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From model-checking to constaint solving

Overview of the Lectures

o
Q
o
o
o
o
o

Formal molecules and reaction models in BIOCHAM
Kinetics

Qualitative properties formalized in temporal logic CTL
Quantitative properties formalized in LTL(R) and pLTL(R)
Reaction hypergraphs and influence graphs

Hierarchy of semantics and typing for systems biology by abstract
interpretation
Learning parameters from temporal logic properties

o From model-checking to constraint solving

o QFLTL constraint solving

o Continuous valuation of QFLTL formulae

o Parameter optimization by randomized search
©Q Robustness analysis
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From model-checking to constaint solving

A Logical

Paradigm for Systems Biology

Biological Model = (Quantitative) State Transition System K

Biological Properties = Temporal Logic Formulae ¢
Automatic Validation = Model-checking K |= ¢
Model Inference = Constraint Solving K' |= ¢

o Verification of high-level specifications on state transition systems

Introduced by [Pnueli 77, Clarke 80] for program/circuit verification
Model-checking can be efficient on large complex systems
Temporal logic with numerical constraints can deal with continuous
time models (ODE or CTMC, hybrid systems)

@ Applications of Temporal Logics in Systems Biology:

query language of large reaction networks [Eker et al. PSB 02,
Chabrier Fages CMSB 03, Batt et al. Bioinformatics 05]

o analysis of experimental data time series [Fages Rizk CMSB 07]
o parameter search [Bernot et al. JTB 04] [Calzone et al. TCSB 06] [Rizk

et al. 08 CMSB]

o robustness analysis [Batt et al. 07] [Rizk et al. 09 ISMB]
o model coupling [De Maria Soliman Fages 09 CMSB]
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From model-checking to constaint solving

Linear Time Logic

(Al T
10p----F---------cccmccun---
+
+
%= f(x) ODEs —» + + ¥ +
biological observation —» + +
: 2Fcaaeaaan deccecceee e

Fo (finally) : ¢ is true at some time point in the future;
Go (globally) : ¢ is true at all time points in the future;
d1Udo (until) : ¢y is true until ¢ becomes true.

X¢ (next) : ¢ is true at the next time point;
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From model-checking to constaint solving

Examples of LTL(R) Formulae

o F([A]>10) : the concentration of A eventually gets above 10.

o FG([A]>10) : the concentration of A eventually reaches and
remains above value 10.

o F(Time=t1A[A]=vl A F(.... A F(Time=tNA[A]=vN)...))
Numerical data time series (e.g. experimental curves)

e G([A]+[B]<[C]) : the concentration of C is always greater than the
sum of the concentrations of A and B.

e F((d[M]/dt > 0) A F((d[M]/dt < 0) A F((d[M]/dt > 0)))) :
change of sign of the derivative of M.

@ oscillations, period constraints, etc.
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From model-checking to constaint solving

True/False valuation of temporal logic formulae

The True/False valuation of temporal logic formulae is not well adapted
to several problems :

@ parameter search, optimization and control of continuous models
@ quantitative estimation of robustness

@ sensitivity analyses
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From model-checking to constaint solving

True/False valuation of temporal logic formulae

The True/False valuation of temporal logic formulae is not well adapted
to several problems :

@ parameter search, optimization and control of continuous models
@ quantitative estimation of robustness

@ sensitivity analyses

— need for a continuous degree of satisfaction of temporal logic formulae

How far is the system from verifying the specification ?
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From model-checking to constaint solving

Model-Checking Generalized to Constraint Solving

LTL(R)

O=F([Al=7
AF([A]<0))

/
Model-checking

the formula is false
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From model-checking to constaint solving

Model-Checking Generalized to Constraint Solving

Al T
10 - - '_*: +'+: """""""""
+ + +
+ +
+
Y DU S
>time
LTL(R) QFLTL(R)
O=F([Alz7 O*=F([Al=x
AF([A]=0)) AF([Al=y))
~ N

Model-checking Constraint solving

the formula is true for any
x<10 A y=2

the formula is false
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From model-checking to constaint solving

Model-Checking Generalized to Constraint Solving

Al T
10 - - '_*: +'+: """""""""
+ + +
+ +
+
Y DU S
>time (?) >x
LTL(R) QFLTL(R)
O=F([Alz7 O*=F([Al=x
AF([A]=0)) AF([Al=y))
~ ~

Model-checking Constraint solving

the formula is true for any
x<10 A y=2

the formula is false

Validity domain Dy-(T): set of values of the variables in a QFLTL for-
mula making it true on a given trace T.
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From model-checking to constaint solving

Violation degree of an LTL formula

Definition of violation degree vd( T, ¢) and satisfaction degree sd( T, ¢)

In the variable space of ¢*, original formula ¢ is single point var(¢).

vd(T,$) = min,ep,.(T)d(v, var($)) sd(T,¢) = 1++(T,¢) € [0,1]
T
..... +------.------------
+
. . +
+
+
......... B
—time ¢+b JT:X
| @)= F(AlX A F(Alsy)
Ga =FASAF(AS) | @les) vd=0 )
@y = F(Al=6 A F([A0)) d76.,0) vd=2 (X)
be =FIA12AF(AI0) | plipg) vd=2v2 (X)
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From model-checking to constaint solving

Violation degree of an LTL formula

Definition of violation degree vd( T, ¢) and satisfaction degree sd( T, ¢)

In the variable space of ¢*, original formula ¢ is single point var(¢).
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From model-checking to constaint solving

Violation degree of an LTL formula

Definition of violation degree vd( T, ¢) and satisfaction degree sd( T, ¢)

In the variable space of ¢*, original formula ¢ is single point var(¢).

vd(T,$) = min,ep,.(T)d(v, var($)) sd(T,¢) = 1++(T,¢) € [0,1]
T
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From model-checking to constaint solving

Violation degree of an LTL formula

Definition of violation degree vd( T, ¢) and satisfaction degree sd( T, ¢)

In the variable space of ¢*, original formula ¢ is single point var(¢).

vd(T,$) = min,ep,.(T)d(v, var($)) sd(T,¢) = 1++(T,¢) € [0,1]
I\ T
..... +------.------------
+
. . +
+
+
......... e cece e
“time ¢+b (;T:X
| @)= F(AlX A F(Alsy)
Ga =FIABAF(ARS) | Ples) vd=0 )
@y = F(Al=6 A F([A0)) d76.,0) vd=2 (X)
be =FIARIZAF(AIO) | PYiag) vd=2v2 (X)
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From model-checking to constaint solving

Learning kinetic parameter values from LTL specifications

@ simple model of the yeast cell cycle from [Tyson PNAS 91]

@ models Cdc2 and Cyclin interactions (6 variables, 8 kinetic
parameters)

15/39



From model-checking to constaint solving

Learning kinetic parameter values from LTL specifications

@ simple model of the yeast cell cycle from [Tyson PNAS 91]

@ models Cdc2 and Cyclin interactions (6 variables, 8 kinetic
parameters)

SN I\ h

@ Pb : find values of 8 parameters such that amplitude is > 0.3
¢": F([A]l>x A F([A]<y) )
amplitude z=x-y
goal : z=10.3
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From model-checking to constaint solving

Learning kinetic parameter values from LTL specifications

@ simple model of the yeast cell cycle from [Tyson PNAS 91]

@ models Cdc2 and Cyclin interactions (6 variables, 8 kinetic
parameters)

P——sp*

@ Pb : find values of 8 parameters such that amplitude is > 0.3
¢": F([A]l>x A F([A]<y) )
amplitude z=x-y
goal : z=10.3

e — solution found after 30s (100 calls to the fitness function)
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From model-checking to constaint solving

LTL Continuous Satisfaction Diagram

Example with :
@ yeast cell cycle model [Tyson PNAS 91]
@ oscillation of at least 0.3
¢*: F( [A]>x A F([A]<y) ); amplitude x-y>0.3

1000 1000 Violation degree in parameter space

10
ol o LI : "
kg min’” "
Bifurcation diagram LTL satisfaction diagram
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From model-checking to constaint solving

Black-box Randomized Non-linear Optimization Method

@ Use existing non-linear optimization toolbox for kinetic parameter
search using satisfaction degree as fitness function
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From model-checking to constaint solving

Black-box Randomized Non-linear Optimization Method

@ Use existing non-linear optimization toolbox for kinetic parameter
search using satisfaction degree as fitness function

@ We use the state-of-the-art Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [Hansen Osermeier 01, Hansen 08]
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From model-checking to constaint solving

Black-box Randomized Non-linear Optimization Method

@ Use existing non-linear optimization toolbox for kinetic parameter
search using satisfaction degree as fitness function

@ We use the state-of-the-art Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [Hansen Osermeier 01, Hansen 08]

o CMA-ES maximizes an objective function in continuous domain in a
black box scenario :

f(x)
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From model-checking to constaint solving

Black-box Randomized Non-linear Optimization Method

@ Use existing non-linear optimization toolbox for kinetic parameter
search using satisfaction degree as fitness function

@ We use the state-of-the-art Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [Hansen Osermeier 01, Hansen 08]

o CMA-ES maximizes an objective function in continuous domain in a
black box scenario :

f(x)

@ CMA-ES uses a probabilistic neighborhood and updates information
in covariance matrix at each move
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From model-checking to constaint solving

Learning Parameter Values from Period Constraints in LTL
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From model-checking to constaint solving

Learning Parameter Values from Period Constraints in LTL

@ Pb : find values of 8 parameters such that period is 20
¢)*:F(MPFIocalmaximum ATime=tIA F(MPF/ocalmaximum /\Time:tQ) )
( with MPF ocaimaximum © d([MPF])/dt>0 A X(d([MPF])/dt<0) )
period z=t2-t1
goal z=20
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From model-checking to constaint solving

Learning Parameter Values from Period Constraints in LTL

w2

@ Pb : find values of 8 parameters such that period is 20
¢)*:F(MPFIocalmaximum ATime=tIA F(MPF/ocalmaximum /\Time:tQ) )
( with MPF jocaimaximum : d([MPF])/dt>0 A X(d([MPF])/dt<0) )
period z=t2-t1
goal z=20
e — Solution found after 60s (200 calls to the fitness function)
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From model-checking to constaint solving

Coupled Models of Cell Cycle, Circadian Clock, DNA repair

@ Context of colorectal cancer chronotherapies
EU project TEMPO, coord. F. Lévi INSERM Villejuif France

o Coupled model of the cell cycle (Tyson Novak 04] and the circadian
clock [Leloup Goldbeter 99] with condition of entrainment in period

[Calzone Soliman 06] L

o Coupled model with DNA repair system p53/Mdm?2 [Cllberto et
al.04] and effect of irinotecan anticancer drug [De Maria Soliman
Fages 09 CMSB]
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From model-checking to constaint solving

Oscillations in MAPK signal transduction cascade

@ MAPK signaling model [Huang Ferrel PNAS 96]

Y
(L [ Rarpn )
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From model-checking to constaint solving

Oscillations in MAPK signal transduction cascade

@ MAPK signaling model [Huang Ferrel PNAS 96]

Y
(L [ Rarpn )
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S e —
¥ Y
(L T wmrcen ] T2 )
~C d

e search for oscillations in 37 dimensions (30 parameters and 7
initial conditions)
— solution found after 3 min (200 calls to the fitness function)
Oscillations already observed by simulation [Qiao et al. 07]
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From model-checking to constaint solving

Oscillations in MAPK signal transduction cascade

@ MAPK signaling model [Huang Ferrel PNAS 96]

Y
(L [ Rarpn )
T e
v T
L ey L " vekpies )
S e —
¥ Y
(L T wmrcen ] T2 )
~C d

e search for oscillations in 37 dimensions (30 parameters and 7
initial conditions)
— solution found after 3 min (200 calls to the fitness function)
Oscillations already observed by simulation [Qiao et al. 07]

@ No negative feedback in the reaction graph, but negative circuits in
the influence graph [Fages Soliman FMSB’08, CMSB'06]
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QFLTL constraint solving

LTL(R) formulae

State variables over the reals: time and x, x; € R™ are vectors of state
variable values and of their derivatives at given time.

Atomic propositions: arithmetic expressions with <, <, =,> > over the
state variables (closed by negation)

Duality: =X¢ = X—¢, =F¢ = G-¢, =G¢p = F—¢,
(¢ U ) = (¢ W =¢), =(¢ W) = (¢ U =),

Properties: Fo = true U ¢, Gp = ¢ W false, pW1p = G V (¢pU(¢ A 1))

Negation free formulae: expressed with A, V, F, G, U, X with negations
eliminated down to atomic propositions.

30/39



QFLTL constraint solving

LTL(R) formulae on finite traces

Finite trace T = (so, 51, - .-, Sn) of timed states s; = (t;, X/, X;) where

ti > ti_q

TE¢ iff T,sF¢,

T,si =7 iff T,s; =g 7(y).

T,siEoNY iff T;siE¢ and T,s; =9,

T,siEoVy iff T)siE¢ or T,si =1,

T,si =F¢ iff 3j€[i,n] suchthat T,s; = ¢,

T,si=Go iff Vjelin] T,s ko

T,siE=oUy iff 3jeli,n] s.t. T,si=1¢ and Vk e [i,j—1],
T, Sk ': (15

o T,si=X¢ iff i<n and T,s;.1E¢, or i=n and T,s, = ¢,

Proposition

This interpretation of LTL formulae over finite traces is equivalent to the
standard interpretation over infinite traces completed by a loop on the
terminal state.
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QFLTL constraint solving

LTL(R) model-checking

Given a finite trace T and an LTL(R) formula ¢

© label each state with the atomic sub-formulae of ¢ that are true at
this state;

@ add sub-formulae of the form ¢; U ¢, to the states labeled by ¢,
and to the predecessors of states labeled with ¢, as long as they are
labeled by ¢1;

© add sub-formulae of the form ¢; W ¢, to the last state if it is
labeled by ¢4, and to the states labeled by ¢; and ¢», and to their
predecessors as long as they are labeled by ¢1;

@ add sub-formulae of the form X¢ to the last state if it is labeled by
¢ and to the immediate predecessors of states labeled by ¢;

© return the vertices labeled by ¢.

Proposition

In trace T = (sy, ..., s,), State s; is labeled by ¢ if and only if T, s; = ¢.
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QFLTL constraint solving

QFLTL(R) formulae

Quantifier free LTL formulae, noted ¢(y), add free variables y to state
variables

The satisfaction domain of ¢(y) in a trace T is the set of y values for
which ¢(y) holds:

Droy) ={yERI| T = oé(y)} (1)

For linear constraints over R, satisfaction domains can be computed with
polyhedral libraries.

Without loss of generality, let us consider negation free QFLTL formulae.
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QFLTL constraint solving

QFLTL(R) constraint solving

The satisfaction domains of QFLTL formulae satisfy the equations:

D1.6(y) = Psy6(y)»

Dy n(y)y =1y ER™ | 5; Fr 7(y)}

Ds; o(y)ruty) = Psioy) N Psi,us(y)»

Ds; p(y)vuty) = Psio(y) U Psi,us(y)»

Ds; fo(y) = Yjelin Ps;. o(y):

Ds; Go(y) = Njeli.n Ps;,6(y)

Dy, stpuwy) = Yjelin(DPs.u(y) N Nielij—11Psi(y)):

. Ds,- 1,6(y)» if i <n,
® Dg xo(y) = { Ds,-,+¢(y), if i = n,

Proposition

The satisfaction domains of a QFLTL formula ¢ in a trace T can be
computed with these equations following the increasing subformula
ordering.
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QFLTL constraint solving

Complexity with bound constraints x > b, x < b

Bound constraints define boxes R; € RY. Let the size of a union of boxes
be the least integer k such that D = Uf-;l Ri.

Proposition (complexity of the solution domain)

The validity domain of a QFLTL formula of size f containing v variables
on a trace of length n is a union of boxes of size less than (nf)?".

The maximum number of bounds for a variable x is n x f (which is is
attained ine.g; F([A|=uV[Al+1=uV---VI[Al+f =u)).

If B,(9) is the set of possible bounds for variable x in ¢, and if ¢; and ¢
are subformulae of ¢, we have B, (¢1 V ¢2) C B,(¢) and

Bv(¢1 A ¢2) C Bv(¢)

As a box is a cartesian product of intervals defined by two bounds for
each variable. the size of the solution domain is less than (nf)3".
F([Al] =X1V [Al] +1=X1V..V [Al] +f= Xl) VAN
ANF([A]=X VIA]+1=X,V..VIA]+f=X)

has a solution domain of size (nf)" on a trace of n values with [A;] + k
all different for 1 <i<v,0< k <f.
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Continuous valuation of QFLTL formulae

LTL formulae as points in QFLTL formula space R

An LTL formula can be seen as an instance of a QFLTL formula obtained
by abstracting the constants appearing in the formula by new variables
y € R9.

For example, to ¢3 = F([A] > 7AF [A] <
we associate the formula ¢(y) = ¢(y1, y2) =
Then we have ¢1 = ¢(7,3).

3)
F([A] > y1 AF [A] < y).

This variable abstraction/instantiation process allows us to view a LTL
formula as a point in the QFLTL formula space R9, where ¢ is the
number of constants appearing in ¢ (or the number of constants that are
replaced by variables, if not all constants are abstracted away).

36/39



Continuous valuation of QFLTL formulae

Continuous valuation of QFLTL formulae in [0, 1]

The violation degree vd(T,¢) of a formula ¢ w.r.t. trace T is the
distance between the actual specification and validity domain Dt 4y of
the QFLTL formula ¢(y) obtained by variable abstraction:

vd(T, ¢) = dist(¢, Dt s(y))-

Abstracting constants by variables in temporal logic formulae is a means
to define a metric on the set of formulae. All set operations and distance
computations are made in the corresponding metric space, known as the
formula space.

The continuous satisfaction degree of a formula w.r.t. a trace T:

1

Sd(T’¢):HTM

€ [0, 1], (2)
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Continuous valuation of QFLTL formulae

Conclusion

Definition of a continuous degree of satisfaction of LTL(R) formulae
which can be computed by LTL(R) constraint solving algorithm [Fages
Rizk CMSB'07, CP'09] Shown useful for :

@ measuring the satisfaction of high level specifications

@ optimizing kinetic parameters and initial conditions w.r.t. temporal
specifications (37 parameters for MAPK)

@ optimizing control laws

@ measuring the robustness of a model w.r.t temporal logic
specifications

Related work :

@ probabilistic/statistical model checking [Kwiatkowska et al. SIGMETRICS
08, Clarke et al. CMSB 08]

@ alternative quantitative interpretation of TL [Fainekos and Pappas
FORMATS 07]
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Continuous valuation of QFLTL formulae

On-going work

Computational methods (implementation in BIOCHAM and MathLab)
@ parallelization on clusters of 100-10000 processors
e multi-trace LTL specifications (e.g. different initial cond., mutations)
@ evaluation on larger models with rich biological data (e.g. Chen et
al. cell cycle model validation w.r.t. 130 mutants)
@ generalization to non-deterministic quantitative transition systems
[Fages Rizk CP'09]
Use in systems biology

@ development of new models of GPCR-receptor activation (collab.
INRA France)

@ development of coupled models of mammalian cell cycle, circadian
rythm, DNA damage repair systems and anticancer drugs (collab.
INSERM France, EU Tempo) [De Maria et al. 09 CMSB]

Use in synthetic biology

@ model of perturbation for transcriptional cascade among E. Coli cells
(collab. of Greg Batt with Ron Weiss, Princeton)

@ integration of robustness as a parameter optimization criterion
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