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Overview of the Lectures

1. Formal molecules and reaction models in BIOCHAM

2. Kinetics

3. Qualitative properties formalized in temporal logic CTL

4. Quantitative properties formalized in LTL(R) and pLTL(R)

5. Reaction hypergraphs and influence graphs

• Differential Influence Graph

• Syntactical Influence Graph

• Over-approximation and Equivalence theorems

• Application to models of Cell Cycle control, MAPK signalling and

P53/Mdm2

6. Hierarchy of semantics and typing for systems biology by abstract

interpretation

7. ...
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Related Publications

F. Fages and S. Soliman. From reaction models to influence graphs and

back: a theorem Formal Methods in Systems Biology, Springer-Verlag,

Lecture Notes in Bioinformatics, LNBI 5054. June 2008

F. Fages and S. Soliman. Abstract Interpretation and Types for Systems

Biology. Theoretical Computer Science 403, pp.52-70, 2008

F. Fages and S. Soliman. Type inference in Systems Biology. Computational

Methods in Systems Biology, CMSB’06 Trento, Springer-Verlag, Lecture

Notes in Bioinformatics, LNBI 4210, pp. 48-62, 2006.

Implemented in the Biochemical Abstract Machine modeling environment

http://contraintes.inria.fr/BIOCHAM
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Biologists like Diagrams ...
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... also on Computers
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Reaction Hypergraphs and Influence Graphs

k1*[A] for A =[C]=> B.

k2*[B]*[D] for B+D => E.

rule_1

B

C A

rule_2

E

D
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Reaction Hypergraphs and Influence Graphs

k1*[A] for A =[C]=> B. A
+
→B, C

−
→A, ...

k2*[B]*[D] for B+D => E.

rule_1

B

C A

rule_2

E

D

A

B

E

D

C
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René Thomas’s Conditions Apply on Influence Graphs

Originally introduced to reason about gene regulatory networks

[Thomas 73, 81] :

• The existence of positive circuits in the influence graph is a necessary

condition for multistationarity (e.g. cell differentiation).

proved for :

ODE systems [Soulé 03] ... [Snoussi 89]

Boolean networks [Rémy Ruet Thieffry 05] ...

Discrete networks [Richard 06] ...

• The existence of negative circuits is a necessary condition for

oscillations (e.g. homeostasis).

ODE systems [Snoussi 89]
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Reaction Rules Models

In SBML (Systems Biology Markup Language) and BIOCHAM,

a reaction model R is a set of reaction rules of the form

e for l => r

where l is a multiset of molecule names,

r is the transformed multiset,

and e is a differentiable positive kinetic expression.
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Reaction Rules Models

In SBML (Systems Biology Markup Language) and BIOCHAM,

a reaction model R is a set of reaction rules of the form

e for l => r

where l is a multiset of molecule names,

r is the transformed multiset,

and e is a differentiable positive kinetic expression.

k1 for _ => A

k2*[A] for A => _

k3*[A]*[B] for A + B => C

k4*[C] for C => A + B

V5*[A]/(K5+[A]) for A =[B]=> Ap

k6*r*[Acyt] for Acyt => Anuc
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Differential Semantics of Reaction Models

k1 for _ => A

k2*[A] for A => _

k3*[A]*[B] for A + B => C

ẋA = k1 − k2 ∗ xA − k3 ∗ xA ∗ xB

˙xB = −k3 ∗ xA ∗ xB

ẋC = k3 ∗ xA ∗ xB
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Differential Semantics of Reaction Models

k1 for _ => A

k2*[A] for A => _

k3*[A]*[B] for A + B => C

ẋA = k1 − k2 ∗ xA − k3 ∗ xA ∗ xB

˙xB = −k3 ∗ xA ∗ xB

ẋC = k3 ∗ xA ∗ xB

Definition 1 The differential semantics of a reaction model

R = {ei for li => ri}i=1,...,n

is the ODE system

dxk/dt = ẋk =
n∑

i=1

(ri(xk) − li(xk)) ∗ ei

where ri(xk) (resp. li) is the stoichiometric coefficient of xk in the right

(resp. left) hand side of rule i.
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Differential Influence Graph (DIG)

Consider a reaction model R and its differential semantics.

The Jacobian matrix J is formed of the partial derivatives

Jij = ∂ẋi/∂xj

Definition 2 The differential influence graph (DIG) of a reaction model R

is the graph of molecules with two kinds of edges:

DIG(R) = {A
+
→B | ∂ ˙xB/∂xA > 0 in some point of the phase space}

∪{A
−
→B | ∂ ˙xB/∂xA < 0 in some point of the phase space}

Not necessarily immediate to compute.
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Example of DIG

k1 for _ => A

k2*[A] for A => _

k3*[A]*[B] for A + B => C

ẋA = k1 − k2 ∗ xA − k3 ∗ xA ∗ xB

˙xB = −k3 ∗ xA ∗ xB

ẋC = k3 ∗ xA ∗ xB

DIG = ?
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Example of DIG

k1 for _ => A

k2*[A] for A => _

k3*[A]*[B] for A + B => C

ẋA = k1 − k2 ∗ xA − k3 ∗ xA ∗ xB

˙xB = −k3 ∗ xA ∗ xB

ẋC = k3 ∗ xA ∗ xB

DIG = {A
−
→A, B

−
→A, A

−
→B, B

−
→B, A

+
→C, B

+
→C}
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Stoichiometric Influence Graph (SIG)

Definition 3 The stoichiometric influence graph (SIG) of a reaction model

R is defined by

SIG(R) = {A
+
→B | ∃(ei for li ⇒ ri) ∈ R,

li(A) > 0 and ri(B) − li(B) > 0}

∪{A
−
→B | ∃(ei for li ⇒ ri) ∈ R,

li(A) > 0 and ri(B) − li(B) < 0}
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Stoichiometric Influence Graph (SIG)

Definition 3 The stoichiometric influence graph (SIG) of a reaction model

R is defined by

SIG(R) = {A
+
→B | ∃(ei for li ⇒ ri) ∈ R,

li(A) > 0 and ri(B) − li(B) > 0}

∪{A
−
→B | ∃(ei for li ⇒ ri) ∈ R,

li(A) > 0 and ri(B) − li(B) < 0}

SIG({ =[B]=> A}) = {B
+
→A}

SIG({A =[B]=> }) = {B
−

→A, A
−

→A}

SIG({A =[C]=> B }) = {C
−

→A, A
−

→A, A
+
→B, C

+
→B}

SIG({A + B => C}) = {A
+
→C, B

+
→C, A

−

→B,

B
−

→A, A
−

→A, B
−

→B, }
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Stoichiometric Influence Graph (SIG)

Definition 3 The stoichiometric influence graph (SIG) of a reaction model

R is defined by

SIG(R) = {A
+
→B | ∃(ei for li ⇒ ri) ∈ R,

li(A) > 0 and ri(B) − li(B) > 0}

∪{A
−
→B | ∃(ei for li ⇒ ri) ∈ R,

li(A) > 0 and ri(B) − li(B) < 0}

SIG({ =[B]=> A}) = {B
+
→A}

SIG({A =[B]=> }) = {B
−

→A, A
−

→A}

SIG({A =[C]=> B }) = {C
−

→A, A
−

→A, A
+
→B, C

+
→B}

SIG({A + B => C}) = {A
+
→C, B

+
→C, A

−

→B,

B
−

→A, A
−

→A, B
−

→B, }

Proposition 4 The SIG of n reaction rules is computable in O(n) time
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The SIG of Kohn’s Map of the Mammalian Cell Cycle

Reaction model:

500 variables

800 reaction rules

Stoic. Influence Graph:

computed in 0.2 sec.

1231 activation edges

1089 inhibition edges

no molecule is at the same time an activator and an inhibitor of a same

target molecule
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MAPK Signalling Cascade

Purely directional “cascade” of reactions: no negative feedback
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MAPK Signalling Cascade

Purely directional “cascade” of reactions: no negative feedback

sustained oscillations observed [Qiao et al. 07]
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MAPK Signalling Cascade

Purely directional “cascade” of reactions: no negative feedback

sustained oscillations observed [Qiao et al. 07]

multistability observed [Kholodenko et al. 06]
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MAPK Reaction and Influence Graphs

RAF

RAF-RAFK

RAFK RAF~{p1}

RAFPH

RAFPH-RAF~{p1}

MEK

MEK-RAF~{p1}

MEK~{p1}

MEK~{p1}-RAF~{p1}

MEKPH

MEKPH-MEK~{p1}

MEK~{p1,p2}

MEKPH-MEK~{p1,p2}

MAPK

MAPK-MEK~{p1,p2}

MAPK~{p1}

MAPK~{p1}-MEK~{p1,p2}

MAPKPH

MAPKPH-MAPK~{p1}

MAPK~{p1,p2}

MAPKPH-MAPK~{p1,p2}

Negative feedback in the stoichiometric influence graph

Inhibition by sequestration [Sepulchre et al. 08]
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MAPK Reaction and Influence Graphs

RAF

RAF-RAFK

RAFK RAF~{p1}

RAFPH

RAFPH-RAF~{p1}

MEK

MEK-RAF~{p1}

MEK~{p1}

MEK~{p1}-RAF~{p1}

MEKPH

MEKPH-MEK~{p1}

MEK~{p1,p2}

MEKPH-MEK~{p1,p2}

MAPK

MAPK-MEK~{p1,p2}

MAPK~{p1}

MAPK~{p1}-MEK~{p1,p2}

MAPKPH

MAPKPH-MAPK~{p1}

MAPK~{p1,p2}

MAPKPH-MAPK~{p1,p2}

Negative feedback in the stoichiometric influence graph

Inhibition by sequestration [Sepulchre et al. 08]

What is the relationship between the SIG and the DIG ?
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Increasing Kinetics

Definition 5 In a reaction model R ={ei for li=>ri | i ∈ I}, we say that

a kinetic expression ei is increasing iff for all molecules xk we have

1. ∂ei/∂xk ≥ 0 in all points of the phase space,

2. li(xk) > 0 whenever ∂ei/∂xk > 0 in some point of the phase space.
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Increasing Kinetics

Definition 5 In a reaction model R ={ei for li=>ri | i ∈ I}, we say that

a kinetic expression ei is increasing iff for all molecules xk we have

1. ∂ei/∂xk ≥ 0 in all points of the phase space,

2. li(xk) > 0 whenever ∂ei/∂xk > 0 in some point of the phase space.

Proposition 6 The mass action law kinetics, e = k ∗ Πxi
li ,

Michaelis-Menten and Hill’s kinetics e = Vm ∗ xs
n/(Km

n + xs
n)

are increasing.

Negative Hill kinetics ei = Vm/(Km
n + xs

n) are not increasing

(used for inhibitions).
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Over-approximation Theorem

Theorem 7 For any reaction model R with increasing kinetics, the DIG is

a subgraph of the SIG: DIG(R) ⊆ SIG(R).
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Over-approximation Theorem

Theorem 7 For any reaction model R with increasing kinetics, the DIG is

a subgraph of the SIG: DIG(R) ⊆ SIG(R).

Proof: If (A
+
→B) ∈ DIG(R) then ∂ ˙xB/∂xA > 0 in some point of the phase

space.

�
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Over-approximation Theorem

Theorem 7 For any reaction model R with increasing kinetics, the DIG is

a subgraph of the SIG: DIG(R) ⊆ SIG(R).

Proof: If (A
+
→B) ∈ DIG(R) then ∂ ˙xB/∂xA > 0 in some point of the phase

space. Hence there exists a term in the differential semantics, of the form

(ri(B) − li(B)) ∗ ei with ∂ei/∂xA of the same sign as ri(B) − li(B).

�
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Over-approximation Theorem

Theorem 7 For any reaction model R with increasing kinetics, the DIG is

a subgraph of the SIG: DIG(R) ⊆ SIG(R).

Proof: If (A
+
→B) ∈ DIG(R) then ∂ ˙xB/∂xA > 0 in some point of the phase

space. Hence there exists a term in the differential semantics, of the form

(ri(B) − li(B)) ∗ ei with ∂ei/∂xA of the same sign as ri(B) − li(B).

Let us suppose that ri(B) − li(B) > 0, then ∂ei/∂xA > 0 and,

�
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Over-approximation Theorem

Theorem 7 For any reaction model R with increasing kinetics, the DIG is

a subgraph of the SIG: DIG(R) ⊆ SIG(R).

Proof: If (A
+
→B) ∈ DIG(R) then ∂ ˙xB/∂xA > 0 in some point of the phase

space. Hence there exists a term in the differential semantics, of the form

(ri(B) − li(B)) ∗ ei with ∂ei/∂xA of the same sign as ri(B) − li(B).

Let us suppose that ri(B) − li(B) > 0, then ∂ei/∂xA > 0 and, since ei is

increasing, we get that li(A) > 0 and thus that (A
+
→B) ∈ SIG(R).

�
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Over-approximation Theorem

Theorem 7 For any reaction model R with increasing kinetics, the DIG is

a subgraph of the SIG: DIG(R) ⊆ SIG(R).

Proof: If (A
+
→B) ∈ DIG(R) then ∂ ˙xB/∂xA > 0 in some point of the phase

space. Hence there exists a term in the differential semantics, of the form

(ri(B) − li(B)) ∗ ei with ∂ei/∂xA of the same sign as ri(B) − li(B).

Let us suppose that ri(B) − li(B) > 0, then ∂ei/∂xA > 0 and, since ei is

increasing, we get that li(A) > 0 and thus that (A
+
→B) ∈ SIG(R).

If on the contrary ri(B) − li(B) < 0, then ∂ei/∂xA < 0, which is not possible for

an increasing kinetics.

The proof is symmetrical for (A
−

→B). �
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Over-approximation Theorem

Theorem 7 For any reaction model R with increasing kinetics, the DIG is

a subgraph of the SIG: DIG(R) ⊆ SIG(R).

Proof: If (A
+
→B) ∈ DIG(R) then ∂ ˙xB/∂xA > 0 in some point of the phase

space. Hence there exists a term in the differential semantics, of the form

(ri(B) − li(B)) ∗ ei with ∂ei/∂xA of the same sign as ri(B) − li(B).

Let us suppose that ri(B) − li(B) > 0, then ∂ei/∂xA > 0 and, since ei is

increasing, we get that li(A) > 0 and thus that (A
+
→B) ∈ SIG(R).

If on the contrary ri(B) − li(B) < 0, then ∂ei/∂xA < 0, which is not possible for

an increasing kinetics.

The proof is symmetrical for (A
−

→B). �

DIG(R) 6= SIG(R) for R = {k1 ∗ A for A => k2 ∗ A for = [A] => A}

as ẋA = (k2 − k1) ∗ xA can be made always positive, null or negative.

François Fages 33



Strongly Increasing Kinetics

Definition 8 In a reaction model R ={ei for li=>ri | i ∈ I}, a kinetic

expression ei is strongly increasing iff for all molecules xk we have

1. ∂ei/∂xk ≥ 0 in all points of the phase space,

2. li(xk) > 0 if and only if there exists a point in the phase space s.t.

∂ei/∂xk > 0
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Strongly Increasing Kinetics

Definition 8 In a reaction model R ={ei for li=>ri | i ∈ I}, a kinetic

expression ei is strongly increasing iff for all molecules xk we have

1. ∂ei/∂xk ≥ 0 in all points of the phase space,

2. li(xk) > 0 if and only if there exists a point in the phase space s.t.

∂ei/∂xk > 0

Proposition 9 Mass action law, Michaelis Menten, and Hill kinetics are

strongly increasing.
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Strongly Increasing Kinetics

Lemma 10 Let R be a reaction model with strongly increasing kinetics.

If (A
+
→B)∈ SIG(R) and (A

−
→B)6∈ SIG(R) then (A

+
→B)∈ DIG(R).

If (A
−
→B)∈ SIG(R) and (A

+
→B)6∈ SIG(R) then (A

−
→B)∈ DIG(R).
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Strongly Increasing Kinetics

Lemma 10 Let R be a reaction model with strongly increasing kinetics.

If (A
+
→B)∈ SIG(R) and (A

−
→B)6∈ SIG(R) then (A

+
→B)∈ DIG(R).

If (A
−
→B)∈ SIG(R) and (A

+
→B)6∈ SIG(R) then (A

−
→B)∈ DIG(R).

Proof: Since ∂Ḃ/∂A =
∑n

i=1(ri(B) − li(B)) ∗ ∂ei/∂A and all ei are

increasing we get that ∂Ḃ/∂A =
∑

{i≤n|li(A)>0}(ri(B) − li(B)) ∗ ∂ei/∂A.

... �
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Strongly Increasing Kinetics

Lemma 10 Let R be a reaction model with strongly increasing kinetics.

If (A
+
→B)∈ SIG(R) and (A

−
→B)6∈ SIG(R) then (A

+
→B)∈ DIG(R).

If (A
−
→B)∈ SIG(R) and (A

+
→B)6∈ SIG(R) then (A

−
→B)∈ DIG(R).

Proof: Since ∂Ḃ/∂A =
∑n

i=1(ri(B) − li(B)) ∗ ∂ei/∂A and all ei are

increasing we get that ∂Ḃ/∂A =
∑

{i≤n|li(A)>0}(ri(B) − li(B)) ∗ ∂ei/∂A.

Now if A
+
→B ∈SIG, but not (A

−
→B), then all rules such that li(A) > 0

verify ri(B) − li(B) ≥ 0 and there is at least one rule for which the

inequality is strict.

... �
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Strongly Increasing Kinetics

Lemma 10 Let R be a reaction model with strongly increasing kinetics.

If (A
+
→B)∈ SIG(R) and (A

−
→B)6∈ SIG(R) then (A

+
→B)∈ DIG(R).

If (A
−
→B)∈ SIG(R) and (A

+
→B)6∈ SIG(R) then (A

−
→B)∈ DIG(R).

Proof: Since ∂Ḃ/∂A =
∑n

i=1(ri(B) − li(B)) ∗ ∂ei/∂A and all ei are

increasing we get that ∂Ḃ/∂A =
∑

{i≤n|li(A)>0}(ri(B) − li(B)) ∗ ∂ei/∂A.

Now if A
+
→B ∈SIG, but not (A

−
→B), then all rules such that li(A) > 0

verify ri(B) − li(B) ≥ 0 and there is at least one rule for which the

inequality is strict. We thus get that ∂Ḃ/∂A is a sum of positive numbers,

amongst which one is such that ri(B) − li(B) > 0 and li(A) > 0 which,

since M is strongly increasing, implies that there exists a point in the space

for which ∂ei/∂A > 0. Hence ∂Ḃ/∂A > 0 at that point, and A
+
→B ∈DIG.

... �
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Strongly Increasing Kinetics

Lemma 10 Let R be a reaction model with strongly increasing kinetics.

If (A
+
→B)∈ SIG(R) and (A

−
→B)6∈ SIG(R) then (A

+
→B)∈ DIG(R).

If (A
−
→B)∈ SIG(R) and (A

+
→B)6∈ SIG(R) then (A

−
→B)∈ DIG(R).

Proof: Since ∂Ḃ/∂A =
∑n

i=1(ri(B) − li(B)) ∗ ∂ei/∂A and all ei are

increasing we get that ∂Ḃ/∂A =
∑

{i≤n|li(A)>0}(ri(B) − li(B)) ∗ ∂ei/∂A.

Now if A
+
→B ∈SIG, but not (A

−
→B), then all rules such that li(A) > 0

verify ri(B) − li(B) ≥ 0 and there is at least one rule for which the

inequality is strict. We thus get that ∂Ḃ/∂A is a sum of positive numbers,

amongst which one is such that ri(B) − li(B) > 0 and li(A) > 0 which,

since M is strongly increasing, implies that there exists a point in the space

for which ∂ei/∂A > 0. Hence ∂Ḃ/∂A > 0 at that point, and A
+
→B ∈DIG.

Same reasoning for inhibitions with opposite sign for ri(B) − li(B). �
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Equivalence Theorem

Main Theorem 11 Let R be a reaction model with strongly increasing

kinetics and where no molecule is at the same time an activator and an

inhibitor of the same target molecule, then SIG(R) = DIG(R).
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Equivalence Theorem

Main Theorem 11 Let R be a reaction model with strongly increasing

kinetics and where no molecule is at the same time an activator and an

inhibitor of the same target molecule, then SIG(R) = DIG(R).

Corollary 12 The DIG of a reaction model is independent of the kinetic

expressions as long as they are strongly increasing, if there is no

activation+inhibition pair in the SIG.
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Equivalence Theorem

Main Theorem 11 Let R be a reaction model with strongly increasing

kinetics and where no molecule is at the same time an activator and an

inhibitor of the same target molecule, then SIG(R) = DIG(R).

Corollary 12 The DIG of a reaction model is independent of the kinetic

expressions as long as they are strongly increasing, if there is no

activation+inhibition pair in the SIG.

Corollary 13 The DIG of a reaction model of n rules with strongly

increasing kinetics is computable in time O(n) if there is no

activation+inhibition pair in the SIG.
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Cell Cycle Control Models

The SIG of Kohn’s map contains no activation+inhibition pair

hence the DIGs of Kohn’s map are the same for any strongly

increasing kinetics and any strictly positive parameter values.
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Cell Cycle Control Models

The SIG of Kohn’s map contains no activation+inhibition pair

hence the DIGs of Kohn’s map are the same for any strongly

increasing kinetics and any strictly positive parameter values.

In smaller models [Tyson 91] the autoactivation rule

pMPF =[MPF]=> MPF with MPF => pMPF

creates a pair

MPF
−
→pPMF and MPF

+
→pMPF.
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Cell Cycle Control Models

The SIG of Kohn’s map contains no activation+inhibition pair

hence the DIGs of Kohn’s map are the same for any strongly

increasing kinetics and any strictly positive parameter values.

In smaller model [Tyson 91] the autoactivation rule

pMPF =[MPF]=> MPF with MPF => pMPF

creates a pair

MPF
−
→pPMF and MPF

+
→pMPF.

In kohn’s map, this is decomposed in two positive circuits

• one mutual inhibition Wee1 |-| MPF,

• one mutual activation Cdc25 <-> MPF.
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Reaction Inhibitors

In Ciliberto et al.’s Model of P53/Mdm2 [CNT05cc]

P53
−
→the phosphorylation of Mdm2

k1*Mdm2/(k2+P53) for Mdm2 => Mdm2p

the kinetic expression is not increasing
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Reaction Rules with Antagonists

Let us denote by (e for l =[/a]=> r) a generalized reaction rule with

antagonists a.
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Reaction Rules with Antagonists

Let us denote by (e for l =[/a]=> r) a generalized reaction rule with

antagonists a.

Definition 14 The generalized stoichiometric influence graph (GSIG) is

the graph:

{A
−

→B | ∃(eifor li =[/ai]=> ri) ∈ M ,

li(A) > 0 and ri(B) − li(B) < 0}

∪{A
−

→B | ∃(ei for li =[/ai]=> ri) ∈ M ,

ai(A) > 0 and ri(B) − li(B) > 0}

∪{A
+
→B | ∃(ei for li =[/ai]=> ri) ∈ M ,

li(A) > 0 and ri(B) − li(B) > 0}

∪{A
+
→B | ∃(ei for li =[/ai]=> ri) ∈ M ,

ai(A) > 0 and ri(B) − li(B) < 0}
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Reaction Rules with Antagonists

Let us denote by (e for l =[/a]=> r) a generalized reaction rule with

antagonists a.

Definition 14 The generalized stoichiometric influence graph (GSIG) is

the graph:

{A
−

→B | ∃(eifor li =[/ai]=> ri) ∈ M ,

li(A) > 0 and ri(B) − li(B) < 0}

∪{A
−

→B | ∃(ei for li =[/ai]=> ri) ∈ M ,

ai(A) > 0 and ri(B) − li(B) > 0}

∪{A
+
→B | ∃(ei for li =[/ai]=> ri) ∈ M ,

li(A) > 0 and ri(B) − li(B) > 0}

∪{A
+
→B | ∃(ei for li =[/ai]=> ri) ∈ M ,

ai(A) > 0 and ri(B) − li(B) < 0}

SIG(A=[/I]=>B})={A
+
→B, I

−
→B, I

+
→A, A

−
→A}
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Compatible Kinetics with Antagonists

Definition 15 In a generalized reaction rule e for l =[/a]=> r, a kinetic

expression e is compatible (resp. strongly compatible) iff for all molecules

xk we have

1. l(xk) > 0 if (resp. iff) there exists a point in the phase space such that

∂e/∂xk > 0,

2. a(xk) > 0 if (resp. iff) there exists a point in the phase space such that

∂e/∂xk < 0.
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Compatible Kinetics with Antagonists

Definition 15 In a generalized reaction rule e for l =[/a]=> r, a kinetic

expression e is compatible (resp. strongly compatible) iff for all molecules

xk we have

1. l(xk) > 0 if (resp. iff) there exists a point in the phase space such that

∂e/∂xk > 0,

2. a(xk) > 0 if (resp. iff) there exists a point in the phase space such that

∂e/∂xk < 0.

A (strongly) increasing kinetics is (strongly) compatible.

Negative Hill kinetics are strongly compatible.

For instance, the kinetics k1*Mdm2/(k2+P53) for Mdm2 =[/P53]=> Mdm2p

for the inhibition by P53 of Mdm2 phosphorylation is strongly compatible.
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Equivalence Theorem with Antagonists

Theorem 16 For any generalized reaction model R with a compatible

kinetics, DIG(R)⊆GSIG(R).
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Equivalence Theorem with Antagonists

Theorem 16 For any generalized reaction model R with a compatible

kinetics, DIG(R)⊆GSIG(R).

Theorem 17 For any generalized reaction model R with a strongly

compatible kinetics, and a GSIG containing no activation+inhibition pair,

DIG(R)=GSIG(R).

François Fages 56



Conclusion

• ODE’s systems derived from reaction rules enjoy remarkable properties
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Conclusion

• ODE’s systems derived from reaction rules enjoy remarkable properties

– The signs of the Jacobian matrix coefficients are essentially

independent of the kinetics

– The differential influence graph is computable in linear time

• Supports qualitative reasoning on the structure of the network

• Supports writing reaction rules/diagrams instead of directly ODEs.

• Extend the syntax of (SBML) reaction rules with a notation for

antagonists
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On-Going Work

→ Model reduction strategies based on circuits preserving reductions of

the SIG.

reduction

Reaction Model M

Influence Graph G Influence Graph G’

Reaction Model M’

circuit
preserving
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On-Going Work

→ Model reduction strategies based on circuits preserving reductions of

the SIG.

reduction

Reaction Model M

Influence Graph G Influence Graph G’

Reaction Model M’

circuit
preserving

• Sufficient conditions for multistability ? for oscillations?

→ “Structural” dynamical properties independent from the kinetics

→ Property peserved by model reduction
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