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‘Overview of the Lectures.

Formal molecules and reaction models in BIOCHAM
Kinetics
Qualitative properties formalized in temporal logic CTL

Quantitative properties formalized in LTL(R) and pLTL(R)

AN S A

Reaction hypergraphs and influence graphs
e Differential Influence Graph
e Syntactical Influence Graph
e Over-approximation and Equivalence theorems
e Application to models of Cell Cycle control, MAPK signalling and
P53 /Mdm?2

6. Hierarchy of semantics and typing for systems biology by abstract
interpretation

7. ...

‘rancois Fages 2 ﬁf NRIA



‘ Related Publications I

F. Fages and S. Soliman. From reaction models to influence graphs and
back: a theorem Formal Methods in Systems Biology, Springer-Verlag,
Lecture Notes in Bioinformatics, LNBI 5054. June 2008

F. Fages and S. Soliman. Abstract Interpretation and Types for Systems
Biology. Theoretical Computer Science 403, pp.52-70, 2008

F. Fages and S. Soliman. Type inference in Systems Biology. Computational
Methods in Systems Biology, CMSB’06 Trento, Springer-Verlag, Lecture
Notes in Bioinformatics, LNBI 4210, pp. 48-62, 2006.

Implemented in the Biochemical Abstract Machine modeling environment
http://contraintes.inria.fr/BIOCHAM
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‘Biologists like Diagrams I
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... also on Computers

H=E

/= Map Yiew - Windows Internet Explorer

’ - I_é htip: fidiscover.ncdi.nibh.gov /mimfview. jsp?selection =8MIM=p53mdm2 V! | | | = lulwi: | ol
Google Gvkohn map cell cyde e | Envoyer 4 G B - 9% Mes favoris- T20eBank o [0 55 ploguéels) 2 Orthographe - E_a Traduire - | | s Ervoyer &~ 0 3> ) Paramatres~
iy ohr |_fél'v'lap Y | | = - B ey~ |ibpage - {0 Outlls -

it
= Genomics and ‘ormatics Group
2 Molecular Interaction Maps == £
LMP, CCR, MNa Cancer Institute
Genomics and Bicinformatics | i Interactive Map requires Adobe SVG viewer .
Map desc nplion f SEgiic Map Imadge
CGroup Home Map description e SySlem Beaiiements) Static Map Image
mMin home = = = =
Molecular interaction map of the p53 and Mdm2 logic elements, which control the Off-On
STKE Paper switch of p53 in response to DNA damage
?Le!em Min Search for Gene
| P53 and Mdm2 ~* o = & ] E F = H
Introduction i —t=f
Map iy 1 -~ ;
Annotations/iReferences i | e 2 1 7 (e
Glossary i : - :
+— B
W oy t 7 1
Map Symbols 5 | ek —I
Map MNavigation l|' B 57
) 1 as 1.
[ P
System Requirements = B | anaEn)
Credits [ i
4
s
& , Apopiosis ; - -
Fig. 2. Koho & FPooanier MMZEm-ps 5-BHRC
Date last update: Dec. 21, 2004
Kurt VW. Kohn and Yves Pommier
b
& Interret # 100% -

‘rancois Fages 5 B NRIA



‘Reaction Hypergraphs and Influence Graphs'

k1x[A] for A =[C]=> B.
k2x[B]*[D] for B+D => E.
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‘Reaction Hypergraphs and Influence Graphs'

k1% [A] for A =[C]=> B. A 5B, ¢ Sa,
k2% [B]*[D] for B+D => E.
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René Thomas’s Conditions Apply on Influence Graphs'

Originally introduced to reason about gene regulatory networks

[Thomas 73, 81] :

e The existence of positive circuits in the influence graph is a necessary

condition for multistationarity (e.g. cell differentiation).
proved for :

ODE systems [Soulé 03] ... [Snoussi 89]

Boolean networks [Rémy Ruet Thieffry 05] ...

Discrete networks [Richard 06] ...

e The existence of negative circuits is a necessary condition for

oscillations (e.g. homeostasis).

ODE systems [Snoussi 89]
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Reaction Rules Models.

In SBML (Systems Biology Markup Language) and BIOCHAM,

a reaction model R is a set of reaction rules of the form
e for |l =>r

where [ is a multiset of molecule names,
r is the transformed multiset,

and e is a differentiable positive kinetic expression.
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Reaction Rules Models.

In SBML (Systems Biology Markup Language) and BIOCHAM,

a reaction model R is a set of reaction rules of the form
e forl =>r

where [ is a multiset of molecule names,
r is the transformed multiset,

and e is a differentiable positive kinetic expression.

k1l for _ => A

k2% [A] for A => _

k3% [A]*[B] for A + B => C
k4x[C] for C => A + B

V5 [A]/(K5+[A]) for A =[B]=> Ap
k6*xrx[Acyt] for Acyt => Anuc

‘rancois Fages 10 ﬁm{ RIA



‘Differential Semantics of Reaction Models.

TAa =kl —k2xx4 —k3*%xx4*2xpR
kl for _ => A

k2x[A] for A => _ rp = —k3*xxa*xxp
k3*[A]*[B] for A + B => C T

]CS*IA*ZCB
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‘Differential Semantics of Reaction Models.

TAa =kl —k2xx4 —k3*%xx4*2xpR
kl for _ => A

k2x[A] for A => _ rp = —k3*xxa*xxp
k3*[A]*[B] for A + B => C o = k3xxa*2p

Definition 1 The differential semantics of a reaction model
R={e; for l; => r;}i=1...n

1s the ODE system

n

dry/dt = 2y = Z(m(a:k) — li(xr)) * €;

1=1

where ri(xy) (resp. l;) is the stoichiometric coefficient of xy, in the right
(resp. left) hand side of rule i.
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Differential Influence Graph (DIG) I

Consider a reaction model R and its differential semantics.

The Jacobian matrix J is formed of the partial derivatives

Jij = 8%1/8$3

Definition 2 The differential influence graph (DIG) of a reaction model R
s the graph of molecules with two kinds of edges:

DIG(R) ={A B | Ox'/0xa > 0 in some point of the phase space}
U{A —B | 0xs/0xs <0 in some point of the phase space}

Not necessarily immediate to compute.
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‘Example of DIGI

k1l for _ => A
k2x[A] for A => _
k3*%[A]*[B] for A + B => C

A=kl —k2%xx4 —k3*xx4*x2xpR
rg = —k3xx4*xpB

rTo =k3*xx4 *xB

DIG =7
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‘Example of DIGI

k1l for _ => A
k2x[A] for A => _
k3*%[A]*[B] for A + B => C

A=kl —k2%xx4 —k3*xx4*x2xpR
rg = —k3xx4*xpB

rTo =k3*xx4 *xB

DIG = {ASA, BSA, ASB, B5B, ASC, BSC)
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‘Stoichiometric Influence Graph (SIG) I

Definition 3 The stoichiometric influence graph (SIG) of a reaction model
R is defined by

SIG(R)= {ALB |3 forl; = r;) €R,
l;,(A) >0 and r;(B) — l;(B) > 0}

U{A —=B | d(e; forl; =1;) € R,
l;,(A) >0 and r;(B) — [;(B) < 0}

‘rancois Fages 16 ﬁm{ RIA



‘Stoichiometric Influence Graph (SIG) I

Definition 3 The stoichiometric influence graph (SIG) of a reaction model
R is defined by

SIG(R)= {ALB |3 forl; = r;) €R,

l;,(A) >0 and r;(B) — l;(B) > 0}

U{A —=B | d(e; forl; =1;) € R,

l;,(A) >0 and r;(B) — [;(B) < 0}
({_ =[B]=> A}) = {B 1A}
SIG({A =[Bl=> _}) = {B SA, A SA)}
SIG({A =[C]=> B}) = {C SA, A A, A 5B, C 5B}
SIG({A + B => ¢}) = {A 55C, B 5C, A 5B,

B SA, A A, B 5B, )
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‘Stoichiometric Influence Graph (SIG) I

Definition 3 The stoichiometric influence graph (SIG) of a reaction model
R is defined by

SIG(R)= {A B | 3(e forl; =) €R,
l;,(A) >0 and r;(B) — [;(B) > 0}

U{A —=B | d(e; forl;=1r;) € R,
l;,(A) >0 and r;(B) — l;(B) < 0}

SIG({_ =[Bl=> A}) = {B A}

SIG({A =[B]=> _}) ={B SA, A SA}

SIG({A =[Cl=> B }) = {C SA, A SA, A 5B, C 5B}
SIG({A + B => ¢}) ={A 5C, B 5C, A 5B,

B SA, A SA, B 5B, )

Proposition 4 The SIG of n reaction rules is computable in O(n) time
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The SIG of Kohn’s Map of the Mammalian Cell Cycle'
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Figure 6A: The Cyclin - E2F cell cycle control system (version 3a- June 8, 1999)

no molecule is at the same time an activator and an inhibitor of a same
target molecule

‘rancois Fages 19 ﬁf NRIA



‘MAPK Signalling Cascade'

MAPEK
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[ MAPK 1"ase ]

Purely directional “cascade” of reactions: no negative feedback
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‘MAPK Signalling Cascade'

MAPEKEK
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it

[ MAPK 1"ase ]

Purely directional “cascade” of reactions: no negative feedback

sustained oscillations observed [Qiao et al. 07]
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‘MAPK Signalling Cascade'

MAPEKEK
l"'\'
[l -~
' -
1
L]
[]
MAPEEK

{ MAPKK 1ase ] r %
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! 5
s Y
ﬁ
MATPR MAFE-F MAFK-FP
- = i - L&
L - -

b L4
it

[ MAPK 1"ase ]

Purely directional “cascade” of reactions: no negative feedback
sustained oscillations observed [Qiao et al. 07]

multistability observed [Kholodenko et al. 06]
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MAPK Reaction and Influence Graphs'
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Negative feedback in the stoichiometric influence graph

Inhibition by sequestration [Sepulchre et al. 08]
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MAPK Reaction and Influence Graphs'
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Negative feedback in the stoichiometric influence graph

Inhibition by sequestration [Sepulchre et al. 08]

What is the relationship between the SIG and the DIG ?
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‘ Increasing Kinetics I

Definition 5 In a reaction model R ={e; for l;=>r; | i € I}, we say that

a kinetic expression e; s increasing iff for all molecules xy we have
1. Oe;/0xy, > 0 in all points of the phase space,

2. l;(zy) > 0 whenever Oe; /0xy, > 0 in some point of the phase space.
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‘ Increasing Kinetics I

Definition 5 In a reaction model R ={e; for l;=>r; | i € I}, we say that

a kinetic expression e; s increasing iff for all molecules xy we have
1. Oe;/0xy, > 0 in all points of the phase space,

2. l;(zy) > 0 whenever Oe; /0xy, > 0 in some point of the phase space.

Proposition 6 The mass action law kinetics, e = k * Ix;',
Michaelis-Menten and Hill’s kinetics e = Vi, x 2" /(K" + 24™)
are 1ncreasing.

Negative Hill kinetics e; = V,,, /(K,,," + xs™) are not increasing

(used for inhibitions).
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Over-approximation Theorem'

Theorem 7 For any reaction model R with increasing kinetics, the DIG 1is

a subgraph of the SIG: DIG(R) C SIG(R).
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Over-approximation Theorem'

Theorem 7 For any reaction model R with increasing kinetics, the DIG 1is
a subgraph of the SIG: DIG(R) C SIG(R).

PrROOF: If (A 5B) € DIG(R) then dx5/8z4 > 0 in some point of the phase

space.
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Over-approximation Theorem'

Theorem 7 For any reaction model R with increasing kinetics, the DIG 1is

a subgraph of the SIG: DIG(R) C SIG(R).

PrROOF: If (A 5B) € DIG(R) then dx5/8z4 > 0 in some point of the phase
space. Hence there exists a term in the differential semantics, of the form
(ri(B) —1;(B)) x e; with de; /0x 4 of the same sign as 7;(B) — [;(B).
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Over-approximation Theorem'

Theorem 7 For any reaction model R with increasing kinetics, the DIG 1is

a subgraph of the SIG: DIG(R) C SIG(R).

PrROOF: If (A 5B) € DIG(R) then dx5/8z4 > 0 in some point of the phase
space. Hence there exists a term in the differential semantics, of the form
(ri(B) —1;(B)) x e; with de; /0x 4 of the same sign as 7;(B) — [;(B).

Let us suppose that r;(B) — l;(B) > 0, then 0e; /0xa > 0 and,
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Over-approximation Theorem'

Theorem 7 For any reaction model R with increasing kinetics, the DIG 1is

a subgraph of the SIG: DIG(R) C SIG(R).

PrROOF: If (A 5B) € DIG(R) then dx5/8z4 > 0 in some point of the phase
space. Hence there exists a term in the differential semantics, of the form
(ri(B) —1;(B)) x e; with de; /0x 4 of the same sign as 7;(B) — [;(B).

Let us suppose that r;(B) — l;(B) > 0, then de;/0xa > 0 and, since e; is
increasing, we get that [;(A) > 0 and thus that (A 5B) € SIG(R).
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Over-approximation Theorem'

Theorem 7 For any reaction model R with increasing kinetics, the DIG 1is

a subgraph of the SIG: DIG(R) C SIG(R).

PrROOF: If (A 5B) € DIG(R) then dx5/8z4 > 0 in some point of the phase
space. Hence there exists a term in the differential semantics, of the form
(ri(B) —1;(B)) x e; with de; /0x 4 of the same sign as 7;(B) — [;(B).

Let us suppose that r;(B) — l;(B) > 0, then de;/0xa > 0 and, since e; is
increasing, we get that [;(A) > 0 and thus that (A 5B) € SIG(R).

If on the contrary r;(B) — l;(B) < 0, then de;/0xa < 0, which is not possible for

an increasing kinetics.

The proof is symmetrical for (A —B). O]
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Over-approximation Theorem'

Theorem 7 For any reaction model R with increasing kinetics, the DIG 1is

a subgraph of the SIG: DIG(R) C SIG(R).

PrROOF: If (A 5B) € DIG(R) then dx5/8z4 > 0 in some point of the phase
space. Hence there exists a term in the differential semantics, of the form
(ri(B) —1;(B)) x e; with de; /0x 4 of the same sign as 7;(B) — [;(B).

Let us suppose that r;(B) — l;(B) > 0, then de;/0xa > 0 and, since e; is
increasing, we get that [;(A) > 0 and thus that (A 5B) € SIG(R).

If on the contrary r;(B) — l;(B) < 0, then de;/0xa < 0, which is not possible for

an increasing kinetics.

The proof is symmetrical for (A —B). O]
DIG(R)# SIG(R) for R={k1 * A for A=>_  kox A for _= [A] => A}
as ¥4 = (ko — k1) * x4 can be made always positive, null or negative.
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Strongly Increasing Kinetics'

Definition 8 In a reaction model R ={e; for l;=>r; | i € I}, a kinetic

expression e; 1s strongly increasing iff for all molecules x;, we have
1. Oe;/0xy, > 0 in all points of the phase space,

2. l;(xx) > 0 if and only if there exists a point in the phase space s.t.
Oe;/0xy >0
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Strongly Increasing Kinetics'

Definition 8 In a reaction model R ={e; for l;=>r; | i € I}, a kinetic

expression e; 1s strongly increasing iff for all molecules x;, we have
1. Oe;/0xy, > 0 in all points of the phase space,

2. l;(xx) > 0 if and only if there exists a point in the phase space s.t.
Oe;/0xy >0

Proposition 9 Mass action law, Michaelis Menten, and Hill kinetics are

strongly increasing.
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Strongly Increasing Kinetics'

Lemma 10 Let R be a reaction model with strongly increasing kinetics.
If (A 5B)e SIG(R) and (A =>B)¢ SIG(R) then (A 5B)e DIG(R).
If (A SB)e SIG(R) and (A 5B)¢ SIG(R) then (A =B)e DIG(R).
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Strongly Increasing Kinetics'

Lemma 10 Let R be a reaction model with strongly increasing kinetics.
If (A 5B)e SIG(R) and (A =>B)¢ SIG(R) then (A 5B)e DIG(R).
If (A SB)e SIG(R) and (A 5B)¢ SIG(R) then (A =B)e DIG(R).

PROOF: Since 9B/0A =" . (r;(B) — 1;(B)) * 0e; /OA and all e; are
increasing we get that 0B/0A = D ti<nlii(ay>01 (1i(B) — li(B)) * Oe; [OA.

[]
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Strongly Increasing Kinetics'

Lemma 10 Let R be a reaction model with strongly increasing kinetics.
If (A 5B)e SIG(R) and (A =>B)¢ SIG(R) then (A 5B)e DIG(R).
If (A SB)e SIG(R) and (A 5B)¢ SIG(R) then (A =B)e DIG(R).

PROOF: Since 9B/0A =" . (r;(B) — 1;(B)) * 0e; /OA and all e; are
increasing we get that 0B/0A = D ti<nlii(ay>01 (1i(B) — li(B)) * Oe; [OA.

Now if A 5B €SIG, but not (A =B), then all rules such that ;(A4) > 0
verify r;(B) — [;(B) > 0 and there is at least one rule for which the

inequality is strict.
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Strongly Increasing Kinetics'

Lemma 10 Let R be a reaction model with strongly increasing kinetics.
If (A 5B)e SIG(R) and (A >B)¢ SIG(R) then (A 5B)e DIG(R).
If (A SB)e SIG(R) and (A 5B)¢ SIG(R) then (A =>B)e DIG(R).
PROOF: Since B/0A =", (r{(B) — I;(B)) x 9e; /0A and all e; are
increasing we get that 0B/0A = ) 1,1 (a)=0y (1i(B) — li(B)) * de; /O A.

Now if A 5B €SIG, but not (A =B), then all rules such that ;(A4) > 0
verify r;(B) — [;(B) > 0 and there is at least one rule for which the
inequality is strict. We thus get that 0B /OA is a sum of positive numbers,
amongst which one is such that r;(B) — [;(B) > 0 and [;(A) > 0 which,
since M is strongly increasing, implies that there exists a point in the space
for which de; /OA > 0. Hence dB/9A > 0 at that point, and A 5B €DIG.

]
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Strongly Increasing Kinetics'

Lemma 10 Let R be a reaction model with strongly increasing kinetics.
If (A 5B)e SIG(R) and (A >B)¢ SIG(R) then (A 5B)e DIG(R).
If (A SB)e SIG(R) and (A 5B)¢ SIG(R) then (A >B)e DIG(R).
PROOF: Since B/0A =" (r;(B) — I;(B)) * 0e; /0A and all e; are
increasing we get that 0B/0A =) ;1. (a)>01(1i(B) — li(B)) * de; /OA.

Now if A 5B €SIG, but not (A =B), then all rules such that ;(A4) > 0
verify r;(B) — [;(B) > 0 and there is at least one rule for which the
inequality is strict. We thus get that OB /OA is a sum of positive numbers,
amongst which one is such that r;(B) — [;(B) > 0 and [;(A) > 0 which,

since M is strongly increasing, implies that there exists a point in the space
for which de; /OA > 0. Hence dB/9A > 0 at that point, and A B eDIG.

Same reasoning for inhibitions with opposite sign for r;(B) — ;(B). ]
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Equivalence Theorem I

Main Theorem 11 Let R be a reaction model with strongly increasing

kinetics and where no molecule 1s at the same time an activator and an
inhibitor of the same target molecule, then SIG(R) = DIG(R).
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Equivalence Theorem I

Main Theorem 11 Let R be a reaction model with strongly increasing
kinetics and where no molecule 1s at the same time an activator and an

inhibitor of the same target molecule, then SIG(R) = DIG(R).

Corollary 12 The DIG of a reaction model is independent of the kinetic

expressions as long as they are strongly increasing, if there is no
activation+inhibition pair in the SIG.
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Equivalence Theorem I

Main Theorem 11 Let R be a reaction model with strongly increasing

kinetics and where no molecule 1s at the same time an activator and an
inhibitor of the same target molecule, then SIG(R) = DIG(R).

Corollary 12 The DIG of a reaction model is independent of the kinetic
expressions as long as they are strongly increasing, if there is no

activation+inhibition pair in the SIG.

Corollary 13 The DIG of a reaction model of n rules with strongly
increasing kinetics is computable in time O(n) if there is no

activation+inhibition pair in the SIG.
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‘Cell Cycle Control Models'

The SIG of Kohn’s map contains no activation+inhibition pair
hence the DIGs of Kohn’s map are the same for any strongly

increasing kinetics and any strictly positive parameter values.
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‘Cell Cycle Control Models'

The SIG of Kohn’s map contains no activation+inhibition pair .\

hence the DIGs of Kohn’s map are the same for any strongly

increasing kinetics and any strictly positive parameter values.

In smaller models [Tyson 91| the autoactivation rule

pMPF =[MPF]=> MPF with MPF => pMPF

creates a palr

MPF SpPMF and MPF —SpMPF.
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‘Cell Cycle Control Models'

The SIG of Kohn’s map contains no activation+inhibition pair

hence the DIGs of Kohn’s map are the same for any strongly

increasing kinetics and any strictly positive parameter values.
// \
i I
by

In smaller model [Tyson 91] the autoactivation rule

pMPF =[MPF]=> MPF with MPF => pMPF

creates a pair

MPF SpPMF and MPF —LpMPF.

N

In kohn’s map, this is decomposed in two positive circui

e one mutual inhibition Weel |-| MPF,

e one mutual activation Cdc25 <-> MPF.
46

‘rancois Fages



Reaction Inhibitors I

In Ciliberto et al.’s Model of P53/Mdm2 [CNT05cc]

0 ¥

7] e !
'\.‘ !; ‘(_;-' i
e *e
Mg, MOm2,, > e IR
. Ly i =
Oplze v

P53 —the phosphorylation of Mdm2
k1*Mdm2/ (k2+P53) for Mdm2 => Mdm2p

the kinetic expression is not increasing
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‘Reaction Rules with Antagonists'

Let us denote by (e for | =[/al=> r) a generalized reaction rule with

antagonists a.
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‘Reaction Rules with Antagonists'

Let us denote by (e for | =[/al=> r) a generalized reaction rule with

antagonists a.

Definition 14 The generalized stoichiometric influence graph (GSIG) is
the graph:
{A —B | I(esfor I; =[/a;l=> r;) € M,
li(A) >0 and r;(B) — l;(B) < 0}
U{A —B | d(e; for l; =[/a;1=> r;) € M,
a;(A) >0 and r;(B) — 1;(B) > 0}
U{A 5B | J(e; for l; =[/a;l=> r;) € M,
li(A) >0 and r;(B) — l;(B) > 0}
U{A 5B | J(e; for l; =[/a;l=> r;) € M,
ai(A) >0 and ri(B) — [;(B) < 0}
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‘Reaction Rules with Antagonists'

Let us denote by (e for [ =[/al=> r) a generalized reaction rule with

antagonists a.

Definition 14 The generalized stoichiometric influence graph (GSIG) is

the graph:

{A —B | I(esfor I; =[/a;]=> r;) € M,
li(A) >0 and r;(B) — l;(B) < 0}

U{A —B | d(e; for l; =[/a;1=> 1) € M,
ai(A) >0 and ri(B) — [;(B) > 0}

U{A 5B | (e for l; =[/a;1=> r;) € M,
l;(A) >0 and r;(B) — l;(B) > 0}

U{A 5B | J(e; for l; =[/asl=> r;) € M,
a;(A) >0 and r;(B) — 1;(B) < 0}

SIG(A=[/I]1=>B})={4 5B, I 5B, I 54, A A}
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‘Compatible Kinetics with Antagonists'

Definition 15 In a generalized reaction rule e for [ =[/al=> r, a kinetic
expression e is compatible (resp. strongly compatible) iff for all molecules

T we have

1. l(xg) > 0 if (resp. iff) there exists a point in the phase space such that
Oe/0xy > 0,

2. a(xr) > 0 if (resp. iff ) there exists a point in the phase space such that
Oe/0xy < 0.
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Definition 15 In a generalized reaction rule e for [ =[/al=> r, a kinetic
expression e is compatible (resp. strongly compatible) iff for all molecules

T we have

1. l(xg) > 0 if (resp. iff) there exists a point in the phase space such that
Oe/0xy > 0,

2. a(xr) > 0 if (resp. iff ) there exists a point in the phase space such that
Oe/0xy < 0.

A (strongly) increasing kinetics is (strongly) compatible.
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‘Compatible Kinetics with Antagonists'

Definition 15 In a generalized reaction rule e for [ =[/al=> r, a kinetic
expression e is compatible (resp. strongly compatible) iff for all molecules

T we have

1. l(xg) > 0 if (resp. iff) there exists a point in the phase space such that
Oe/0xy > 0,

2. a(xr) > 0 if (resp. iff ) there exists a point in the phase space such that
Oe/0xy < 0.

A (strongly) increasing kinetics is (strongly) compatible.

Negative Hill kinetics are strongly compatible.
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‘Compatible Kinetics with Antagonists'

Definition 15 In a generalized reaction rule e for [ =[/al=> r, a kinetic
expression e is compatible (resp. strongly compatible) iff for all molecules

T we have

1. l(xg) > 0 if (resp. iff) there exists a point in the phase space such that
Oe/0xy > 0,

2. a(xr) > 0 if (resp. iff ) there exists a point in the phase space such that
Oe/0xy < 0.

A (strongly) increasing kinetics is (strongly) compatible.

Negative Hill kinetics are strongly compatible.

For instance, the kinetics k1*Mdm2/ (k2+P53) for Mdm2 =[/P53]=> Mdm2p
for the inhibition by P53 of Mdm2 phosphorylation is strongly compatible.
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‘Equivalence Theorem with Antagonists'

Theorem 16 For any generalized reaction model R with a compatible

kinetics, DIG(R)CGSIG(R).
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‘Equivalence Theorem with Antagonists'

Theorem 16 For any generalized reaction model R with a compatible

kinetics, DIG(R)CGSIG(R).

Theorem 17 For any generalized reaction model R with a strongly

compatible kinetics, and a GSIG containing no actiwvation+inhibition pair,

DIG(R)=GSIG(R).

‘rancois Fages 56 ﬁm{ RIA



‘ Conclusion I

e ODE’s systems derived from reaction rules enjoy remarkable properties
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independent of the kinetics
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‘ Conclusion I

e ODE’s systems derived from reaction rules enjoy remarkable properties

— The signs of the Jacobian matrix coefficients are essentially

independent of the kinetics

— The differential influence graph is computable in linear time

e Supports qualitative reasoning on the structure of the network
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‘ Conclusion I

e ODE’s systems derived from reaction rules enjoy remarkable properties

— The signs of the Jacobian matrix coefficients are essentially

independent of the kinetics

— The differential influence graph is computable in linear time
e Supports qualitative reasoning on the structure of the network

e Supports writing reaction rules/diagrams instead of directly ODEs.
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‘ Conclusion I

e ODE’s systems derived from reaction rules enjoy remarkable properties

— The signs of the Jacobian matrix coefficients are essentially

independent of the kinetics

— The differential influence graph is computable in linear time
e Supports qualitative reasoning on the structure of the network
e Supports writing reaction rules/diagrams instead of directly ODEs.

e Fxtend the syntax of (SBML) reaction rules with a notation for

antagonists
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On-Going Work I

— Model reduction strategies based on circuits preserving reductions of

the SIG.
Reaction ModelM ___________ -~ Reaction Model M’
\ circuit }
preserving
Influence Graph G = Influence Graph G’
reduction
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On-Going Work I

— Model reduction strategies based on circuits preserving reductions of
the SIG.

Reaction ModelM ___________ - Reaction Model M’

L |

preserving
Influence Graph G = Influence Graph G’
reduction

e Sufficient conditions for multistability ? for oscillations?
—  “Structural” dynamaical properties independent from the kinetics

—  Property peserved by model reduction
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