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Overview of the Lectures

1 Formal molecules and reaction models in BIOCHAM

2 Kinetics

3 Qualitative properties formalized in temporal logic CTL

4 Quantitative properties formalized in LTL(R) and pLTL(R)

5 Reaction hypergraphs and influence graphs

6 Hierarchy of semantics and typing for systems biology by abstract
interpretation

7 Learning parameters from temporal logic properties
8 Robustness analysis

Definition of robustness
Robustness analysis of cell cycle model
Robustness analysis of synthetic transcriptional cascade in E. Coli
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Defining Robustness

Robustness of

a system s

w.r.t. a set of possible perturbations p ∈ P

and an evaluation Ds
a of functionality property a
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Defining Robustness

Robustness of

a system s

w.r.t. a set of possible perturbations p ∈ P

and an evaluation Ds
a of functionality property a

General definition of Kitano [Mol. Syst. Biol. 2007]

Rs
a,P =

∫
p∈P

prob(p) Ds
a dp (1)

The evaluation function Ds
a of the system should determine if the system

still maintains its function under a perturbation and to what degree. The
evaluation function needs to be defined for each specific problem in an ad-
hoc manner and re-implemented for the computation of the robustness.
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Temporal Logic based definition of robustness

Definition using the satisfaction degree of a functionality specification in
temporal logic QFLTL:

Rs
φ,P =

∫
p∈P

prob(p) sd(Tp, φ) dp, (2)

where φ is the specification of the functionality in temporal logic and Tp

is the trace representing the behavior of the system under perturbation p.

This notion of robustness corresponds to a mean functionality, that is,
describes on average how the system behaves under perturbations.
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Robustness as mean functionality over perturbations

Plots 1-3 of the performance Ds
a (satisfaction degree) of three systems in

the face of perturbations

Because the average is the same in 1 and 2, the robustness of these two
systems are equal for evenly-distributed perturbations.
For example in a bioengineering context, if the “property” reflects the
quantity of some product exported by cells, these two systems will indeed
produce on average the same quantity of the desired product.

The performance of system 3 is half of the one of system 1.
the absolute robustness of 3 is less than 1, 2.
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Relative robustness w.r.t. nominal behavior

Rs,p∗
φ,P = Rs

φ,P/sd(Tp∗, φ), (3)
where Tp∗ denotes the unperturbed, nominal behavior of the system.

one can distinguish the relative robustness of systems 1 and 2 w.r.t. their
nominal performance,
reflecting that the performance is more impacted by perturbations in
system 1 than in system 2.

The performance of system 3 is half of the one of system 1.
the absolute robustness of 3 is less than 1, 2.
the relative robustness of 1 and 3 are the same
the relative robustness of 2 is less than 1, 3.
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Computing Robustness

For the computation of Rs
φ,P , and Rs,p∗

φ,P , one needs to distinguish

whether the set of perturbations is finite (e.g. gene knockouts) in
which case computation can be exact

or infinite (e.g. normally-distributed parameter variations) in which
case the value can be estimated by sampling the perturbation set for
sufficiently many perturbations.

input: a (model of the) system f , (QF)LTL formulae φ and φ(y), a set
of perturbations P and their probabilities, and nominal behavior p∗

output: robustness estimates Rφ,P , Rp∗
φ,P , and Rsdφ,P

Given an ODE model f , a set P of perturbations of initial conditions or
parameters, and (QF)LTL properties φ and φ(y), the BIOCHAM
computes the absolute and relative robustness w.r.t. perturbations.
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Implementation

The computation of the trace Tp is done by numerical integration.
The computation of the satisfaction domain DTp,φ(y) is made by induction
on the formula structure, using for each subformula a direct implementation
of the definition.
Polytopes operations are implemented in BIOCHAM using a standard poly-
hedral library.
for every perturbation p ∈ P ∪ {p∗}
Tp := Compute tracef , p
DTp,φ(y) := Compute sat domainTp, φ(y)

Rφ,P :=
∑

p∈P prob(p)(1 + dist(DTp,φ(y), φ))−1
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Implementation

The computation of the trace Tp is done by numerical integration.
The computation of the satisfaction domain DTp,φ(y) is made by induction
on the formula structure, using for each subformula a direct implementation
of the definition.
Polytopes operations are implemented in BIOCHAM using a standard poly-
hedral library.
for every perturbation p ∈ P ∪ {p∗}
Tp := Compute tracef , p
DTp,φ(y) := Compute sat domainTp, φ(y)

Rφ,P :=
∑

p∈P prob(p)(1 + dist(DTp,φ(y), φ))−1

Rp∗
φ,P := Rφ,P ∗ (1 + dist(DTp∗ ,φ(y), φ))
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The robustness degree of this property is compared for three different
values of k4 and k6. These three points in the parameter space of k4 and
k6 are indicated by the three points ~kA, ~kB and ~kC .
The robustness is respectively 133, 12.9 and 13.5.
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Improving global robustness of oscillations

The robustness degree can be estimated for perturbations on any number
of parameters.

For instance, by computing a robustness estimate for perturbations on all
parameters,
with coefficient of variation 0.2 for specification φ∗2 and parameter values
~kTyson and ~k3,

the estimated robustness degrees for ~kTyson and ~k3 are 20.7 and 27.1
respectively.

This indicates that the oscillations are more robust to variations of the
parameters values for ~k3 than for the parameters given in the original
model of Tyson.
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Synthetic biollogy in E. Coli

We consider a cascade of transcriptional inhibitions built in E.coli [Ron
Weiss et al PNAS 05]

The fluorescence of the system by protein EYFP is the measured output.

The system can be controlled by the addition or removal of a small
diffusible molecule, aTc, in the growth media. More precisely, aTc binds
to TetR and relieves the repression of lacI . The aTc concentration thus
serves as a controllable input to the system.

Intuitively, the output (i.e. the fluorescence) of the system at steady
state will be low for low inputs (i.e. aTc concentration), and high for
high inputs.
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Specifying the expected behavior in QFLTL

it has been shown that the time response of the system to an inducer
addition is characterized by a rapid increase of the fluorescence, preceded
by a significant lag-phase. Unfortunately, a h

Here we consider that the system is well-timed if the fluorescence remains
below 103 for at least 150 minutes, then exceeds 105 after at most 450
minutes, and switches rapidly from low to high levels, that is, in less than
150 minutes.
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Specifying the expected behavior in QFLTL

These specifications can be formalized in temporal logic as follows:

φ(t1, t2) = G(time < t1 → [EYFP] < 103)
∧ G(time > t2 → [EYFP] > 105)
∧ t1 > 150 ∧ t2 < 450 ∧ t2 − t1 < 150

which is abstracted into

φ(t1, t2, b1, b2, b3) = G(time < t1 → [EYFP] < 103)
∧ G(time > t2 → [EYFP] > 105)
∧ t1 > b1 ∧ t2 < b2 ∧ t2 − t1 < b3

for the computation of validity domains and satisfaction degree in a given
trace.
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High cell cell variability

High cell-to-cell variability has also been observed.

The heterogeneity of the cell responses makes it difficult to use this
system as a biological timer, for example for developmental programs as
suggested in [Weiss et al PNAS 05].

In this context, as for many synthetic biology applications, having even a
low proportion of cells sending a signal too early or too long might
compromise the correct functioning of the whole system.
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Modeling the system’s variability with log-normal
distributions

ODE model with reference parameters p∗

average of 5000 numerical simulations of with log-normal distributed
parameters

Distribution of the satisfaction degree following addition of aTc:

On 5000 log-normally distributed parameter values, the robustness of the
system is R̂φ,P = 0.9: the specification is not robustly satisfied.
The property is not satisfied by all cells
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Improving robustness

Parameter optimization p̃ w.r.t. robustness criterion using CMAES:
EYFP production rate and the Hill coefficients η must be significantly
increased.
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Parameter influence on robust behavior

When a measure (in our case the robustness) is affected by variations of
several parameters, one can statistically assess the importance of the
variations of each parameter by computing its sensitivity index:

Si =
Var(E (R | Pi ))

Var(R)
∈ [0, 1],

These sensitivity indices and higher order sensitivity indices quantify how
the variance of a parameter Pi or a group of parameters contributes to
the variance of R.
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Sensitivity Indexes

Sγ 20.2 % Sκeyfp ,γ 8.7 %

Sκeyfp
7.4 % SκcI ,γ 6.2 %

SκcI
6.1 % S

κ0
cI

,γ
5.0 %

S
κ0

lacI
3.3 % S

κ0
cI

,κeyfp
2.8 %

S
κ0

cI
2.0 % SκcI ,κeyfp

1.8 %

SκlacI
1.5 % S

κ0
eyfp

,γ
1.5 %

S
κ0

eyfp
0.9 % S

κ0
cI

,κcI
1.1 %

SuaTc
0.4 % S

κ0
cI

,κlacI
0.5 %

total first order 40.7 % total second order 31.2 %

γ variations have a very strong impact on the the cascade.

aTc variations seem to have a very low impact

surprizing different importance of the basal and regulated EYFP
production rates, κ0

eyfp and κeyfp

Because κcI has strong effect, the basal production of EYFP is due to an
incomplete repression of the promoter by CI (high effect of κcI ) rather
than a constitutive leakage of the promoter (low effect of κ0

eyfp).
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Conclusion

The continuous degree of satisfaction of LTL formulae can be used to com-
pute robustness of systems w.r.t. high-level specification of its functionality
in temporallogic:

absolute robustness

relative robustness

sensibility analysis to parameter (and initial condition) variations
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Conclusion

The continuous degree of satisfaction of LTL formulae can be used to com-
pute robustness of systems w.r.t. high-level specification of its functionality
in temporallogic:

absolute robustness

relative robustness

sensibility analysis to parameter (and initial condition) variations

Use in synthetic biology:

model of perturbation for transcriptional cascade among E. Coli cells

estimation of robustness

integration of robustness as objective criterion for parameter
optimization
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