \exists (e_i \text{ for } l_i = [/a_i] \Rightarrow r_i) \in M, \\ l_i(A) > 0 \text{ and } r_i(B) - l_i(B) < 0 \} \\ \cup \{A \xrightarrow{-}B \mid \exists (e_i \text{ for } l_i = [/a_i] \Rightarrow r_i) \in M, \\ a_i(A) > 0 \text{ and } r_i(B) - l_i(B) > 0 \} \\ \cup \{A \xrightarrow{+}B \mid \exists (e_i \text{ for } l_i = [/a_i] \Rightarrow r_i) \in M, \\ l_i(A) > 0 \text{ and } r_i(B) - l_i(B) > 0 \} \\ \cup \{A \xrightarrow{+}B \mid \exists (e_i \text{ for } l_i = [/a_i] \Rightarrow r_i) \in M, \\ a_i(A) > 0 \text{ and } r_i(B) - l_i(B) < 0 \} \\ \downarrow \{A \xrightarrow{+}B \mid \exists (e_i \text{ for } l_i = [/a_i] \Rightarrow r_i) \in M, \\ a_i(A) > 0 \text{ and } r_i(B) - l_i(B) < 0 \}$$

 $\operatorname{SIG}(A=[/I]=>B)=\{A \xrightarrow{+} B, I \xrightarrow{-} B, I \xrightarrow{+} A, A \xrightarrow{-} A\}$

Definition 15 In a generalized reaction rule e for $l = [/a] \Rightarrow r$, a kinetic expression e is compatible (resp. strongly compatible) iff for all molecules x_k we have

- 1. $l(x_k) > 0$ if (resp. iff) there exists a point in the phase space such that $\frac{\partial e}{\partial x_k} > 0$,
- 2. $a(x_k) > 0$ if (resp. iff) there exists a point in the phase space such that $\frac{\partial e}{\partial x_k} < 0.$

Definition 15 In a generalized reaction rule e for $l = [/a] \Rightarrow r$, a kinetic expression e is compatible (resp. strongly compatible) iff for all molecules x_k we have

- 1. $l(x_k) > 0$ if (resp. iff) there exists a point in the phase space such that $\frac{\partial e}{\partial x_k} > 0$,
- 2. $a(x_k) > 0$ if (resp. iff) there exists a point in the phase space such that $\frac{\partial e}{\partial x_k} < 0.$
- A (strongly) *increasing* kinetics is (strongly) *compatible*.

Definition 15 In a generalized reaction rule e for $l = [/a] \Rightarrow r$, a kinetic expression e is compatible (resp. strongly compatible) iff for all molecules x_k we have

- 1. $l(x_k) > 0$ if (resp. iff) there exists a point in the phase space such that $\frac{\partial e}{\partial x_k} > 0$,
- 2. $a(x_k) > 0$ if (resp. iff) there exists a point in the phase space such that $\frac{\partial e}{\partial x_k} < 0$.
- A (strongly) *increasing* kinetics is (strongly) *compatible*.

Negative Hill kinetics are strongly compatible.

Definition 15 In a generalized reaction rule e for $l = [/a] \Rightarrow r$, a kinetic expression e is compatible (resp. strongly compatible) iff for all molecules x_k we have

- 1. $l(x_k) > 0$ if (resp. iff) there exists a point in the phase space such that $\frac{\partial e}{\partial x_k} > 0$,
- 2. $a(x_k) > 0$ if (resp. iff) there exists a point in the phase space such that $\frac{\partial e}{\partial x_k} < 0$.
- A (strongly) *increasing* kinetics is (strongly) *compatible*.

Negative Hill kinetics are strongly compatible.

For instance, the kinetics k1*Mdm2/(k2+P53) for Mdm2 =[/P53]=> Mdm2p for the inhibition by P53 of Mdm2 phosphorylation is strongly compatible.

Equivalence Theorem with Antagonists

Theorem 16 For any generalized reaction model R with a compatible kinetics, $DIG(R) \subseteq GSIG(R)$.

Equivalence Theorem with Antagonists

Theorem 16 For any generalized reaction model R with a compatible kinetics, $DIG(R) \subseteq GSIG(R)$.

Theorem 17 For any generalized reaction model R with a strongly compatible kinetics, and a GSIG containing no activation+inhibition pair, DIG(R)=GSIG(R).

• ODE's systems derived from reaction rules enjoy remarkable properties

- ODE's systems derived from reaction rules enjoy remarkable properties
 - The signs of the Jacobian matrix coefficients are essentially independent of the kinetics

- ODE's systems derived from reaction rules enjoy remarkable properties
 - The signs of the Jacobian matrix coefficients are essentially independent of the kinetics
 - The differential influence graph is computable in linear time

- ODE's systems derived from reaction rules enjoy remarkable properties
 - The signs of the Jacobian matrix coefficients are essentially independent of the kinetics
 - The differential influence graph is computable in linear time
- Supports qualitative reasoning on the structure of the network

- ODE's systems derived from reaction rules enjoy remarkable properties
 - The signs of the Jacobian matrix coefficients are essentially independent of the kinetics
 - The differential influence graph is computable in linear time
- Supports qualitative reasoning on the structure of the network
- Supports writing reaction rules/diagrams instead of directly ODEs.

- ODE's systems derived from reaction rules enjoy remarkable properties
 - The signs of the Jacobian matrix coefficients are essentially independent of the kinetics
 - The differential influence graph is computable in linear time
- Supports qualitative reasoning on the structure of the network
- Supports writing reaction rules/diagrams instead of directly ODEs.
- Extend the syntax of (SBML) reaction rules with a notation for antagonists

On-Going Work

 \rightarrow Model reduction strategies based on circuits preserving reductions of the SIG.

On-Going Work

 \rightarrow Model reduction strategies based on circuits preserving reductions of the SIG.

 Reaction Model M
 Reaction Model M'

 Influence Graph G
 circuit
preserving
reduction

- Sufficient conditions for multistability ? for oscillations?
- \rightarrow "Structural" dynamical properties independent from the kinetics
- \rightarrow Property peserved by model reduction

