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Overview of the Lectures

1 Formal molecules and reaction models in BIOCHAM

2 Kinetics

3 Qualitative properties formalized in temporal logic CTL

4 Quantitative properties formalized in LTL(R) and pLTL(R)

5 Reaction hypergraphs and influence graphs

6 Hierarchy of semantics and typing for systems biology by abstract
interpretation

7 Learning parameters from temporal logic properties

From model-checking to constraint solving
QFLTL constraint solving
Continuous valuation of QFLTL formulae
Parameter optimization by randomized search

8 Robustness analysis
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A Logical Paradigm for Systems Biology

Biological Model = (Quantitative) State Transition System K
Biological Properties = Temporal Logic Formulae φ

Automatic Validation = Model-checking K |= φ
Model Inference = Constraint Solving K ′ |= φ

Verification of high-level specifications on state transition systems

Introduced by [Pnueli 77, Clarke 80] for program/circuit verification
Model-checking can be efficient on large complex systems
Temporal logic with numerical constraints can deal with continuous
time models (ODE or CTMC, hybrid systems)

Applications of Temporal Logics in Systems Biology:
query language of large reaction networks [Eker et al. PSB 02,

Chabrier Fages CMSB 03, Batt et al. Bioinformatics 05]

analysis of experimental data time series [Fages Rizk CMSB 07]

parameter search [Bernot et al. JTB 04] [Calzone et al. TCSB 06] [Rizk

et al. 08 CMSB]

robustness analysis [Batt et al. 07] [Rizk et al. 09 ISMB]

model coupling [De Maria Soliman Fages 09 CMSB]
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Linear Time Logic

2

10

[A]

time

ẋ = f (x) ODEs

biological observation

T

Fφ (finally) : φ is true at some time point in the future;

Gφ (globally) : φ is true at all time points in the future;

φ1Uφ2 (until) : φ1 is true until φ2 becomes true.

Xφ (next) : φ is true at the next time point;
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Examples of LTL(R) Formulae

F([A]>10) : the concentration of A eventually gets above 10.

FG([A]>10) : the concentration of A eventually reaches and
remains above value 10.

F(Time=t1∧[A]=v1 ∧ F(.... ∧ F(Time=tN∧[A]=vN)...))
Numerical data time series (e.g. experimental curves)

G([A]+[B]<[C]) : the concentration of C is always greater than the
sum of the concentrations of A and B.

F((d[M]/dt > 0) ∧ F((d[M]/dt < 0) ∧ F((d[M]/dt > 0)))) :
change of sign of the derivative of M.

oscillations, period constraints, etc.
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True/False valuation of temporal logic formulae

The True/False valuation of temporal logic formulae is not well adapted
to several problems :

parameter search, optimization and control of continuous models

quantitative estimation of robustness

sensitivity analyses
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True/False valuation of temporal logic formulae

The True/False valuation of temporal logic formulae is not well adapted
to several problems :

parameter search, optimization and control of continuous models

quantitative estimation of robustness

sensitivity analyses

→ need for a continuous degree of satisfaction of temporal logic formulae

How far is the system from verifying the specification ?
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Model-Checking Generalized to Constraint Solving

QFLTL(R)

Φ*=F([A]≥x 
       ∧F([A]≤y))

Constraint solving

the formula is true for any 
x≤10 ∧ y≥2

Φ=F([A]≥7 
       ∧F([A]≤0))

Model-checking

the formula is false

LTL(R)

Dφ∗(T )
2

10

[A]

time

T
y

xφ

Dφ∗(T )

vd=2  sd=1/3
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Model-Checking Generalized to Constraint Solving

QFLTL(R)

Φ*=F([A]≥x 
       ∧F([A]≤y))

Constraint solving

the formula is true for any 
x≤10 ∧ y≥2

Φ=F([A]≥7 
       ∧F([A]≤0))

Model-checking

the formula is false

LTL(R)

Dφ∗(T )
2

10

[A]

time

T
y

xφ

Dφ∗(T )

vd=2  sd=1/3

Validity domain Dφ∗(T ): set of values of the variables in a QFLTL for-
mula making it true on a given trace T .
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Violation degree of an LTL formula

Definition of violation degree vd(T , φ) and satisfaction degree sd(T , φ)

In the variable space of φ∗, original formula φ is single point var(φ).
vd(T , φ) = minv∈Dφ∗ (T )d(v , var(φ)) sd(T , φ) = 1

1+vd(T ,φ) ∈ [0, 1]

[A]

time

(✕)
(✓)

(✕)

vd=0

vd=2

vd=2√2

= F([A]≥6 ∧ F([A]≤5))        

= F([A]≥6 ∧ F([A]≤0))

= F([A]≥12 ∧ F([A]≤0))

φa

φb

φc

(x,y)= F([A]≥x ∧ F([A]≤y))φ∗

(6,5)φ∗

(6,0)φ∗

(12,0)φ∗

y

x

(10,2)
φa

φb φc

Dφ∗(T )

10

2

T
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Learning kinetic parameter values from LTL specifications

simple model of the yeast cell cycle from [Tyson PNAS 91]

models Cdc2 and Cyclin interactions (6 variables, 8 kinetic
parameters)
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0.2

0.3
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 0  20  40  60  80  100  120  140

Cdc2
Cdc2~{p1}
Cyclin
Cdc2-Cyclin~{p1,p2}
Cdc2-Cyclin~{p1}
Cyclin~{p1}

0
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Cdc2~{p1}
Cyclin
Cdc2-Cyclin~{p1,p2}
Cdc2-Cyclin~{p1}
Cyclin~{p1}

0.3

p p∗
[MPF]

Pb : find values of 8 parameters such that amplitude is ≥ 0.3
φ∗: F( [A]>x ∧ F([A]<y) )
amplitude z=x-y
goal : z = 0.3

→ solution found after 30s (100 calls to the fitness function)
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LTL Continuous Satisfaction Diagram

Example with :

yeast cell cycle model [Tyson PNAS 91]

oscillation of at least 0.3

φ∗: F( [A]>x ∧ F([A]<y) ); amplitude x-y≥0.3

k
4

k6

.

.Violation degree in parameter space

. .

.

pA pB

pC

Proc. Natl. Acad. Sci. USA 88 (1991)

1000r

E 1001

10I

0.1 1.0

k6 min1
10

FIG. 2. Qualitative behavior of the cdc2-cyclin model of cell-
cycle regulation. The control parameters are k4, the rate constant
describing the maximum rate of MPF activation, and k6, the rate
constant describing dissociation ofthe active MPF complex. Regions
A and C correspond to stable steady-state behavior of the model;
region B corresponds to spontaneous limit cycle oscillations. In the
stippled area the regulatory system is excitable. The boundaries
between regions A, B, and C were determined by integrating the
differential equations in Table 1, for the parameter values in Table 2.
Numerical integration was carried out by using Gear's algorithm for
solving stiffordinary differential equations (32). The "developmental
path" 1 ... 5 is described in the text.

so k6 abruptly increases 2-fold. Continued cell growth causes
k6(t) again to decrease, and the cycle repeats itself. The
interplay between the control system, cell growth, and DNA
replication generates periodic changes in k6(t) and periodic
bursts of MPF activity with a cycle time identical to the
mass-doubling time of the growing cell.

Figs. 2 and 3 demonstrate that, depending on the values of
k4 and k6, the cell cycle regulatory system exhibits three

b

0.4
a 100

0 20 40 60 80 100 0 20 40 60 80 100

t, min t, min

different modes of control. For small values of k6, the system
displays a stable steady state of high MPF activity, which I
associate with metaphase arrest of unfertilized eggs. For
moderate Values of k6, the system executes autonomous
oscillations reminiscent of rapid cell cycling in early em-
bryos. For large values of k6, the system is attracted to an
excitable steady state of low MPF activity, which corre-
sponds to interphase arrest of resting somatic cells or to
growth-controlled bursts of MPF activity in proliferating
somatic cells.

Midblastula Traiisiton

A possible developmental scenario is illustrated by the path
1 ... 5 in Fig. 2. Upon fertilization, the metaphase-arrested
egg (at point 1) is stimulated to rapid cell divisions (2) by an
increase in the activity of the enzyme catalyzing step 6 (28).
During the early embryonic cell cycles (2-+ 3), the regulatory
system is executing autonomous oscillations, and the control
parameters, k4 and k6, increase as the nuclear genes coding
for these enzymes are activated. At midblastula (3), auton-
omous oscillations cease, and the regulatory system enters
the excitable domain. Cell division now becomes growth
controlled. As cells grow, k6 decreases (inhibitor diluted)
and/or k4 increases (activator accumulates), which drives the
regulatory system back into domain B (4 -S 5). The subse-
quent burst of MPF activity triggers mitosis, causes k6 to
increase (inhibitor synthesis) and/or k4 to decrease (activator
degradation), and brings the regulatory system back into the
excitable domain (5 -* 4).
Although there is a clear and abrupt lengthening of inter-

division times at MBT, there is no visible increase in cell
volume immediately thereafter (6, 20), so how can we enter-
tain the idea that cell division becomes growth controlled
after MBT? In the paradigm ofgrowth control ofcell division,
cell "size" is never precisely specified, because no one
knows what molecules, structures, or properties are used by
cells to monitor their size. Thus, even though post-MBT cells

C

r k6' min-1

0 100 200 300 400 500

t, min

FIG. 3. Dynamical behavior of the cdc2-cyclin model. The curves are total cyclin ([YT] = [Y] + [YP] + [pM] + [M]) and active MPF [Ml
relative to total cdc2 ([CT] = [C2] + [CP] + [pM] + [MI). The differential equations in Table 1, for the parameter values in Table 2, were solved
numerically by using a fourth-order Adams-Moulton integration routine (33) with time step = 0.001 min. (The adequacy of the numerical
integration was checked by decreasing the time step and also by comparison to solutions generated by Gear's algorithm.) (a) Limit cycle
oscillations for k4 = 180 min-', k6 = 1 min- (point x in Fig. 2). A "limit cycle" solution of a set of ordinary differential equations is a periodic
solution that is asymptotically stable with respect to small perturbations in any of the dynamical variables. (b) Excitable steady state for k4 =
180 min 1, k6 = 2 min' (point + in Fig. 2). Notice that the ordinate is a logarithmic scale. The steady state of low MPF activity ([M]/[CT]
= 0.0074, [YT]/[CT] = 0.566) is stable with respect to small perturbations of MPF activity (at 1 and 2) but a sufficiently large perturbation of
[Ml (at 3) triggers a transient activation of MPF and subsequent destruction of cyclin. The regulatory system then recovers to the stable steady
state. (c) Parameter values as in b except that k6 is now a function of time (oscillating near point + in Fig. 2). See text for an explanation of
the rules for k6(Q). Notice that the period between cell divisions (bursts in MPF activity) is identical to the mass-doubling time (Td = 116 min
in this simulation). Simulations with different values of Td (not shown) demonstrate that the period between MPF bursts is typically equal to
the mass-doubling time-i.e., the cell division cycle is growth controlled under these circumstances. Growth control can also be achieved
(simulations not shown), holding k6 constant, by assuming that k4 increases with time between divisions and decreases abruptly after an MPF
burst.

7330 Cell Biology: Tyson

Bifurcation diagram LTL satisfaction diagram
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Black-box Randomized Non-linear Optimization Method

Use existing non-linear optimization toolbox for kinetic parameter
search using satisfaction degree as fitness function

We use the state-of-the-art Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [Hansen Osermeier 01, Hansen 08]
CMA-ES maximizes an objective function in continuous domain in a
black box scenario :

Problem Statement The Challenges Evolution Strategy CMA Evaluation Adaptive Encoding

Problem Statement: Search
Continuous Domain Search/Optimization

Task: minimize a objective function (fitness function, loss
function) in continuous domain

f : X ⊆ Rn → R, x #→ f (x)

Black Box scenario (direct search scenario)

f(x)x

! gradients are not available or not useful
! problem domain specific knowledge is used only within the black

box, e.g. within an appropriate encoding
Search costs: number of function evaluations

Nikolaus Hansen () Dynamic Encoding 3 / 34

CMA-ES uses a probabilistic neighborhood and updates information
in covariance matrix at each move
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Learning Parameter Values from Period Constraints in LTL
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p p∗
[MPF]

Pb : find values of 8 parameters such that period is 20
φ∗:F(MPFlocalmaximum ∧Time=t1∧ F(MPFlocalmaximum ∧Time=t2) )

( with MPFlocalmaximum : d([MPF])/dt>0 ∧ X(d([MPF])/dt<0) )

period z=t2-t1
goal z=20

→ Solution found after 60s (200 calls to the fitness function)
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Coupled Models of Cell Cycle, Circadian Clock, DNA repair

Context of colorectal cancer chronotherapies
EU project TEMPO, coord. F. Lévi INSERM Villejuif France

Coupled model of the cell cycle (Tyson Novak 04] and the circadian
clock [Leloup Goldbeter 99] with condition of entrainment in period

[Calzone Soliman 06]

Coupled model with DNA repair system p53/Mdm2 [Cilberto et
al.04] and effect of irinotecan anticancer drug [De Maria Soliman
Fages 09 CMSB]
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Oscillations in MAPK signal transduction cascade

MAPK signaling model [Huang Ferrel PNAS 96]

search for oscillations in 37 dimensions (30 parameters and 7
initial conditions)
→ solution found after 3 min (200 calls to the fitness function)
Oscillations already observed by simulation [Qiao et al. 07]

No negative feedback in the reaction graph, but negative circuits in
the influence graph [Fages Soliman FMSB’08, CMSB’06]
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LTL(R) formulae

State variables over the reals: time and x, ẋi ∈ Rm are vectors of state
variable values and of their derivatives at given time.

Atomic propositions: arithmetic expressions with <,≤,=,≥, > over the
state variables (closed by negation)

Duality: ¬Xφ = X¬φ, ¬Fφ = G¬φ, ¬Gφ = F¬φ,
¬(φ U ψ) = (¬ψ W ¬φ), ¬(φ W ψ) = (¬ψ U ¬φ),

Properties: Fφ = true U φ, Gφ = φ W false, φWψ = Gφ ∨ (φU(φ ∧ ψ))

Negation free formulae: expressed with ∧, ∨, F, G, U, X with negations
eliminated down to atomic propositions.
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LTL(R) formulae on finite traces

Finite trace T = (s0, s1, . . . , sn) of timed states si = (ti , xi , ẋi ) where
ti > ti−1

T |= φ iff T , s0 |= φ,

T , si |= π iff T , si |=R π(y),

T , si |= φ ∧ ψ iff T , si |= φ and T , si |= ψ,

T , si |= φ ∨ ψ iff T , si |= φ or T , si |= ψ,

T , si |= Fφ iff ∃j ∈ [i , n] such that T , sj |= φ,

T , si |= Gφ iff ∀j ∈ [i , n], T , sj |= φ,

T , si |= φUψ iff ∃j ∈ [i , n] s. t. T , sj |= ψ and ∀k ∈ [i , j − 1],
T , sk |= φ.

T , si |= Xφ iff i < n and T , si+1 |= φ, or i = n and T , sn |= φ,

Proposition

This interpretation of LTL formulae over finite traces is equivalent to the
standard interpretation over infinite traces completed by a loop on the
terminal state.
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LTL(R) model-checking

Given a finite trace T and an LTL(R) formula φ

1 label each state with the atomic sub-formulae of φ that are true at
this state;

2 add sub-formulae of the form φ1 U φ2 to the states labeled by φ2

and to the predecessors of states labeled with φ2 as long as they are
labeled by φ1;

3 add sub-formulae of the form φ1 W φ2 to the last state if it is
labeled by φ1, and to the states labeled by φ1 and φ2, and to their
predecessors as long as they are labeled by φ1;

4 add sub-formulae of the form Xφ to the last state if it is labeled by
φ and to the immediate predecessors of states labeled by φ;

5 return the vertices labeled by φ.

Proposition

In trace T = (s1, ..., sn), state si is labeled by φ if and only if T , si |= φ.
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QFLTL(R) formulae

Quantifier free LTL formulae, noted φ(y), add free variables y to state
variables

The satisfaction domain of φ(y) in a trace T is the set of y values for
which φ(y) holds:

DT ,φ(y) = {y ∈ Rq | T |= φ(y)} (1)

For linear constraints over R, satisfaction domains can be computed with
polyhedral libraries.

Without loss of generality, let us consider negation free QFLTL formulae.
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QFLTL(R) constraint solving

The satisfaction domains of QFLTL formulae satisfy the equations:

DT ,φ(y) = Ds0,φ(y),

Dsi ,π(y) = {y ∈ Rm | si |=R π(y)},
Dsi ,φ(y)∧ψ(y) = Dsi ,φ(y) ∩ Dsi ,ψ(y),

Dsi ,φ(y)∨ψ(y) = Dsi ,φ(y) ∪ Dsi ,ψ(y),

Dsi ,Fφ(y) = ∪j∈[i,n]Dsj ,φ(y),

Dsi ,Gφ(y) = ∩j∈[i,n]Dsj ,φ(y),

Dsi ,φ(y)Uψ(y) = ∪j∈[i,n](Dsj ,ψ(y) ∩ ∩k∈[i,j−1]Dsk ,φ(y)),

Dsi ,Xφ(y) =

{
Dsi+1,φ(y), if i < n,
Dsi ,φ(y), if i = n,

Proposition

The satisfaction domains of a QFLTL formula φ in a trace T can be
computed with these equations following the increasing subformula
ordering.
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Complexity with bound constraints x > b, x < b

Bound constraints define boxes Ri ∈ Rv . Let the size of a union of boxes
be the least integer k such that D =

⋃k
i=1Ri .

Proposition (complexity of the solution domain)

The validity domain of a QFLTL formula of size f containing v variables
on a trace of length n is a union of boxes of size less than (nf )2v .

The maximum number of bounds for a variable x is n × f (which is is
attained in e.g; F ([A] = u ∨ [A] + 1 = u ∨ · · · ∨ [A] + f = u)).
If Bv (φ) is the set of possible bounds for variable x in φ, and if φ1 and φ2

are subformulae of φ, we have Bv (φ1 ∨ φ2) ⊂ Bv (φ) and
Bv (φ1 ∧ φ2) ⊂ Bv (φ).
As a box is a cartesian product of intervals defined by two bounds for
each variable. the size of the solution domain is less than (nf )2v .

F ([A1] = X1 ∨ [A1] + 1 = X1 ∨ ... ∨ [A1] + f = X1) ∧ ...
∧ F ([Av ] = Xv ∨ [Av ] + 1 = Xv ∨ ... ∨ [Av ] + f = Xv )
has a solution domain of size (nf )v on a trace of n values with [Ai ] + k
all different for 1 ≤ i ≤ v , 0 ≤ k ≤ f .
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LTL formulae as points in QFLTL formula space Rv

An LTL formula can be seen as an instance of a QFLTL formula obtained
by abstracting the constants appearing in the formula by new variables
y ∈ Rq.

For example, to φ1 = F([A] > 7 ∧ F [A] < 3)
we associate the formula φ(y) = φ(y1, y2) = F([A] > y1 ∧ F [A] < y2).
Then we have φ1 = φ(7, 3).

This variable abstraction/instantiation process allows us to view a LTL
formula as a point in the QFLTL formula space Rq, where q is the
number of constants appearing in φ (or the number of constants that are
replaced by variables, if not all constants are abstracted away).
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Continuous valuation of QFLTL formulae in [0, 1]

The violation degree vd(T , φ) of a formula φ w.r.t. trace T is the
distance between the actual specification and validity domain DT ,φ(y) of
the QFLTL formula φ(y) obtained by variable abstraction:

vd(T , φ) = dist(φ,DT ,φ(y)).

Abstracting constants by variables in temporal logic formulae is a means
to define a metric on the set of formulae. All set operations and distance
computations are made in the corresponding metric space, known as the
formula space.

The continuous satisfaction degree of a formula w.r.t. a trace T :

sd(T , φ) =
1

1 + vd(T , φ)
∈ [0, 1], (2)
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Conclusion

Definition of a continuous degree of satisfaction of LTL(R) formulae
which can be computed by LTL(R) constraint solving algorithm [Fages

Rizk CMSB’07, CP’09] Shown useful for :

measuring the satisfaction of high level specifications

optimizing kinetic parameters and initial conditions w.r.t. temporal
specifications (37 parameters for MAPK)

optimizing control laws

measuring the robustness of a model w.r.t temporal logic
specifications

Related work :

probabilistic/statistical model checking [Kwiatkowska et al. SIGMETRICS

08, Clarke et al. CMSB 08]

alternative quantitative interpretation of TL [Fainekos and Pappas

FORMATS 07]
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On-going work

Computational methods (implementation in BIOCHAM and MathLab)

parallelization on clusters of 100-10000 processors

multi-trace LTL specifications (e.g. different initial cond., mutations)

evaluation on larger models with rich biological data (e.g. Chen et
al. cell cycle model validation w.r.t. 130 mutants)

generalization to non-deterministic quantitative transition systems
[Fages Rizk CP’09]

Use in systems biology

development of new models of GPCR-receptor activation (collab.
INRA France)

development of coupled models of mammalian cell cycle, circadian
rythm, DNA damage repair systems and anticancer drugs (collab.
INSERM France, EU Tempo) [De Maria et al. 09 CMSB]

Use in synthetic biology

model of perturbation for transcriptional cascade among E. Coli cells
(collab. of Greg Batt with Ron Weiss, Princeton)

integration of robustness as a parameter optimization criterion
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