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Chapter 1

Syntax of Reaction Rules and
Temporal Properties

1.1 Biochemical objects

BIOCHAM manipulates formal objects which represent chemical or biochemical com-
pounds, ranging from small molecules to macromolecules and genes. BIOCHAM objects
can be used also to represent control variables and abstract processes. They are written
with the following syntax:

object = molecule | abstract

molecule =
name
| molecule-molecule molecular complex
| molecule~{name,...,name} modified molecule
| molecule::name located molecule
| gene
| ( molecule )

gene = #name

abstract = ”@name process

A name is a word of alphanumerical and ’_’ characters beginning with a letter. The
syntax of a molecule has five forms.

1. The first form is the simplest and the most flexible one. It concerns the case in which
a molecule is simply given a (case sensitive) name.

2. The second form serves to denote multimolecular complexes with the linking operator
-. This binary operator is assumed to be associative and commutative, hence the
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6 CHAPTER 1. SYNTAX OF REACTION RULES AND TEMPORAL PROPERTIES

order of the elements in a complex does not matter. In the cases where one would
like to distinguish between different orders of association, one should give names to
the different complexes.

3. The third form serves to write modified forms of molecules, by attaching the set of
modified sites of the protein with the operator , like the set of phosphorylated sites
for example. Several sets can be attached, the union is considered. The order of the
elements is irrelevant.

Example 1 cdk1, cdk1-cycB and cdk1~{tyr15,thr161}-cycB are valid notations
for, respectively, the cyclin dependent kinase 1, the complex cdk1 cyclin B, and the
phosphorylated form at phosphorylation sites tyrosine 15 and threonine 161 of cdk1
in the complex cdk1-cycB.

(cdk1-cycB)~{tyr15,thr161} is another notation for the same phosphorylated form
of the complex without specifying the constituent which is phosphorylated. Note that
in this syntax, the complex (cdk1-cycB)~{tyr15,thr 161} is considered as formally
different from cdk1~{tyr15,thr161 }-cycB.

4. One can provide a location to a molecule, using the :: operator, otherwise the
molecule is supposed to be in the default location.

5. The fifth syntactical form is used to denote genes or gene promotors, with a name
beginning with #. These objects are assumed to be unique, which has a consequence
on the way reactions involving such objects are interpreted by BIOCHAM (see below).

Example 2 DMP1-#p19ARF can be used to denote the binding of protein DMP1 on the pro-
motor of the gene producing protein p19ARF noted #p19ARF.

The same assumption of uniqueness is made on abstract objects that are noted with
a ’@’. Abstract objects can be used to represent particular phases of a process, complete
subsystems or abstract processes.

Example 3 CycD1 =[@UbiPro]=> _ can be used to denote the Ubiquitin/Proteasome sys-
tem degrading CycD1.

1.2 Reaction and transport rules

BIOCHAM reaction rules are used primarily to represent biochemical reactions and trans-
port. They can be used also to represent state transitions involving control variables or
abstract processes, or to represent the main effects of complete subsystems such as protein
synthesis by DNA transcription without introducing RNAs in the model. They are written
with the following syntax:
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reaction = kinetics for basic reaction
| basic reaction
| name : basic reaction
| name : kinetics for basic reaction

basic reaction = solution => solution.
| solution =[object]=> solution.
| solution =[solution => solution]=> solution.
| solution <=> solution.
| solution <=[object]=> solution.

solution = _ | object | integer*object | solution + solution | ( solution )

kinetics = simple kinetics
| (simple kinetics , simple kinetics)
| if condition then simple kinetics
| if condition then simple kinetics else simple kinetics
| if condition then simple kinetics else (kinetics)

simple kinetics = [molecule]
| float
| name
| simple kinetics * simple kinetics
| simple kinetics / simple kinetics
| simple kinetics + simple kinetics
| simple kinetics - simple kinetics
| simple kinetics ^ simple kinetics
| log(simple kinetics)
| exp(simple kinetics)
| MA(simple kinetics)
| MM(simple kinetics, simple kinetics)
| H(simple kinetics, simple kinetics, integer)
| HN(simple kinetics, simple kinetics, integer)
| (simple kinetics)

condition = simple kinetics < simple kinetics
| simple kinetics > simple kinetics
| simple kinetics = simple kinetics
| simple kinetics =< simple kinetics
| simple kinetics >= simple kinetics
| condition and condition

A solution is a multiset of objects. The character _ denotes the empty solution. The
order and multiplicity of molecules in a solution (1 if not explicitly written) will be ignored
for all qualitative operations (like boolean model-checking), only the presence or absence
of objects will then be considered. In such a boolean abstraction of stoichiometric models,
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a reaction transforms one solution matching the left-hand side of the rule, into another
solution in which the objects of the right-hand side have been added. The molecules in
the left-hand side of the rule which do not appear in the right-hand side may be non-
deterministically present or consumed in the resulting solution. This convention reflects
the capability of BIOCHAM to reason about all possible behaviors of the system with
unknown kinetic parameters [1, 2]. Following the uniqueness assumption, molecules marked
as ”genes” with the ’#’ notation, or any compound built on such a molecule (such as
DMP1- #p19ARF for instance) are not multiplied. These objects remain unique and are
deterministically consumed in the form in which they appear in the left-hand side of the
rule. The same goes for control variables, noted with a ’@’, which are deterministically
made absent.

Reactions involving a catalyst molecule (i.e. a molecule appearing in both the left and
right-hand sides of the rule) are written with the catalyst molecule between square brackets
in the arrow. Similarly a catalyst reaction can be written between square brackets in the
arrow of the rule (see the last example below).

The kinetic expressions will only be used in numerical operations (like ODE-based
simulation). If a rule is provided without kinetic expression, a mass action law kinetic
with reaction rate 1 is assumed, i.e. MA(1). Pairs of kinetic rates are given for reversible
reactions. The exponential notations 1e6 or 7.2E-4 are accepted.

Compound concentrations are allowed between square brackets in kinetic expressions,
e.g. [cycB]. When a name is given in a kinetic expression, a corresponding parameter or
macro will be looked for. A special parameter with name Time gives the current value of
time during a numerical simulation.

The abbreviations MA, MM, H and HN represent respectively Mass Action law, Michaelis-
Menten, Hill and negative Hill kinetics. In the first case, the parameter given as argument
will be multiplied by all reactants’ concentrations to provide the kinetic law. In the second
case the two arguments represent the Vm and Km of the michaelian kinetics; the law will
have the form: Vm*[S]/(Km+[S]), where S is the reactant (a warning is raised if the rules
contains several reactants). In the third case, H(Vm,Km,n) = Vm*[S]\^n /(Km\^n+[S]\^n),
the first argument Vm represents the maximum value, Km the threshold, n the order of Hill
function and [S] is the concentration of the reactant. The fourth abbreviation is the
negative Hill kinetics HN(Vm,Km,n) = Vm*Km\^n /(Km\^n+[S]\^n).

A kinetic expression may contain a conditional expression, where the condition is a
conjunction of linear (in)equations. This can be used to restrict the use of some laws
(see the last example below) and to represent hybrid systems with different continuous
dynamics in a finite number of phases.

Examples: MA(0.001) for cdk1 + cycB => cdk1-cycB. is a complexation rule with
mass action law kinetics and constant rate 0.001. The rule
cdk1-cycB =[Myt1]=> cdk1~thr14-cycB.
is a phosphorylation rule with catalyst Mytosine 1. This rule is equivalent to
cdk1-cycB + Myt1 => Myt1 + cdk1~{thr14}-cycB.
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The rule (1*[RAF]*[RAFK],0.4*[RAF-RAFK]) for RAF + RAFK <=> RAF-RAFK. is a re-
versible complexation rule given with a pair of kinetic rates: the product of the concentra-
tions for the complexation, 0.4 times the complex concentration for the decomplexation,
which is equivalent to the pair (MA(1), MA(0.4)).
if [X] > 0.8 then k for X =[ATP => ADP]=> Y represents a reaction, only able to pro-
ceed when there is enough X and such that X is transformed into Y by consuming energy
from ATP. cdk1::nucleus=>cdk1::cytoplasm is a transport rule of cdk1 from the nucleus
to the cytoplasm.

1.3 Boolean temporal properties

Propositional logic can be used to describe the states of the system. For instance, the for-
mula cdk1 & MPF & !(cdk7-cycH) represent the states of the system where cdk1 and MPF
are present and cdk7-cycH is absent, the rest being undetermined. The temporal boolean
properties of BIOCHAM models can be formalized in Computation Tree Logic (CTL). CTL
is an extension of propositional logic with two path quantifiers for non-determinism: E, A,
and several operators for time: F, G, X, U. The path quantifier E expresses the existence
of a path, A means for all paths, F means at some time point (on the path), G means at
all time points, X means at the next time point, U is a binary operator meaning that a
formula is true until a second formula becomes true. Furthermore, since it is possible to
have an initial state only partially defined (the molecules may be present, absent, or their
presence is unspecified), a BIOCHAM temporal boolean formula is prefixed with an initial
state quantifier. There are two such quantifiers: Ei and Ai, meaning respectively, ”there
exists an initial state” and ”for all initial states”. The syntax of CTL with initial state
quantifiers is defined by the grammar ictl below:



10 CHAPTER 1. SYNTAX OF REACTION RULES AND TEMPORAL PROPERTIES

ictl = Ei(ctl) | Ai(ctl)

ctl= object
| (ctl)
| EF(ctl)
| AF(ctl)
| EG(ctl)
| AG(ctl)
| E(ctl U ctl)
| A(ctl U ctl)
| E(ctl W ctl)
| A(ctl W ctl)
| EX(ctl)
| AX(ctl)
| !(ctl) negation
| ctl & ctl conjunction
| ctl | ctl disjunction
| ctl xor ctl exclusive or
| ctl -> ctl implication
| ctl <-> ctl equivalence
| reachable(ctl) same as EF(ctl), i.e. on some path the formula can become true
| stable(ctl) same as AG(ctl), i.e. on all paths the formula remains always true
| steady(ctl) same as EG(ctl), i.e. on some path the formula is always true
| checkpoint(ctl,ctl) same as !(E(!(ctl1) U ctl2))) i.e. there is no path where

the first formula is false until the second is true
| loop(ctl,ctl) same as AG((ctl1->EF(ctl2))\&(ctl2->EF(ctl1))) approximates

the oscillation property where two formulae are alternatively true.
| oscil(ctl) same as loop(ctl,!(ctl)) approximates the oscillation property

where a formula is alternatively true and false

Example 4 Ei(EF(cycB)) expresses the existence of an initial state such that there exists
a path on which at some time point cycB is present. Ai(AF(cycB)) expresses that for all
initial states and on all paths, cycB is finally present at some time point.
Ai(!(E(!(cdc25) U cdk1-cycB))) checks that cdc25 is a checkpoint for the activation of
MPF (the unphosphorylated form of the cdk1 cycB complex) for all initial states, that is
there does not exist a path on which cdc25 is always absent until the complex cdk1-cycB is
present.

1.4 Numerical temporal properties

In BIOCHAM, temporal quantitative properties about concentrations and their derivatives
can be formalized as well in Linear Time Logic with numerical constraints, noted LTL(R).
In addition, quantifier free LTL(R) (QFLTL(R)) formulas can contain free real valued
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variables. A word of alphanumerical characters beginning with a lowercase letter which is
not already a kinetic parameter or a macro is interpreted as a free variable. The syntax of
LTL(R) and QFLTL(R) formulae is given by the following grammar:

ltl = condition (*)
| (ltl)
| F(query) finally
| G(query) globally
| X(query) next
| (ltl)U(ltl) until
| !(ltl) negation
| ltl & ltl conjunction
| ltl | ltl disjunction
| ltl xor ltl exclusive or
| ltl -> ltl implication
| ltl <-> ltl equivalence
| oscil(molecule, int) oscillations
| oscil(molecule, int, float)
| period(molecule, float) periodic oscillations
| phase_shift(molecule, molecule, float) phase delay
| cross(molecule, molecule, int) repetitive crossing
| curve_fit(list of molecules,list of floats,list of names) curve fitting

qfltl = ltl (**)

(*): In the conditions here, the derivatives of some concentrations can also appear with
the syntax: d([Molecule])/dt.

(**): the grammar of QFLTL(R) formulae differs from LTL(R) by allowing free vari-
ables in the conditions which are restricted in this case to linear inequalities.

Example 5 G(([RAF-RAFK] >= [RAF~{p1}]) U (d([RAF])/dt < 0.3)) expresses that
all along the simulation trace, the concentration of the RAF-RAFK complex is greater than
that of phosphorylated RAF, until the derivative of the concentration of RAF becomes lower
than 0.3.

The formula oscil(M,n) is an abbreviation for n successive alternations of the sign of
d([X])/dt.

oscil(M,n,V) states that M oscillates, with a maximum value greater than V, at least
n times.

Example 6 oscil(cycB,3) expresses the fact that, along the trace, the concentration of
cycB goes up and down twice.

period(M,p) states that molecule M oscillates at least 3 times (with the above meaning)
and has period p (with 4% error) for the last three oscillations. phase shift(M,N,s) states
that there is delay of s between the (last three) peaks of M and those of N.
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cross(M1,M2,n) is an abbreviation for n successive repetitions of crossings between
the concentration values of [M1] and [M2].

curve fit(list of molecules,list of floats,list of names) is an abbreviation
for a curve fitting formula, stating that each molecule, at a given time, is equal to a
particular value or variable. The three lists must be of the same length,

Example 7 curve_fit([A,A],[10,50],[v1,v2]).
stands for the QFLTL(R) formula G((Time=10 -> [A]=v1) & (Time=50 -> [A]=v2))

giving the values of A at time 10 and 50 in variables v1 and v2.

1.5 Object and rule patterns

Patterns are used to define sets of objects and rules in a concise manner. Patterns can be
used to specify the initial state, or the reaction rules or sets of objects, rules or temporal
formulae passed as arguments in various BIOCHAM commands.

Patterns introduce the special character ? and variables noted with a name beginning
with ’$’, to denote unspecified parts of a molecule. The parts of the molecules matched by
? or a variable can be empty.

object pattern = molecule pattern | abstract

variable = ? | $name

simple pattern = name | variable

molecule pattern = simple pattern
| molecule pattern-molecule pattern
| molecule pattern~{simple pattern,...,simple pattern}
| molecule pattern~variable
| gene
| ( molecule pattern )

Example 8 cdk1~? is a pattern representing cdk1 itself and any phosphorylated form of
it. cdk1~{tyr15,?} or equivalently cdk1~{tyr15}~? represents any form of cdk1 phospho-
rylated on tyrosine 15 at least. cdk1-? represents cdk1 itself and any complex containing
cdk1. cdk1~?-? is a pattern representing all forms of cdk1, phosphorylated and/or com-
plexed.

When patterns are used to define the initial state or some reaction rules (e.g. with the
command add_rules, see below), the variables that appear in the pattern have to be given
a range of possible values, by using the where construct. When patterns are used to match
rules, like in the list_rules or delete_rules command, the where construct cannot be
used. The character ? can match any solution (even empty).
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reaction pattern = kinetics pattern for basic reaction pattern where constraints
| basic reaction pattern where constraints
| reaction shortcut

basic reaction pattern = name : basic reaction pattern
| solution pattern => solution pattern.
| solution pattern =[object pattern]=> solution pattern.
| solution pattern =[solution pattern => solution pattern]=> solution pattern.
| solution pattern <=> solution pattern.
| solution pattern <=[object pattern]=> solution pattern.

solution pattern = variable | object pattern | integer * object pattern
| solution pattern + solution pattern | (solution pattern)

constraints = constraints and constraints
| variable in {object pattern,...,object pattern}
| variable not in {object pattern,..., object pattern}
| variable in all
| variable in all_simple
| variable in parts_of{ name, name,... }
| name not in variable
| variable diff object pattern
| variable phos_form object pattern
| variable not phos_form object pattern
| variable more_phos_than object pattern
| variable not more_phos_than object pattern
| variable submol object pattern
| variable not submol object pattern
| variable has_simple_mol_in_common object pattern
| variable has_no_simple_mol_in_common object pattern

kinetics pattern = same as ’kinetics’ but with ’molecule pattern’ instead of ’molecule’

reaction shortcut = complexation
| decomplexation
| re_complexation
| phosphorylation
| dephosphorylation
| re_phosphorylation
| synthesis
| degradation
| elementary_interaction_rules
| more_elementary_interaction_rules
| more_elementary_interaction_rules(object)

The in constraint is set membership. The set all (resp. all simple) refers to all the
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molecules already known by the system, i.e. (resp. limited to non-localized, non-complexed
and non-phosphorylated forms). This means that using these constructs makes the seman-
tics of the rule dependent on the context (order of rules, model parts loaded before, etc.),
and is thus recommended only to advanced users.

The diff and not in have the opposite meaning (the variable cannot take the given
value(s)). For instance $A not in {$B,per} means that $A represents a molecule which
cannot be per, not have the same value as $B. The second case of not in corresponds to
the absence of some phosphorylation site (the name) in a set of phosphorylated sites (the
variable). See the example below.

The phos form constraint, forces the variable and the object_pattern to differ only
by some phosphorylations. more_phos_than forces the variable to be more phosphorylated
than the object_pattern.

The submol constraint forces the variable to be a sub-molecule of the pattern, the
has_simple_mol_in_common constraint imposing a common sub-molecule.

When using constraints relating a variable to an object_pattern, variables appear-
ing in that object_pattern have to be constrained beforehand. Moreover, to define a
variable range (for instance to add a rule), one has to use for each variable at least one
positive constraint: in or sub_mol, and if the adequate declaration exists, phos_form or
more_phos_than.

Example 9 The reaction pattern (cdk1~?-? + ? => ?) will match all rules reacting with
any form (phosphorylated or complexed) of cdk1. The pattern (? =[Myt1]=> ?) matches
all rules involving the catalyst Myt1. This pattern will match all the rules having Myt1 in
their left and right-hand sides, even if they were not written with the catalyst notation. This
pattern cannot be used to define reaction rules since it can match unconstrained molecules.

Example 10 The reaction pattern cdk46~$P + $cycD => cdk46~$P-$cycD
where $cycD in {DMP1~?-cycD~?, cycD~?}. will match all complexation rules of all

phosphorylated forms of cdk46 with all phosphorylated forms of cycD or DMP1-cycD. This
pattern can be used to define reaction rules. All possible phosphorylated forms of molecules
cdk46, DMP1 and cycD have to be declared however (see section below) in order to constrain
the variable $P and the different occurrences of ?. Note that if the three molecules in this
pattern had three phosphorylation sites each, they would have 23 = 8 forms each, thus the
pattern would specify 8 × (8 × 8 + 8) = 576 reaction rules! Reaction patterns must thus
be used with care for specifying reaction rules and only the relevant phosphorylation sites
should be declared for a molecule.

Example 11 The reaction pattern cdk1~$P-$cyc =[Wee1]=> cdk1~$P~p2-$cyc
where p2 not in $P and $cycA in {cycA, cks1-cycA}
and $cyc in { $cycA, cycB, cycB-cks1}. specifies the phosphorylation on site p2 of

several cdk1 complexes not already phosphorylated on p2. This pattern can be used to
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define reaction rules. If cdk1 is declared with 3 phosphorylation sites {p1,p2,p3}, there
are 4 forms not containing p2 to combine with the 4 possibilities for the variable $cyc.
This reaction pattern thus expands into 16 reaction rules.

The reaction short-cuts stand for the following reaction patterns:
complexation :

$A + $B => $A-$B where $A in all and $B in all and $A diff $B
decomplexation :

$A-$B => $A+$B where $A in all and $B in all and $A diff $B
re complexation :

$A + $B <=> $A-$B where $A in all and $B in all and $A diff $B
phosphorylation :

$A =[$C]=> $B where $A in all and $B in all and $C in all
and $B more_phos_than $A and $A diff $B

dephosphorylation :
$A =[$C]=> $B where $A in all and $B in all and $C in all

and $A more_phos_than $B and $B diff $A
re phosphorylation :

$A <=[$C]=> $B where $A in all and $B in all and $C in all
and $B more_phos_than $A and $A diff $B

synthesis :
_=[$G]=>$A where $A in all_simple and $G in all and $A diff $G

degradation :
$A =[$D]=>_ where $A in all and $D in all and $A diff $D

elementary interaction rules : either complexation, decomplexation,
or phosphorylation, dephosphorylation, synthesis, degradation

more elementary interaction rules : same as above plus combinations
more elementary interaction rules(object) : forces the use of the given object in the rules.

1.6 Declarations

The set of all possible modified forms of a given molecule can be declared by associat-
ing to the molecule the set of sets of sites which can be modified (e.g. phosphorylated).
In these declarations, the function parts of can be used to denote all subsets of a set.
These declarations are not mandatory, except for defining rules with patterns containing
phosphorylation variables.

Example 12 the declaration declare cdk2~{{},{p1},{p2},{p1,p2}}. specifies that cdk2
has two phosphorylation sites p1, p2 and that all combinations are possible. This declara-
tion is equivalent to declare cdk2~parts_of({p1,p2}).
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The purpose of declarations is to constrain implicitly the domain of modification vari-
ables which appear in molecule patterns. Only modification sites can be declared. In a
reaction pattern used for defining reaction rules, the other variables, such as complexation
variables, must thus be explicitly constrained in the where part of the pattern.

Declarations can be entered also at top-level with the command declare, can be listed
with the command list_declarations and can be cleared with the command clear_rules.

Note: Since the aim of declarations is to define the possible modification sites, any rule
where a molecule appears in a form in contradiction with its declaration is ignored (with an
error message). Since most molecules appear also in non-phosphorylated form, a warning
is given when a declaration does not include the empty set.



Chapter 2

Commands at Top-level

The command biocham starts the BIOCHAM interpreter. Some BIOCHAM files can be
passed as arguments to the command to be loaded immediately. Under the BIOCHAM
prompt, the following commands are available, they must be terminated by a dot. The
previous typed commands can be retrieved by pressing ctrl-p or up-arrow. The commands
can be automatically completed by pressing on the tabulation key. A command can be
interrupted by ctrl-c and a (abort).

Some commands take a list as argument. Lists are noted between square brackets, e.g.
[a,b,c]. Sets are noted between braces, e.g. {a,b,c}. To quit the interpreter type quit.

• quit.
quits the interpreter.

• prolog(’goal’).
The extra command executes a Prolog (the programming language in which BIOCHAM

is implemented) goal passed as a string in the argument. This command is documented
for the sake of completeness but should not be useful.

2.1 Loading and exporting files

The name of a BIOCHAM file must be suffixed by ’.bc’. BIOCHAM files may contain:

• reaction rules and rule patterns;

• any command (including the definition of an initial state, parameter values, but also
simulation or model-checking commands), which will be executed when read.

Usually, a BIOCHAM model is defined in a single file containing only declarations and
reaction rules or rule patterns. Then different initial states, sets of parameters or test
commands can be defined in different files.

17
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• load biocham(file).
the reaction rules of the BIOCHAM file are loaded and taken as current set of rules,

deleting any previously loaded rule. The initial state is initialized according to the decla-
rations in the file. The commands contained in the file are executed.

Example 13 load_biocham(’cell_cycle.bc’) or load_biocham(cell_cycle). Note
that in the last form, the quotes are not necessary and the suffix is automatically added to
the name.

• add biocham(file).
the rules of the given file are loaded and added to the current set of rules. The initial

state is updated incrementally. The commands contained in the file are executed.

• import ode(file).
an initial state and a set of reaction rules are inferred from the system of differential

equations read in an xppaut file (see the inverse export ode command). Both are loaded
in BIOCHAM with the same differential semantics.

• change directory(directory).
changes the current directory.

• export biocham(file).
saves the current BIOCHAM set of rules, macros, parameters and initial state in a

BIOCHAM file.

• expand biocham(file).
saves the current BIOCHAM set of rule instances, macros, parameters and initial state

in a BIOCHAM file where all reaction rule patterns are expanded.

• export init(file).
saves the current initial state, macros and the value of parameters in a BIOCHAM file.

• export param(file).
saves the current values of parameters (only) in a BIOCHAM file. This command might

be useful when several parameter sets are associated to the same set of rules.

• export dot(file).
exports the current BIOCHAM set of rules and initial state into a .dot file. That file

can then be used to generate pictures of the interaction map, with for instance tools of the
Graphviz suite.

if you simply want to visualize the output and have both Graphviz and gv installed,
see the dot command below.
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Example 14 The Unix command dot -Tpng file.dot > file.png will generate a PNG
image of the map. For instance, the reaction graph of EXAMPLES/MAPK/mapk.bc will be
depicted as follows

• export dot(file, list of options).
exports the current BIOCHAM set of rules and initial state into a .dot file (see above).

The list of options can contain: init_up, to force the molecules present in the initial state
to be shown on the top of the image (see example above); mod\_double, to show enzymes
catalyzing a reaction or modifiers of some kind (i.e. both input and output) with a double
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arrow (input/output) instead of a simple dashed arrow; col_path, to color in red the latest
pathway returned by a CTL query; double\_size, to produce A3 sized graphs instead of
the default A4; state to produce the state graph instead of the reaction graph (be careful,
it can be huge!).

Example 15 export_dot(test,[init_up,mod_double,col_path]). to use all of the
options, and save the result in the file test.dot;

• export dot(test,[init up]).
to obtain an image like that of the above example (after using dot).

• dot. • draw reactions.

visualizes the graph resulting from an export_dot with no options, using both Graphviz
and gv that have to be installed and in your PATH.

• export nusmv(file).
exports the current BIOCHAM set of rules and initial state in an SMV file. Notations

for molecules are translated by replacing the characters _, (, ), }, , and ~{ respectively by
__, _L, _R, _r, _c and _l. Furthermore the names A, AF, AG, AX, B, E, EF, EG, EX, F,
G, H, O, S, U, T, V, W, X, Y, Z and xor are prefixed by _.

• export lotos(file).
exports the current BIOCHAM set of rules and initial state in a LOTOS file. Molecules

are translated with the same convention as for SMV.

• export ode(file).
exports the current BIOCHAM set of kinetic laws and initial state to an ASCII file in

ODE format (humanly readable but also usable with xppaut). Molecules are translated
by removing all - and ~{,} and if necessary shortening the resulting name (see the inverse
import_ode command).

• export ode latex(file).
exports the current BIOCHAM set of kinetic laws and initial state to an ASCII file in La-

TeX format (suitable for inclusion with the LaTeX command \include{file}). Molecules
are translated by removing all - and ~{,}.

• export prolog(file).
exports the current BIOCHAM set of rules, initial state and temporal specification in a

Prolog file, where reactions are represented by a transition system between boolean states,
and where CTL properties can be evaluated with a model checker implemented in Prolog
in the file ctl.pl.

• export sbml(file).
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exports the current BIOCHAM set of rules (including kinetic laws) and initial state to
an SBML file. Molecules are translated by removing all ’-’ and ’~{’,’}’.

• load sbml(file).

• add sbml(file).
act as the corresponding load_biocham/add_biocham commands but importing reac-

tions, parameters and initial state (and only that!) from an SBML file.

2.2 Listing and defining rules and events

2.2.1 Rules

• list rules.
lists the current set of rules.

• list rules(reaction pattern).
lists the current set of rules matching the given pattern.

Example 16 list_rules(? => cycA~?-? + ?) will list all the rules containing any form
of cycA in the right hand side.

• expand rules.
lists all the instances of the current set of rules, with the associated rule number.

• expand rules(reaction pattern).
lists all the instances of the current set of rules matching the given pattern.

• add rules(reaction pattern).

• add rules(set of reaction patterns).
adds reaction rules to the current set of rules.

• delete rules(reaction pattern).

• delete rules(set of reaction patterns).
deletes all reaction rules matching one pattern from the current set of rules. Warning:

currently, if a kinetics pattern is provided, it will be ignored.

• clear rules.
clears the current set of rules and all molecule declarations.

• rule(integer).
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• rule(name).
shows the n-th rule (after expansion), or the rule(s) with the corresponding name (i.e.

of the form name : A =¿ B).

• pathway(list of integers).

• pathway.
show the rules of corresponding numbers (after expansion). If no list is given and the

trace corresponding to a query has been generated, then use the list given by that trace as
argument.

• show kinetics.
returns the set of ordinary differential equations and initial concentrations (one line per

molecule).

• show kinetics(molecule).
Same as above but only for the given molecule.

2.2.2 Events

• add event(condition,name,kinetics).

• add event(condition,list of names,list of kinetics).
sets up an event that will be fired each time the condition given as first argument

becomes true. This command is effective in numerical simulations only. Upon firing, the
parameter(s) given as second argument receives a new value computed from the third
argument. The parameters’ initial value is restored after the simulation.

Example 17 parameter(N,1). add_event([X]>=2.0,N,1-N). Each time [X] goes above
the threshold value 2.0, N will become 1-N. At the end of the simulation, N is reset to 1.

• delete event(condition,name,kinetics).

• delete event(condition,list of names,list of kinetics).
removes an existing event.

• delete events.
deletes all the declared events.

• list events.
lists all the declared events.
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2.3 Listing and defining objects and locations’ volumes

2.3.1 Objects

• declare(molecule declaration).
declares the set of all phosphorylated forms of a molecule.

• list declarations.
lists all the declarations of phosphorylated forms of molecules.

• list molecules.
lists the molecules contained in all instances of the current set of rules.

• list molecules(object pattern).

• list molecules(set of object patterns).
lists the objects (appearing in the instances of the current set of rules) and matching

one of the given object patterns.

Example 18 list_molecules(cycE-?).
cycE
cycE-cdk2

• list all molecules.

• list all molecules(object pattern).

• list all molecules(set of object patterns).
same as above but also including phosphorylation sites declarations and initial state.

• check molecules.
checks lower/upper case errors in molecule names. Then, tries to find production and

degradation rules for all known molecules. For each potential problem, displays a warning.

2.3.2 Locations’ volumes

One can define a location or compartment with a name. All molecules are localized, either
explicitly with the :: operator, or implicitly in a default location.

• volume(name,simple kinetics).
one can provide a numerical expression defining the volume of the location given as

first argument. It may depend on parameters or even concentrations of compounds. If
no volume is provided for a location, it will supposed equal to 1, which is the volume of
the default location. The rate of a reaction will be divided by the volume of the location
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of a molecule before being derived as a term in the differential equation controlling its
evolution.

• volume(name).
displays the current volume (formula) of the given location.

• list volumes.
lists all the defined locations with the corresponding volume (formula).

2.4 Listing and defining parameters, macros and initial state

2.4.1 Parameters

Parameters can be defined as either constants or macros and can be used in a number of
places, including kinetic expressions, initial concentrations and events.

• parameter(name,float).
sets the value of a given parameter to the corresponding value.

• parameter(name).
shows the value of the given parameter.

• list parameters.
shows the values of all known parameters.

2.4.2 Macros

A macro gives a name to an expression and can be used in any place where the expression
could be used.

• macro(name,simple kinetics).

• macro(name,sq wave(name,float,name,float)).
sets the value of a given macro to the corresponding value, which will be re-evaluated

each time a kinetic law is to be computed.
The special value sq wave generates a square wave signal between the values of two

parameters (given by the two names) with their respective duration (given by the two
floats). Please note that some adaptive step integration methods will give a quite poor
result when using square waves.

• macro(name).
shows the value of the given macro.

• list macros.
shows the values of all known macros.
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2.4.3 Initial state

The initial state can be partially defined by giving the list of objects which are present in
the initial state and the list of objects which are absent from the initial state. The other
objects can be present or absent. When no precision is given, present objects are given a
default concentration of 1.

• show initial state.
lists the objects which are present (including their initial concentration) and absent

from the initial state.

• clear initial state.
makes undefined all objects possibly present or absent in the initial state. Also deletes

all parameters and macros.

• present(object pattern).

• present(set of object patterns).
all objects (appearing in the instances of the current set of rules) and matching one of

the given object patterns are made present in the initial state.

Example 19 present({cycA, cdk1, cycE~?}). makes cycA, cdk1 and all modified forms
of cycE present in the initial state.

• present(object pattern, float).

• present(object pattern, name).
gives to the given object the given initial concentration, or sets it to be equal to the

value of the given parameter.

Example 20 present(MAPK,0.3). present(CycE, k).
makes present two molecules with concentration, respectively 0.3 and the value of pa-

rameter k.

• absent(object pattern).

• absent(set of object patterns).
makes all objects (appearing in the instances of the current set of rules) and matching

one of the given object patterns, absent from the initial state.

• undefined(object pattern).

• undefined(set of object patterns).
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makes all objects (appearing in the instances of the current set of rules) and matching
one of the given object patterns, possibly present or absent in the initial state.

• make present not absent.

makes all objects (appearing in the instances of the current set of rules) which are not
declared absent, present in the initial state.

• make absent not present.

makes all objects (appearing in the instances of the current set of rules) which are not
declared present, absent in the initial state.

2.5 Simulation

A BIOCHAM model can be interpreted at three levels of abstraction: either as an asyn-
chronuous boolean transition system, an ordinary differential equation, or a continuous-
time Markov process. The second interpretation is deterministic and produces a unique
simulation trace, while the other two interpretations produce sets of simulation traces.

2.5.1 Boolean simulator

For the boolean simulator, all the objects with an undefined initial state are considered as
absent in the initial state. The simulator prints the objects present in the successive states
of the simulation. The set of objects which are printed can be specified with patterns. By
default all objects are printed.

• boolean simulation.

• boolean simulation(integer).

performs a random simulation up to a given number of transitions (default is 30).

Note that because BIOCHAM boolean models are highly non-deterministic, random
simulation is often impractical and not representative of all possible behaviors. It is there-
fore much more interesting to query the temporal properties of BIOCHAM models w.r.t.
all possible behaviors in CTL logic.

Example 21 Boolean simulation of the MAPK signaling cascade visualized with the plot
command (see model EXAMPLES/MAPK/mapk.bc):
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• boolean enumeration.
performs a step by step simulation by enumerating all possible behaviors of the system

from the initial state. At each step you can either continue the simulation by typing return,
backtrack to another transition by typing ¡, or stop the simulation by typing ’q’. The depth
of the current derivation is printed.

2.5.2 ODE and stochastic simulators

• numerical simulation.

• numerical simulation(number).
performs a numerical simulation (using one of the methods detailed below) up to a

given number of time units (default is 20).

Example 22 MAPK cascade numerical simulation visualized with the plot command:
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• continue(number).
performs a numerical simulation (using one of the methods detailed below) starting

from the last point of the current simulation, up to a given number of time units.

• numerical method.

• numerical method(name).
shows the current numerical simulation method and the corresponding details (error,

step size, etc.), and if an argument is given, sets the desired simulation method. The
currently available choices are: rk (Runge-Kutta), stiff (Rosenbrock), ssa (Gillespie)
and tl (tau-lipping). The first one is a fourth-order Runge-Kutta method, with or without
step-doubling (see below), the second one a Rosenbrock method (implicit), with variable
step-size (this is the default choice), the third one is an implementation of Gillespie’s
algorithm and the last one of the tau-leaping method (these two stochastic methods rely
on a conversion factor and a critical reaction threshold, see below).

• step size.
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• step size(float).
sets the initial step-size (default is 0.01) for the Runge-Kutta method.

• step doubling.

• step doubling(float).

• no step doubling.
uses step-doubling method (default) to adapt the step-size to a specified maximum

error (default is 0.0001). Step adaptation cannot be turned off for Rosenbrock method.

• conversion factor.

• conversion factor(integer).
Each initial concentration will be multiplied by this number, defaulting to 10000, to

give the corresponding initial number of molecules of each kind. This amounts to say that
the volume considered is actually this factor divided by Avogadro’s Number.

• critical reaction threshold.

• critical reaction threshold(integer).
This integer (defaulting to 20) is used in the tau-leaping algorithm to determine for

which reactions a tau leap is possible.

2.5.3 Conservations laws and P-invariants

It is possible to impose some invariance relation, or (mass) conservation law, to the system
(which amounts to reduce the dimension of the ODE system). Such a law can be checked
from the rules (i.e. no reaction can make it false), from the kinetics (i.e. the derivative is
formally proven equal to zero), or trusted from the user.

Through the computation of the P-invariants of the underlying Petri-net, conservation
laws can also be (partially) extracted without user input from the reaction model. This
relies only on the reactions and not on the kinetics and will thus provide an incomplete list
of invariants, however in most practical cases, using these invariants as conservation laws
will already allow to reduce the dimension of the system.

Note also that the computed P-invariants point out some kind of modules describing
the life cycle of some compounds.

• conservation(set of object patterns).

• conservation(list of molecules with stoichiometry).
Declares a new mass conservation law for all the molecules matched by the argument

if it is a set, or for all molecules given with the corresponding weight. During a numerical
simulation, one of those variables will be eliminated thanks to this conservation law. Be
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careful if you declare conservation laws and then plot the result of a previous simulation, the
caption might not be correct. When added, the conservation law will be checked against
the rules (i.e. purely from stoichiometry), if that fails against the kinetics. Since these
checks are not complete, even a failure will be accepted.

Example 23 conservation({cycE-?}).
Will keep the sum of the numbers of molecules of all forms of cycE constant.

Example 24 conservation([A-A, 2*A]).
Will keep the sum of the numbers of molecules of the dimer plus twice that of the

monomer constant.

• check conservations.
Will check all conservation laws against rules, and if necessary kinetics (see above).

• delete conservation(set of object patterns).

• delete conservation(list of molecules with stoichiometry).

• delete conservations.
Removes the given mass conservation law, or respectively all of them.

• list conservations.
Prints out all the mass conservation laws.

• find pinvar.

• find pinvar(integer).
Computes the P-invariants of the system, and thus conservation laws that are indepen-

dent from the precise kinetics. One can give a limit on the highest value found in a given
P-invariant (the default is 4), but note that giving a too high value might lead to a very
long computation. Extra command

2.5.4 Plotting the result of simulations

• plot.
plots the result of the last simulation, either boolean or numerical.

• plot(object, object).
plots the result of the last numerical simulation, as a trajectory in the phase space of

the two given objects. The first object will be plotted on the x-axis, the second on the
y-axis.

• plot(object, object, object).
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plots the result of the last numerical simulation, as a trajectory in the phase space of
the three given objects. The first object will be plotted on the x-axis, the second on the
y-axis and the third on the z-axis.

• export plot(file template).
saves the result of the last simulation into two files: file_template.csv and .plot,

so that you can produce afterwards the plot of a given simulation by giving to GNUplot
the command load file_template.plot.

• show molecules(object pattern).

• show molecules(set of object patterns).
adds the molecules matched by the pattern to the molecules printed by the simulator.

Initially all molecules are shown.

• hide molecules(object pattern).

• hide molecules(set of object patterns).
removes the molecules matched by the pattern from the molecules printed by the sim-

ulator.

• show macros.
will plot all macros for the numerical simulator.

• show macros(set of names).
will plot at least the given macros for the numerical simulator.

• hide macros.
will hide macros for the numerical simulator.

• show hide.
lists which molecules and macros are hidden or shown.

• keep plot.
keeps the current plot window open and asks future plots to use another window (for

comparison).

• set color(object, integer).

• set color(name, integer).
sets the color used for the corresponding object/macro when plotting. The colors can

be chosen from the list provided by the next command: test plot.

• test plot.
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opens a special plot window executing the test command of GNUplot, and thus showing
the available colors and the corresponding integer.

• set xmin(float).

• set xmax(float).

• set ymin(float).

• set ymax(float).
sets the range shown on a numerical plot. These settings are reset (to fit the plot) each

time a simulation is run.

• fit xmin.

• fit xmax.

• fit x.

• fit ymin.

• fit ymax.

• fit y.
sets the range shown on a numerical plot so that the given coordinate fits the simulation.

fit_x is the same as fit_xmin followed by fit_xmax, same for y.
Some secondary commands are also supplied to get information out of numerical traces.

• get max from trace(molecule).

• get min from trace(molecule).
prints out the maximal/minimal value of the concentration of the given molecule for

the current trace, and the corresponding time value.

• get period from trace(molecule).
prints out the value of the period of oscillation of the given molecule for the current

trace. The molecule must oscillate at least 3 times. If periods appear not to be constant,
the last two periods are printed out.

• set init from trace(float).
takes the closest calculated time point in the current simulation trace, and sets the

initial state according to values at that time point.
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2.6 Boolean temporal properties

Formulae in Computation Tree Logic (CTL) express the temporal properties of a model
that are true in all possible boolean simulations. CTL formulae can thus be used to query,
or constrain, the boolean temporal properties of a model.

2.6.1 Checking CTL properties

CTL formulae can be evaluated with the model-checker NuSMV by using the following com-
mands. Note that other model-checkers than NuSMV can be used by exporting BIOCHAM
rules and initial state in an appropriate SMV, LOTOS or PROLOG file using the com-
mands export nusmv or export lotos or export prolog.

• nusmv(ictl).
evaluates a temporal query using the model-checker NuSMV. The first use of this

command may take a while as it will compile the rules into an ordered binary decison
diagram (OBDD).

Example 25 nusmv(Ei(EF(cdk1))).

why.
explains the result of the last query by producing a witness pathway when this is possible.

• nusmv why(ictl).
like nusmv(ictl),why. except that if the query is false, the model-checker does not

compute the query twice.

• fairness path.

• no fairness path.
when evaluating a specification, forces the model-checker to consider path quantifiers

to apply only to fair paths (resp. all paths). This is especially useful for loop properties.
Warning: the time to compute queries can be bigger.

• nusmv dynamic reordering.

• nusmv disable dynamic reordering
reorders BDD variables dynamically, using NuSMV’s group sift converge method. For

a better efficiency in building the BDD, this command should be used before the first
NuSMV query, even if it still works afterwards.

• nusmv direct.

• nusmv non direct
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changes the mode of evaluating NuSMV queries. In non-direct mode, which is the
default, Ei and Ai queries are distinguished. In direct mode, which is the most efficient
one, all Ei queries are transformed into Ai queries. When the initial state is completely
defined, the direct mode should be used for better performance.

Furthermore,a set of CTL properties can be given as a specification representing the
expected behavior of the system, as observed for instance by wet lab experiments, and that
need be satisfied by the model.

• add spec(ictl).

• add specs(set of biocham queries).
adds some CTL temporal properties to the specification.

• delete spec(ictl).

• delete specs(set of biocham queries).
deletes some CTL temporal properties from the specification.

• list spec.
lists the current set of CTL formulae in the specification.

• clear spec.
clears the CTL specification.

• check.
tests the adequacy of the model w.r.t. its specification, for each unsatisfied CTL prop-

erty, computes the result of why.

• check why.
tests the adequacy of the model w.r.t. its specification, and for each CTL property,

computes the result of why.

• check all.
tests the adequacy of the model w.r.t. its specification, summarizes the result with the

first unsatisfied property if there is one.

2.6.2 Inferring CTL properties

The set of all CTL properties of some simple pattern that are true in the model can also
be automatically generated with the following commands :

• genCTL.

• genCTL(filename).
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writes some simple CTL properties (reachable, oscil, steady, checkpoint for each molecule)
that are true in the model.

• add genCTL.
adds to the current specification those simple CTL properties (reachable, oscil, steady,

checkpoint for each molecule) that are true in the model.

2.6.3 Model reductions preserving CTL properties

A CTL specification can also be used to reduce a model with the following commands :

• reduce model.

• reduce model(reaction pattern).

• reduce model(set of reaction patterns).
reduces the model by deleting rules, upto a minimal model that satisfies the whole

specification. Iterates the command learn_one_deletion(bias) where the default bias
is the rule pattern ?=>? to consider all the rules of the model

2.6.4 Learning rules from a CTL specification

Since the rule language and property language have both been formalized, one can use
Machine Learning techniques to try and find completions or modifications of a model such
that the specification is satisfied. This is the very place where reaction_shortcuts are
useful to define the reaction patterns of interest.

• learn one addition(reaction pattern).

• learn one addition(set of reaction patterns).
finds all the single rules coming from the expansion of the given pattern(s) and such

that adding them to the model makes it comply with the current specification.

• learn one deletion(basic reaction pattern).

• learn one deletion(set of basic reaction patterns).

• learn one deletion.
tries to find a single rule coming from the expansion of the given pattern(s) and such

that deleting it from the model makes it comply with the specification. If no pattern is
given, the rules tried are the ones coming from the path of negative false specifications.

• revise model.

• revise model(reaction pattern).



36 CHAPTER 2. COMMANDS AT TOP-LEVEL

• revise model(set of reaction patterns).
tries to correct the model using a theory revision algorithm. Takes all specification

formulae one after the other, starting with positive (ECTL) ones, then undefined ones,
then negative (ACTL) ones, in order to satisfy them:

• positive formula: add a rule from the given reaction pattern, called bias (by default
elementary interaction rules) such that all formulae already treated remain true;

• negative formula: retract one or more rules from the path of the counter-example
and if some positive or undefined formulae become false, treat them again;

• undefined formula: try to retract some rules or to add a rule such that all formulae
already treated remain true.

The algorithm stops as soon as one solution is found.

• revise model interactive.

• revise model interactive(reaction pattern).

• revise model interactive(set of reaction patterns).
same as above, but instead of stopping after a solution is found, the user gets the choice

to stop or to continue looking for another solution.

2.7 Temporal properties with numerical constraints

The properties formalized in Linear Time Logic with numerical constraints, LTL(R), can
be used in numerical models either to check their correctness, to infer parameter values for
satisfying them, or to provide robustness measures.

2.7.1 Checking LTL(R) properties

An LTL(R) specification can be created and checked against the last simulation with the
following commands. It is worth noticing that the notion of next state, using the X
operator of LTL(R), refers to the following state as computed by the (variable step-size)
simulation, and thus does not necessarily imply real-time neighborhood, but a ”calculation”
neigborhood. Equality of values are checked according to the time discretization using
Rolle’s theorem : an equality A=B holds in a time point if the sign of A-B is zero or
changes in the next time point.

• trace check(ltl).
evaluates an LTL(R) query on the latest trace produced (if none exists, one will be

generated by numerical simulation).
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• add ltl(ltl).

• add ltl(set of ltl queries).
adds the given formula(e) to the LTL(R) specification.

• delete ltl(ltl).

• add ltl(set of ltl queries).
removes the given formula(e) to the LTL(R) specification.

• list ltl.
prints out the current LTL(R) specification.

• clear ltl.
removes completely the current LTL(R) specification.

• check ltl(number).

• check ltl.
checks each formula of the LTL(R) specification against a simulation of the given du-

ration. If no duration is provided, tests against the latest simulation.

2.7.2 Instantiating variables in QFLTL(R) formulas

QFLTL(R) formulas are quantifier-free first-order LTL(R) formulas possibly containing real
valued variables. A QFLTL(R) formula can be checked on a numerical trace by computing
the free variables’ domains that make the formula true on the trace. This is done by
the command trace analyze. The trace analyzed can be the trace of a simulation or an
external trace of numerical data time series obtained by some biological experiment.

• load trace(file).
loads a numerical trace from a .csv file.

• trace analyze(qfltl).
computes domains of variables contained in (qfltl) that make the formula true on a

numerical trace. The trace used is the last simulated or loaded trace.

Example 26 trace_analyze(F([A]>=v)).

(v =< 0.5)

The domains are described in the output by a disjunction of conjonction of inequality
constraints over the variables.
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2.8 Learning parameters from an LTL(R) specification

In the same spirit as what is done for rule learning w.r.t. CTL specifications, one can
use the above LTL(R) model-checking techniques to automatize the search for parameter
values (i.e. kinetic parameters, initial value or control parameters) satisfying an LTL(R)
specification with numerical constraints. The first commands below use a simple scan-
ning of the parameter space and are limited to searching two or three parameters. The
commands suffixed by cmaes are much more efficient. They apply to QFLTL(R) formulae
containing variables and use the state-of-the-art optimization method CMAES (covariance
matrix adaptive evolution strategy of N. Hansen [3]) for searching several tenths of pa-
rameter values in one run. The found parameter values are printed in a form that can be
copied and pasted in the command line to adopt them.

2.8.1 Simple search methods with an LTL(R) specification

• search parameters(list of name,list of pairs of floats,int,ltl,number).

• search parameters(list of name,list of pairs of floats,int,number).
returns the first values found for the parameters of given names, between the min

and max values given, with the given number of tries for each parameter, such that the
ltl_query representing a specification of the system is true for simulations up to the given
time horizon number. If no LTL(R) query is given, the current LTL(R) specification will
be used. This command is usually used for searching two or three parameter values at a
time, as its time complexity is exponential in the number of parameters (and polynomial
in the number of tries), i.e. in O(np) where n is the number of tries for each parameter and
p is the number of parameters.

Example 27 The command

search_parameters([k],[(0,10)],100,F(([X] > 0.3) \& F(d([X])/dt =< 0)),20).

scans the values of parameter ’k’ between 0 and 10 and returns the first value such that,
before time 20, [X] gets greater than 0.3 and later [X] decreases. The total number of tries
will not be more than 100.

• search all parameters(list of name,list of pairs of floats,int,ltl,number).

• search all parameters(list of name,list of pairs of floats,int,number).
returns all the values found for the parameters satisfying the LTL(R) specification.

• search random parameters(list of name,list of pairs of floats,int,ltl,number).
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• search random parameters(list of name,list of pairs of floats,int,number).
returns the first values found for the parameters given in the first argument satisfying

the specification. by making random choices of values in the given list of intervals for
each parameter. The third argument is the maximum number of iterations. The last
argument is the time horizon. A greater number of parameter values can be searched with
this command for LTL(R) specification containing many solutions. Different runs of this
command may give different answers.

• search random all parameters(pair of floats,int,ltl,number).

• search random all parameters(pair of floats,int,number).

searches the values for all parameters of the current model, in a given interval of possible
values. Returns the first value found satisfying the specification.

2.8.2 Continuous optimization methods with a QFLTL(R) specification

The following much more efficient parameter search commands use the non-linear optimiza-
tion method CMAES with the continuous satisfaction degree of a temporal specification
as fitness function. This satisfaction degree is defined by the distance between the validity
domain of a QFLTL(R) formula with free variables (as given by trace analyze) and the
objective values given for some of the free variables.

• search parameters cmaes(list of names,list of pair of floats,qfltl,
list of names,list of floats,number).

• search parameters log cmaes(list of names,list of pair of floats,qfltl,
list of names,list of floats,number).

uses the violation degree of the given temporal specification as a fitness function for
the non-linear optimization tool cmaes to guide the search. The temporal specification is
composed of a QFLTL(R) formula given with a list of variables and a list of ojective values
for these variables. Search command with log uses lognormals distributions of parameter
values instead of normal distributions to explore their neighborhoods

Example 28 search_parameters_cmaes([k],[(0,20)],F([A]>=v),[v],[100],50).

Searches for a value of ’k’ between 0 and 20 such that, before time 50, [A] gets greater
than 100 (i.e. greater than v with v=100 as objective).

• cmaes params(int,number).
set CMAES stop criteria concerning the number of calls to the fitness function (default

300) and the value of the fitness function (default 0.01).
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2.8.3 Multi-trace conditions

Sometimes the temporal specification of the behavior of the systems does not refer to a
single set of parameter values and initial conditions, but to several sets. The following
commands make it possible to search parameter values with multi-trace conditions.

• first search condition(list of names,list of intervals,qfltl,
list of names,list of float,number).

• add search condition(qfltl,list of names,list of parameter pairs,
list of nums).

• cmaes multi conditions.
searches for parameter values satisfying different specifications in multiple conditions.

Commands first_search_condition and add_search_condition define the search prob-
lem and specification for each condition while cmaes_multi_conditions starts the search
with cmaes.

Example 29
first_search_condition([k1,k2], [(0,20),(0,20)], F([A]>v),[v],[100],50).

add_search_condition(F([A]>v), [v], [200], [(k_mutant,k_wildtype)]).

cmaes_multi_conditions.
searches for values of ’k1’ and ’k2’ between 0 and 20 such that [A] gets greater than 100

in the first condition (for example the wild type) and gets greater than 200 in the second con-
dition (for example a mutant) where parameter ’k wildtype’ is replaced by ’k mutant’. The
list of pairs of parameters defines changes between first condition and mutant conditions.
These parameters can also be included in the search to search for conditions producing given
specifications. The number of total conditions is not limited.

• robustness(list of names,list of floats,qfltl,list of names,
list of floats,int,number).

• robustness log(list of names,list of floats,qfltl,list of names,
list of floats,int,number).

computes the robustness and relative robustness of the system with respect to the spec-
ification given as QFLTL(R) formula, for normally distributed parameters perturbations
around their current value with given coefficient of variation. Command suffixed by log
uses lognormally perturbed parameters.

Example 30 robustness([k1,k2], [0.1,0.05], F([A]>=v), [v], [100], 500, 50).
evaluates the robustness, and relative robustness, of F([A]>=100 in time horizon 50, i.e. ”A
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reaches value 100 before time 50” by computing the satisfaction degree of this specification
for 500 samples of normally distributed parameters, k1 and k2, with coefficient of variation
0.1 and 0.05.

• landscape(list of names,list of floats,qfltl,list of names,
list of floats,int,number).

• landscape log(list of names,list of floats,qfltl,list of names,
list of floats,int,number).

displays the satisfaction degree landscape of a QFLTL(R) formula on a 2D parameter
grid. Command suffixed by log computes the satisfaction degree on a log scaled grid.

Example 31 landscape([k1,k2], [(0,100),(50,100)], F([A]>=v), [v], [100], 20, 50).
Displays the satisfaction degree landscape of ’A reaches value 100 before time 50’ for

parameters k1,k2 ranging in (0,100) and (50,100). Satisfaction degree values are computed
on a grid of size 20*20.

2.9 Types

A reaction model can be abstracted in many ways to get partial information on the objects
of the model. The relationship between a reaction model and an abstraction of it is called
a typing, by analogy to the use of types in programming languages.

Currently three simple typings are implemented in BIOCHAM for infering from the
reaction rules, respectively, the influence graph (of activation and inhibition) between ob-
jects, the function (kinase or phosphatase) of objects, the neighborhood relation between
locations.

2.9.1 Influence graph

A graph of positive or negative influences between molecular species can be inferred from
the reaction rules. Under very general condition on the kinetic expressions in the rules [4],
this graph is identical to the influence graph defined by the signs of the coefficient in the
Jacobian matrix of the ODE interpretation of the rules. Thomas’s necessary conditions
for multistability (existence of a positive circuit in the influence graph) and for oscillations
(existence of a non-tricial negative circuit) apply on this graph.

• show influences.
infers the influence graph and prints the activation and inhibition relations between

objects.

• export influences dot(file).
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infers the influence graph in terms of activations and inhibitions from the BIOCHAM
rules, and exports it in a .dot file. That file can then be used to generate pictures of the
influence graph, with for instance tools such as Graphviz.

• export influences ginml(file).
Same as above but for the GINsim tool.

• draw influences.
infers the influence graph and visualizes it using Graphviz and gv (that have to be

installed and in your PATH).

2.9.2 Object functions

• show functions.
infers the kinase and phosphatase functions of molecules from the rules.

2.9.3 Location neighborhood

• show neighborhood.
infers the neighborhood relation between locations.

• draw neighborhood.
infers the neighborhood graph and visualizes it using Graphviz and gv (that have to be

installed and in your PATH).

• export neighborhood dot(file).
infers the neighborhood relation between locations, and exports it in a .dot file. That

file can then be used to generate pictures of the neighborhood graph, with for instance
tools such as Graphviz.

http://gin.univ-mrs.fr/
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Graphical User Interface

A Graphical User Interface is provided to access in a easier way to BIOCHAM commands.
It can be started with the command: biocham gui. If you have not installed BIOCHAM
with the make install command, then you must be in BIOCHAM’s installation directory
to use the above command. Another solution is to call directly java -jar BIOCHAM’s
installation directory/gui/biocham.jar BIOCHAM’s arguments This invocation can be
followed by .bc file names indicating files to load on startup.

Here is a screenshot of the interface:
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The upper left part of the window contains a list of the parameters of the model and
their current value. The values can be modified by clicking in the white box. Similarly, the
lower left part contains the biochemical compounds and their initial concentration, which
can be changed in the same way.

The upper right part contains a set of tabs. If a simulation is run and plotted, it will
appear in one tab (use of the keep_plot command of BIOCHAM will allow to keep a tab
for future reference). Clicking in the caption allows to change the colors of the plotted
compounds. The coordinates are displayed below the caption. Note that the GUI can
not plot the result of boolean simulations yet. Using the left button, one can select a
rectangular area of a plot for zooming. Double-clicking will bring back the previous zoom.

Plots of the phase space will also appear in the upper right part, they will be updated if
the corresponding simulation plot is modified. Finally the data browser will also use tabs,
but those will remain static (no update). The data browser offers a search feature that will
look for a value in the selected column, from the selected cell downwards.

To get rid of an old tab, double-click on it.
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Below the tab area is a zone for inputting commands. It will complete command names
if ¡TAB¿ is pressed, and keeps an history of commands that can be consulted with the up
and down arrows.

The lower right panel shows the usual output of BIOCHAM.
The menu items are self-explanatory, except that running a simulation will automati-

cally plot its result afterwards.
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Differences with Earlier Versions

New features of BIOCHAM 2.9 (Mar. 2009)

• GINsim ginml export of the influence graph;

New features of BIOCHAM 2.8 (Jan. 2009)

• Parameter optimization w.r.t. QFLTL(R) properties using CMAES for searching
several tenths of parameter values in one run;

• Robustness analysis w.r.t. LTL(R) properties;

• Much improved SMBL support.

New features of BIOCHAM 2.7 (Apr. 2008)

• Stochastic simulation methods (Gillespie and tau leaping);

• Syntax for conservation laws with stoichiometry. Automatic computation through
P-invariants;

• Instantiation of variables in LTL(R) formulas out of numerical traces;

• new search algorithms for the command learn_parameter renamed in search_parameter

• check_ltl and search_parameter now default to using the current ltl specification;

• Several improvements to the Java GUI;

• Commands to delete events;

• Bugfix conservation laws accross locations of different volumes.

• Windows version now runs completely without Cygwin
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New features of BIOCHAM 2.6 (Feb. 2007)

• Abbreviations for Hill kinetics; MA and MM arguments generalized to expressions;

• Default mass action law MA(1) kinetics for rules written without kinetic expression;

• Shortcuts for temporal properties integrated as formulas and suppressed as com-
mands;

• The dot command displays its result in the GUI;

• Export to Prolog; CTL model checker in Prolog; Prolog call command;

New features of BIOCHAM 2.5 (June 2006)

• Locations, i.e. SBML like compartments;

• Basic typing;

• Plot fitting commands;

• LTL(R) specifications can now be added to a model and checked in the same way as
CTL ones;

• Mass conservation laws (algebraic invariants);

New features of BIOCHAM 2.4 (Oct. 2005)

• More options for LTL(R) model checking on numerical traces, especially about period
of oscillations.

• Plotting of numerical simulations as trajectories in the phase space.

• Abbreviations for Mass Action Law and Michaelian kinetics.

• A preliminary Java-based Graphical User Interface.

• A possibility to select which macros to plot.

• Some syntax changes in command names.

• Event handling.

New features of BIOCHAM 2.3 (June 2005)

• Learning of (interaction) rules.

• Export to xppaut’s .ode format.



49

• LTL(R) model checking on numerical traces, and learning of numerical parameters.

• A new, more versatile parser, thanks to Daniel de Rauglaudre.

• More shortcuts for NuSMV queries. Fairness (weak) or dynamic reordering BDD’s
variables. Support of NuSMV 2.2.2 and 2.2.3.

• The vim mode that was developed externally is now merged in the distribution, an
emacs mode is available too.

New features of BIOCHAM 2.2 (Mar. 2005)

• BIOCHAM 2.2 brings more flexibility for plotting simulation results. The simulation
can use (and that’s the default) an implicit method, and thus handles stiff equations.

• Any BIOCHAM command can now appear in a BIOCHAM file.

• SBML (resp. BIOCHAM) parameters are now imported (resp. exported) to BIOCHAM
(resp. SBML) parameters.

• Lots of minor bugs were fixed.

New features of BIOCHAM 2.1 (Oct. 2004)

• BIOCHAM 2.1 implements the adaptive step size method of step doubling for Runge-
Kutta integration method.

• Bug fixed on the parsing of arithmetic expressions (implies to add parentheses around
complexes given with stoichiometric coefficients).

New features of BIOCHAM 2.0 (Aug. 2004)

• BIOCHAM 2 introduces the ability to use quantitative models, with stoichiometric
coefficients and kinetic laws (examples are available in the EXAMPLES/kinetics
directory). These models can be numerically simulated, or used as before for model-
checking via a boolean abstraction. Parameters and macros can also be defined, used
in rate laws and saved in a separate file.

• An import/export function to/from SBML has also been introduced.

• Some shortcuts for common CTL queries are now available.

New features of BIOCHAM 1.0 (Feb. 2004)

• BIOCHAM 1.0 introduces a rich pattern language for defining reaction rules in a
concise manner. The complexation operator is now supposed to be associative and
commutative. The operators Ei and Ai have been introduced in the query language
to quantify over the initial states.
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• BIOCHAM 1.1 exports the interaction map to Graphviz dot format.

Features of BIOCHAM 0.0 (July 2003)

• Reaction rule based modeling language without patterns.

• Interface to NuSMV model checker for CTL queries.
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[9] Aurélien Rizk, Grégory Batt, François Fages, and Sylvain Soliman. A general compu-
tational method for robustness analysis with applications to synthetic gene networks.
Bioinformatics, 12(25):il69–il78, June 2009.

[10] François Fages and Sylvain Soliman. Abstract interpretation and types for systems
biology. Theoretical Computer Science, 403(1):52–70, 2008.

[11] Nathalie Chabrier-Rivier, Marc Chiaverini, Vincent Danos, François Fages, and Vin-
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sets, 17
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show initial state, 25
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