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Abstract. CLPGUI is a generic graphical user interface for visualizing and con-
trolling the execution of constraint logic programs. CLPGUI has been designed
to be used in different contexts: initially for teaching purposes, then for debugging
complex programs of real-world scale, and recently for developing end-user interfaces.
The challenge of developing a tool which is generic w.r.t. both the constraint logic
programming system and the visualizers, is addressed by a client-server architecture
for connecting a CLP process to a Java-based GUI process, and by a non-intrusive
tracing and control method based on annotations in the CLP program. Arbitrary
constraints and goals can be posted incrementally from the GUI in an interactive
manner, and arbitrary states can be recomputed. We describe several generic 2D
and 3D viewers of the variables and of the search tree, and argue that the 3D
representation is best-suited to apprehend the shape of large search trees. We also
illustrate the use of CLPGUI for developing application-oriented end-user interfaces
on two placement problems, one in virtual reality.

1. Introduction

Several tools for visualizing the execution of constraint programs have
been developed in the last few years. These tools have been found
very useful for debugging and improving constraint programs, and for
teaching constraint programming. One can distinguish:

— post-mortem visualization tools, these tools are used after execu-
tion of the program, the program is annotated with specifications
of the information to trace. This approach is implemented for
example in the CHIP or CIAO systems, it allows using a wide va-
riety of viewers, including both application oriented tools [24], and
generic tools, for visualizing the search tree [5, 22], finite domain
variables [4], or constraint propagation [23].

— dynamic visualization tools, these tools are connected to the con-
straint programming interpreter and realize an on-line visualiza-
tion, possibly with animations [16]. This approach is implemented
in the Grace tool [18] for finite domains visualization, and in OPL
studio [2] for search tree and constraint propagation visualization.
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Some of the tools in this category rely on the enrichment of the
constraint solver to help improve the visualization, whether by
grouping constraints [15] or by keeping explanations of domain
reductions [13].

— dynamic visualization and control tools which allow interaction
with a CLP process through different visualizations. One example
is the Oz-Explorer system [21] where it is possible to jump to
any previously encountered state by simply clicking on a node of
the search tree, and restart computation from that state. User-
guided search is implemented in Oz-Explorer using the first-class
computation spaces of Oz. Recomputation is used to trade space
for time in Oz-Explorer, and similarly in OPL studio [2], the state
restoration mechanisms in tree search are described in [6].

In this paper we propose to push forward these ideas towards a
generic architecture allowing the connection of a CLP process to dy-
namic visualization and control tools. Our ambition is not to realize
an ad hoc tool limited to a particular constraint programming system,
currently GNU-Prolog [10] and SICStus-Prolog [26], but a generic tool
which can be ported to other constraint programming systems as well.
One reason for this is that a wide variety of viewers can be useful for
debugging or interacting with constraint programs and it is possible
in this way to share developments. Another reason comes from the
necessity to try different models which often imposes to change of
constraint programming systems in order to benefit, for instance, from
a particular global constraint.

Our approach relies in part on the generic trace format which is
defined in the OADymPPaC consortium [19] for post-mortem analysis.
We propose to extend this format with a similar generic format for
control, and to use these formats for connecting on-line the CLP process
to the GUI process. Our current implementation of CLPGUI in Prolog
and Java is depicted in Figure 1.
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Figure 1. Information flow for dynamic visualization in CLPGUIL.

Currently, most constraint programming systems do not support
however the OADymPPaC trace format and the objective of gener-



icity of CLPGUI with respect to the constraint programming system
is therefore quite challenging. The solution used in CLPGUI relies on
a non-intrusive tracing and control method based on annotations in
the program. Annotation predicates are defined for associating external
names to variables, customizing the GUI and more importantly tracing
the execution of the program. The originality of this approach lies in the
use of annotation predicates not only for sending the specified trace of
the execution but also, in the reverse direction, for interpreting control
commands, such as recomputing a complete state corresponding to a
traced node in the visualized search tree. We show that the annotation
predicates form indeed a complete set of control points in the program
which can be used to implement in a non-intrusive manner control com-
mands such as backtracking or jumping to a different state represented
as a node in the search tree.

Besides performance issues which in CLPGUI are largely solved,
in order to scale-up, visualization tools have to rely on visualization
paradigms that are still effective on large data sets. This difficulty is
particularly severe for visualizing very large search trees which is a com-
mon need in constraint programming. Apart from [1], the visualization
of search trees in three dimensions has not been much investigated. In
this paper, we propose a 3D representation of search trees which we
found most appropriate to apprehend the shape of large search trees,
of 10* nodes for instance. Playing with rotations, that cannot be repro-
duced in this article, is an important feature of the 3D representation
which compensates the compactness of its 2D projection on the screen.

Such a robust architecture for visualizing and controling the exe-
cution of constraint logic programs can also be exploited to develop
application-oriented end-user interfaces in both directions of visualiza-
tion of solutions and control of the search. We exemplify this aspect
of CLPGUI on two placement problems where the user can not only
visualize the computed solutions but also modify the constraints or the
solutions and search for new solutions near the modified ones.

The rest of the paper is organized as follows. Section 2 describes the
client-server architecture of CLPGUI and the user console from which
the execution of the CLP program can be controlled. Section 3 describes
the annotation predicates used for tracing and controlling the execution
of the CLP program at various levels of granularity. The interactive ex-
ecution model of CLPGUI is also described with its implementation in
two constraint programming systems: GNU-Prolog and SICStus Prolog
with CLP(FD,R) libraries. Section 4.1 presents a dynamic 3D viewer for
visualizing the evolution of the domain of variables over time. Section
4.2 describes the representation of the explored search space as partial
CSLD derivation trees, and presents different visualizations with 2D



and 3D viewers. The following subsection provides some performance
figures on a branch and bound optimization problem. Section 5 details
the communication mechanism by message passing. Then in Section 6
we show how some application-oriented graphical user-interface have
also been successfully developed with CLPGUI on two placement prob-
lems, one in virtual reality. Finally, we conclude on the generality of
this scheme.

2. Client-Server Architecture
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Figure 2. The CLPGUI console.

The graphical user interface of CLPGUI is a Java application con-
nected by sockets as a client to a server which executes CLP goals.
Both processes can run on different machines and communicate over
the network. This has been experienced with CLPGUI for visualizing
the execution of CLP programs on a Workbench of Virtual Reality. The
choice of the Java language for implementing the GUI is motivated by
several reasons:

— its object-orientation, all 3D viewers presented in the following
sections inherit from a single class for moving and projecting 3D
figures;

— the encapsulation of events handling, that is preponderant in dy-
namic visualization;

— the threaded execution, which is mandatory for implementing com-
munication with the CLP process;

— its wide availability.



For efficiency reasons, we did not use the GL4Java or Java-3D libraries
for the generic viewers presented in this paper, as they can directly ben-
efit from ad hoc optimizations that speed-up their incremental display.
Nevertheless the architecture can support the use of these powerful
libraries for developing complex application-oriented viewers, as shown
in section 6.2.

During initialization, the CLP server starts an interpreter of the
command lines received on the socket. The GUI Java client opens a
graphical console such as the one in Figure 2. That console is used for
establishing a connection to the CLP server, and for posting constraints
or executing arbitrary CLP goals.

The CLP program may contain annotations for creating buttons for
some constraints or for some Prolog goals to execute in an interactive
manner. These buttons for posting constraints or Prolog goals then
appear at the bottom in the CLPGUI console, see Figure 2. Since these
buttons rely on the annotation predicates discussed in the next section,
they are completely independent of the underlying constraint system. A
click on the button posts the constraint or executes the goal associated
to the button. Other arbitrary goals can be executed by entering them
in a text field. In addition, one button called “backtrack” continues the
execution of the current goal up to the next success, or, if there is no
more success, returns to the state of the previous interaction. Another
button called “backtrack to last interaction” forces backtracking to the
state of the previous interaction. The menu bar of this console contains
menus to select and activate the viewers of the search tree or of the
finite domain variables.

3. Non-Intrusive Traces and Control through Annotations

Annotations have been proposed as a simple mechanism for tracing the
execution of constraint logic programs and specifying the level of gran-
ularity of the data to visualize [5]. In this section, we present the main
annotation predicates defined in CLPGUI and we show how annotation
predicates can be extended to an active mechanism for interpreting
control commands as well in a non-intrusive manner.

3.1. ANNOTATION PREDICATES

In CLPGUI, the CLP program may contain annotations for giving an
external name to CLP(FD) variables, for creating buttons for posting
constraints or goals from the CLPGUI console, and for specifying the
goals to visualize in the search tree. The following predicates are part
of the annotation library:



— gui_varnames(LV,LN) and gui_varnames(LV) give an external
name to the list LV of CLP variables. These external names are
used in the graphical user interface and for the communication by
sockets. If no names are provided, standard names V1, V2, ...are
created.

— gui_button(goal) creates a button in the GUI console for exe-
cuting a goal or for posting a constraint.

— gui_bagof buttons(goal, call) creates a bag of buttons for each
successful instance of the second argument.

— gui_trace_search(goal) executes the goal and traces the exe-
cution of that goal, by creating nodes in the search tree. The
goals and constraints posted from the graphical console are always
traced.

— gui_show domains updates the visualization of the current state
of FD variables.

The advantages of annotations are:

— the flexibility of defining different levels of granularity concerning
the information to visualize,

— the easiness for making existing programs interactive,

— the portability of the GUI to other constraint programming sys-
tems, as all communications with the GUI are encapsulated in the
implementation of annotation predicates.

The limitations of annotations are well-known in standard program-
ming environments: they may be difficult to maintain in large programs.
In that case, one solution is to automatically generate annotations with
a graphical editor of the program source, where spy points and trace
options can be specified. Nevertheless, one peculiarity of constraint
logic programming is the conciseness of programs. CLP(FD) programs
for solving combinatorial optimization problems on real-size data may
compute with a huge amount of constraints and variables, but the
program source for handling constraints and defining complex search
strategies usually remains relatively concise. Therefore in this context,
the proposed annotations appear as a satisfactory solution.

In many CLP systems however, the heuristic labeling procedures are
built-in, and may be difficult to trace precisely with simple annotations.
This is possible if the CLP system provides coroutining facilities like
for instance the freeze predicate) of SICStus-Prolog [26]. In this case,
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one can trace the instantiation of variables and the search tree created
by the built-in labeling procedure, with a simple call to the following
predicate before labeling:

freeze_trace([]).
freeze_trace([X|L]):- freeze(X,gui_trace_call(X=X)),
freeze_trace(L).

In absence of coroutining predicate, one solution is to rely on the
tracing facilities of the CLP system in order to extract, and communi-
cate to the GUI, the relevant information, like the creation of a choice
point or the reduction of one variable’s domain. Another solution is to
program the labeling heuristics in the host language, in order to make
available the information coming from the constraint solvers that is
relevant to the search heuristics. In that case, the effect of the search
strategy can be visualized at different levels of granularity. In its sim-
plest form, a predicate for tracing a labeling procedure can be defined
with a gui_trace_search annotation as follows:

gui_trace_labeling([]).
gui_trace_labeling([X|L]):- gui_trace_labeling(L),
gui_trace_search(fd_labeling(X)).

It is worth noting that if the search strategy is implemented with a
meta-interpreter, and uses constraint posting instead of labeling (like
in the bridge problem described in section 4.3), the relevant part of the
search tree can always be traced with CLPGUI annotations.

A similar difficulty arises for tracing internal constraint propagation
steps. This is not possible without access to the wakening events of the
constraint solver, as defined for instance in the OADymPPaC format
[19]. The annotations for tracing constraint propagation steps have thus
to rely either on coroutines or on the tracing facilities of the solver in
order to extract and communicate constraint wakening events. An XML
syntax for traces has been defined by the OADymPPaC consortium for
this purpose.

FEzxample 1. The following annotated GNU-Prolog program solves the
well known SEND+MORE=MONEY puzzle in an interactive manner,
by creating buttons for posting the constraints and for trying two
labeling goals in this example:

sendmore (L) : -
L=[S,E,N,D,M,0,R,Y],
gui_varnames(L,[’S’,’E’,’N’,’D’,’M’,°0°,’R’,’Y’]),
fd_domain(L,0,9),
gui_show_values,



gui_button(fd_domain([S,M],1,9)),

gui_button(1000*S+100*E+10*N+D+1000*M+100*0+10*R+E
#= 10000%M+1000*0+100*N+10*E+Y) ,

gui_button(fd_all_different(L)),

gui_button(gui_trace_labeling(L)),

reverse(L,L2),

gui_button(gui_trace_labeling(L2)).

This program generates the console in Figure 2. The evolution of the
finite domain variables over time, after the posting of constraints and
of the first labeling goal, is depicted in Figure 5. The visualization of
the search tree for obtaining all solutions under the first labeling goal,
and then under the second labeling goal executed after a backtracking
command, is depicted in Figure 3. Under the first ordering, the labeling
is deterministic. Under the second ordering, few backtracking steps
occur on variable Y when searching for other solutions. Note that other
labeling heuristics can be tried directly from the console. On such peda-
gogical examples, the advantage of immediately visualizing the effect of
posting a constraint or trying a labeling, is clear for teaching purposes,
since the user can see at the same time the number of backtracks, the
depth of the search, and the evolution of the domains of the variables.
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Figure 3. Search trees with two labeling orderings in the puzzle
SEND+MORE=MONEY.

FEzxample 2. The following program solves the N queens problem by
creating buttons for posting the constraints (safe predicate) and label-
ing goals for each variable (fd_labeling predicate) and for all variables
(gui_trace_labeling predicate).

queens (N,L) :-



length(L,N),

fd_domain(L,1,N),

gui_show_values,

gui_button(safe(L)),
gui_bagof_buttons(fd_labeling(X) ,member(X,L)),
gui_button(gui_trace_labeling(L)).

Three visualizations of the search tree for one single execution of

the above program for the 8 queens problem are depicted in Figures 6,
7 and 8.

3.2. CONTROL THROUGH ANNOTATIONS

Annotations in the program provide a set of control points which can
also be used to implement a sophisticated control of the execution of
the constraint program in a non-intrusive manner.

In CLPGUI we use annotation predicates to implement the auto-
matic recomputation of any state represented as a node in the search
tree. Once a node in the search tree (such as the tree depicted in
Figure 3) has been selected for being recomputed (by clicking on it),
a recomputation directive is transmitted to the solver by means of the
path in the tree from the root to the node. This path is then interpreted
as a sequence of choices that have to be taken from the initial state to
the one being recomputed. The algorithm is thus basically the classical
recomputation algorithm of a path in a derivation tree [21, 2, 6], where
actually no intermediate state is memorized. The novelty in CLPGUI
is that this recomputation algorithm is implemented in a non-intrusive
manner using annotation predicates to control the execution of the CLP
process following the recomputation path.

This recomputation algorithm supports CLP programs containing
cuts and exceptions. It does not support however programs containing
side effects. One way to support side effects would be to recompute not
only the path but the entire derivation tree leading to the recomputed
node. Another way would be to memorize the intermediate state values
that are subject to change by side effects. A particular case of this is the
memorization of the best cost value in optimization predicates, such as
in the CLP predicate minimize (Goal,Cost) for instance.

Batch recomputation, i.e. memorizing all constraints posted in a
node and adding all constraints at once for a recomputation, has been
proposed in [6] as a method giving slightly better performances. It
is worth noting however that this method is not applicable in our
non-intrusive setting as we do not assume a complete knowledge of
all constraints posted by the program.
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3.3. INTERACTIVE EXECUTION MODEL FOR CLP

The interactive execution model of the CLP process used in CLPGUI
is a combination of the model for adding and removing constraints and
goals described in [12] with the non-intrusive recomputation algorithm
described above. In CLPGUI, constraints and goals can only be added
to the current goal; the removing of constraints or goals occurs by
backtracking or jumping to a specific node. It is therefore possible on
a success of the current goal:

— to add constraints or any goals to the current goal and continue
resolution,

— to backtrack to the next success (command “backtrack” of Section
2),

— to backtrack to the previous interaction (command “backtrack to
last interaction”),

— or to recompute a given state depicted as a node of the search tree.

It is worth noting that such a top level is in fact very appropriate for
standard Prolog systems. Our current implementation uses the global
variables of GNU-Prolog [10] to memorize global information, such
as input and output sockets, variable names, and information used
for backtracking. Global variables make it possible to avoid adding
parameters to many predicates and lead to a simple implementation
of annotations. In SICStus-Prolog [26], global variables are emulated
using blackboard predicates, mutables and system predicates.

4. Generic Viewers for Debugging or Teaching

4.1. 2D AND 3D VIEws oOF FINITE DOMAIN VARIABLES

The domains of finite domain variables at any given time can be visual-
ized with a generic 2D boolean matrix having one row per variable and
one column per value. In the N-queens problem this view provides a
view of the chessboard. In a scheduling problem, like the famous bridge
problem [27], this view shows the possible starting dates of the task and
the flexibility of a solution, as depicted in Figure 4.

The evolution of finite domain variables over time can be visualized
in a three dimensional graph variable-domain-time, as already proposed
in the VIFID/TRIFID tool [25]. In CLPGUI the visualization is dy-
namic, the Java process reads the stream of finite domains information

10



L o
m HrinT LI 0
e LD Qe LD A T OO O O B DA T e LN Tt
1 LS oo ommonnEEEEEE— HHHHHS s neuy

e CLPGUI Finite Domains 2D Viewer

Figure 4. 2D view of finite domain variables in an optimal solution of the bridge

scheduling problem [27].

and paints the figure in an incremental manner. Domains are depicted
by their size on the vertical axis, see Figure 5. According to options,

that can be set in the CLP program or in the GUI, only the size, the

interval or the complete domain of variables is visualized. But in any

case only the sizes of the domains are memorized, therefore the extra
information is lost when the figure is repainted. The time axis traces

the interactions (i.e. the posting of constraints in the example), and the
execution of traced goals (i.e. the labeling in the example). This view
shows that the posting of constraints instantiate variables S, M, O and
that the first labeling step on variable E in fact instantiates all variables

by constraint propagation. An option determines whether backtracked

states are traced or erased.

The figure can be moved, zoomed and rotated. For efficiency reasons,

the rotations are limited to a quadrant of a sphere which is not a
real limitation for the user. In this way the visible faces are efficiently

determined and the figure can be drawn incrementally.

Extra information on variables and executed goals can be obtained

by moving the mouse over the position of a variable or on a time

position.

The 3D dynamic view of finite domain variables evolution is very
useful for teaching constraint programming. The effect of constraints
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Figure 5. Dynamic 3D view of finite domain variables in the puzzle
SEND+MORE=MONEY.

is immediately seen and many strategies can be tried step by step.
The possibility for a student to see the domain reductions as they are
happening is really helpful for understanding the underlying machinery
of constraint programming. On larger sets of variables, the 3D view
of domains can still be useful to get a view of the pruning power of
different constraint models, and of the efficiency of different search
heuristics, by comparing the general shape of domain reductions.

4.2. 2D AND 3D VIEWS OF THE SEARCH TREE

4.2.1. Partial CSLD derivation trees
The search tree considered in CLPGUI is a labeled tree defined as
follows:

— a node is introduced for each call to a traced goal (called a call
node), and for each success to a traced goal (called a success node),

— the label of a call node is the called goal,

— the label of a success node is the list of named variables with their
value,

— the arcs correspond to the operational CLP transitions.
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Figure 6. 2D view of the search tree in the 8-queens problem.

This tree, which is a subtree of the CSLD derivation tree [17], is
a quite natural representation of the search tree for describing CLP
program execution. A branch represents a conjunction, and the different
successors of a node represents a disjunction. A success node may have
several successors if there is an untraced non-deterministic goal which
is executed after the success, and before the next call to a traced goal.
This is the main reason why success nodes are introduced in partial
CSLD trees. In this way, the non-determinism due to untraced goals
cannot be confused with the non-determinism of traced goals.

One disadvantage of CSLD trees is that when dealing with deter-
ministic programs they are threadlike and thus space consuming in
their standard representation. AND-OR  trees provide a more compact
representation, as the threadlike parts of the CSLD tree are compacted
in the successors of a single AND-node. For this reason, in the context
of logic programs where most predicates are deterministic, AND-OR
trees, and their variant AORTA diagrams which indicate the status of
resolution of the goals, have been preferred [11]. Nevertheless in the
context of constraint logic programming over finite domains, the situa-
tion is quite different. The search tree to visualize is usually focused on
the labeling predicates, or more generally on the branching procedure,
which is highly non-deterministic (at least during debugging). The rep-
resentation of the deterministic part of the search tree with threadlike
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Figure 7. 3D of the search tree in the 8-queens problem.

structures provides an immediate visualization of the pruning power of
constraints.

A naive solution for tracing constraint propagation steps in this
approach is to add deterministic nodes for tracing constraint wakening
events. For space limitation reasons, it is preferable however to aggre-
gate constraint propagation information to the nodes of the search tree.
This is proposed in the “Christmas trees” of OPL studio [2].

For search engines not based on backtracking, it is worth noting that
a partial CSLD derivation tree can still provide a valid representation
of the explored search space, as long as the explored states can be
defined by their relation to some ancestor states. A formalization of
an interactive constraint solver by transformations of CSLD derivation
trees was done in [12].

4.2.2. Search Tree Viewers
Once the search tree is formally defined, it can still be visualized in
many ways, and in some cases it can be interesting to use several
visualizations at the same time. We have currently implemented sev-
eral two-dimensional and three-dimensional viewers, but many more
representations could be imagined and fruitfully used.

In all the following representations, the labels of the nodes are visu-
alized when the mouse is moved over them, and there exists an option
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Figure 8. Dual treemap representation obtained by rotation of the 3D view.

for making all nodes visible. The successes are materialized by a red
cross. Each view can be moved, zoomed and rotated.

Figure 3 uses a standard 2D representation of the search tree in
a fixed width. Figure 6 uses a dynamic 2D representation of the tree
with a fixed spacing between leaves. This representation of the tree
can be drawn incrementally and is thus appropriate for the dynamic
visualization of large trees.

To our knowledge, the 3D visualization of search trees has not been
much investigated. Figure 7 shows a somewhat original 3D represen-
tation of the search tree with alternating planes of successors. One
advantage of this 3D representation is that it is relatively compact, it
helps visualizing rather large trees by playing with rotations, see Figure
11 for another example. Our experience is that the 3D view is the most
appropriate view to apprehend the shape of large search trees.

It is interesting to note that one obtains a dual treemap repre-
sentation of the tree by rotation of the 3D alternate tree up to its
vertical projection, as done in Figure 8. Treemap representations (with
colors for aggregating information) are known to be particularly effi-
cient for representing large data sets [20] and for visualizing complex
phenomenons such as correlations, patterns or symmetries. By rotating
the 3D tree up to its vertical projection, one obtains a dual view of the
treemap where the centers of the rectangles instead of the rectangles
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Figure 9. Complete search trees for all solutions to the 8 queens problem, without
and with symmetry breaking obtained by adding the constraint VO#<V7.

are depicted. Figure 9 depicts the search trees for all solutions to the
8 queens problem obtained on the left without symmetry breaking,
and on the right obtained by adding the constraint VO#<V7. Figure
10 depicts the same search trees as dual treemaps, which show the
drastic improvement obtained by symmetry breaking, namely the lower
number of choice points needed to find non-symmetric solutions.

In any of the 2D or 3D trees shown before, the user can select a node
by clicking on it and then use the menu to hide/show the subtree below
that node, or more importantly, to recompute the state of that node as
current state, as already described in section 3.2. The ways in which the
user can interact with the running CLP process are thus not limited to
those provided by the user console of Figure 2 for interactive execution
and user-guided backtracking. Jumps to arbitrary traced states can be
specified directly from the search tree viewers.

4.3. EVALUATION

Our experience of using CLPGUI for teaching constraint programming
has been very positive. The dynamic visualization of CLP programs
really speeds-up the process of learning the basic concepts of domain
filtering, constraint propagation and search trees. Just giving a demon-
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Figure 10. Complete dual treemaps for all solutions to the 8 queens problem,
without and with symmetry breaking.

stration of CLPGUI in a course provides immediate intuition to stu-
dents. CLPGUI has also been fruitfully used to visualize the search
tree of CLP(R) programs. Concerning debugging, CLPGUI appears as
a complementary tool to standard debuggers which may present more
fine grained trace information. The main advantage of CLPGUI is to
immediately apprehend the shape of the search tree and the shape of
domain reductions and to visualize the effects of adding constraints or
of changing the labeling procedure.

On real-size data, the visualization of the search tree in CLPGUI
shows satisfactory performance figures. The drawing of the tree is im-
mediate and the figure can be moved and rotated without difficulty on
large examples. Figure 11 shows the search tree obtained with GNU-
Prolog for the bridge problem [27], a medium size job-shop scheduling
problem using optimization. The branch and bound procedure develops
search trees in three parts. The first part corresponds to the enumera-
tion of solutions with decreasing costs (for minimization problems). The
second part exhausts the search space to show that there does not exist
a better solution than the last solution found. The second part of the
search tree constitutes the proof of optimality. The third part which
is optional enumerates all optimal solutions by fixing the cost to its
optimal value. The first descent (on the left) corresponds to the search
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of the first solution of cost 110. It contains 78 call nodes. The second
descent corresponds to the search of a better solution of cost 106. It
contains 78 call nodes. The third descent contains some backtracked
branches and corresponds to the search of the optimal solution of cost
104. It contains 99 call nodes. The fourth part of the tree is a dense
subtree of 3728 call nodes which corresponds to the proof of optimality
(it is a finitely failed subtree). The fifth branch enumerates all optimal
solutions of cost 104. The 3D view is the most appropriate view for the
tree of the proof of optimality. It can be moved and rotated without
difficulty.

Sl CLPGUI Search Tree Viewer o B4

disj(azge,as

1%

%t

Figure 11. 3D view of the search tree for the bridge problem in GNU-Prolog (3905
call nodes).

We report here the timings obtained on a Pentium III 600 MHz
processor under Linux. GNU-Prolog solves the bridge problem men-
tioned above in 100 ms, including the proof of optimality. The solving
together with the visualization of the search tree with 3905 call nodes
takes 470 ms with CLPGUI. This overhead is due to the communication
of messages by sockets. The overhead was reduced from 2600 ms to 470
ms by optimizing socket calls.
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5. Communication by Message Passing

In this section we describe the messages which are transmitted between
the CLP process and the GUI process. The CLP process produces the
trace information specified by the annotations in the CLP program, or
asked from the GUI. The messages emitted from the CLP to the GUI
are the following:

<variables ...> sends the list of FD variable names

<button G> asks the GUI to create a button for posting the constraint
or goal G

<undo button G> indicates backtracking on the creation of a button for
G

<node G> traces a call to goal G

<undo node G> traces backtracking on the call to G
<child G> traces a success to G

<undo child G> traces backtracking on the success to G

<undo goal G> indicates backtracking on the call to goal G

<domainSizes ...> sends the domain sizes of FD variables
<domainIntervals ...> sends the current intervals of FD variables
<domainValues ...> sends the current finite domains of FD variables

(represented as a list of intervals)

<undo domainValues>, <undo domainIntervals>

<undo domainSizes> warns the GUI that the finite domain variables are
updated by backtracking.

<success> indicates that the current derivation is a success
<clear> indicates return to top level.

In the other direction, the messages emitted from the GUI to the

CLP process are the following:

<showSize>, <showInterval>, <showValues> sets the information on
finite domains that need be sent

<execute G> asks to post constraint G or execute goal G
<backtrack> asks backtracking to the next success
<backtrackInteraction> forces backtracking to the last interaction
<recompute ...> asks for recomputation following the given path
<clear> asks to abort the current execution.

The portability of CLPGUI to a new constraint programming system

is determined by the ability of the constraint programming system to
produce and interpret these communication messages. The messages
of the first list are produced by the predicates of annotation library
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described in Section 3. The messages in the second list are interpreted
by the interactive execution model described in the previous section.

6. Application-oriented Graphical Interfaces
This section shows that it is also possible to develop end-user graphical
interfaces customized for one application by taking two concrete ex-
amples in which new viewers were created and plugged into CLPGUI
to allow for specialized views of the computed solutions but also for

specific interactions with the solver.

6.1. A BIN PACKING PROBLEM WITH ROTATIONS

24 CLPGUI 2D Placement Viewer
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Figure 12. Automatic placement viewer for the UIST contest.

The second interface-design contest of UIST 2002 [3] provided a
good test for the useability of CLPGUI in a challenging situation: a
complex problem to be solved as efficiently as possible in a minimal
time, all this relying a lot on the user interface.

The problem was to pack a set of squares of different sizes into three
bins, the sizes of which having to be minimized, and rotations of squares
being allowed. We developped two ad hoc graphical interfaces plugged
into the CLPGUI architecture for this problem. The first was used
to visualize an automatic placement of the squares, either a straight
placement or a placement in the corners of the three bins, as shown in
Figure 12, in order to insert the squares in the middle using rotations.
An important feature of this interface was that the squares could be
moved by drag and drop in order to make some manual modifications
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Figure 13. Rotation and square-squeezing viewer for the UIST contest.

of the initial placement solution. The second specific viewer, shown in
Figure 13, was used to show the filling of the center of the bins with the
remaining squares after squeezing to the optimal (non-integer) size.

All the parameters were modifiable from the GUI, all interactions
were backtrackable and the recomputation capabilities of CLPGUI
proved quite useful. The automatic placement module used SICStus
Prolog’s global constraints for non-overlapping rectangles [26]. A typ-
ical scenario was to use the automatic placement module for finding
best straight placements, possibly with the help of manual interactions,
and then to use it for finding alternative placements with rotations,
again with manual interactions for trying different parameters or mov-
ing some squares manually. CLPGUI earned the award of “Best User
Interface concept” in that challenge.

6.2. USER-INTERACTIONS IN VIRTUAL REALITY FOR A 3D
PLACEMENT PROBLEM

We have investigated the use of CLPGUI for combining a constraint
programming approach to a 3D placement problem, namely placing
furniture in an office, with virtual reality tools used for visualizing the
solutions automatically computed by the system, manually modifying
these solutions, recomputing new solutions near the modified configura-
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Figure 14. Two different views of a placement which can be modified in virtual
reality.

Figure 15. Visualization of distance constraints which can be modified graphically.

tion, and also for modifying the constraints of the problem [7]. The idea
was to explore the concept of constraint programming as a paradigm
of augmented virtual reality, where the augmentation comes from the
visualization of the constraints.

The user interacts with the placement system through a represen-
tation of the scene in virtual reality, augmented with a representation
of distance constraints. The application-oriented scenery viewer is im-
plemented in GL4Java [14], for its perfect performances in rendering
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textured 3D views. The viewer allows us to see the scenery from differ-
ent angles (from above, or inside the room with a position and an angle
chosen with the mouse), as shown in Figure 14. The viewer also allows
the user to interact with the system by picking some furnitures to move
them around, and recompute a feasible solution which minimizes the
distance to the manually modified configuration. Information used in
the solver, like distance constraints, can also be observed and modified
through their visualization in augmented virtual reality, as shown in
Figure 15.

On the CLP side, the constraint program developed in SICStus Pro-
log uses a global placement constraint for placing the objects without
overlapping, plus some specific constraints of orientation, symmetry
breaking techniques, different heuristics and optimization procedures.

Figure 16. A 3D scenery with 50 furnitures.

Some heuristics scale-up as shown in Figure 16 with a problem of 50
furnitures. However the emphasis of the system is on its interaction ca-
pabilities as it seems impossible to define general automatic placement
strategies. Having CLPGUI as backbone for this application provides
for free the ability to communicate easily between the graphical user-
interface and the solver, and to develop very complex interactive solving
strategies.

7. Conclusion

We have described a generic graphical user interface for visualizing and
controlling the execution of constraint logic programs. The open archi-
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tecture of CLPGUI involves a CLP process and a GUI process which
communicate by sockets. This choice has proved efficient enough for
the dynamic visualization and user-interactions on large examples. An
important reduction of the overhead was obtained by optimizing socket
calls and by using simple data compression techniques for communica-
tion. The tracing and control facilities are implemented in CLPGUI in a
non-intrusive manner with annotations which allow the user to specify
the required level of granularity. We have shown that the annotation
predicates can be used also to implement non-intrusively the automatic
recomputation of any state represented as a node in the search tree.

CLPGUI supports the use of different viewers, either generic or
application-oriented. The 3D visualization of search trees described in
the paper, is often the preferred view to apprehend the shape of large
search trees by playing with rotations, as it is very compact. More work
is needed however to parametrize the different viewers and invent novel
visualization paradigms of complex data. In this respect the flexibility
of the architecture makes it possible to connect CLPGUI to external
generic viewers, or to use powerful libraries like GL4Java to develop
application-oriented viewers as shown here with a placement problem
in virtual reality.

The most obvious limitation of CLPGUI in its present state is the
absence of trace for fine grained constraint propagation events. The
generic trace format for finite domain constraint solvers defined by the
OADymPPaC consortium [8, 19] is under implementation for GNU-
Prolog and Choco, and will be used in the future versions of CLPGUI.
One possibility is to visualize such fine grained data by aggregating
them into a special representation of nodes in the search tree using
different sizes and colors like in Christmas trees [2] or in conventional
treemaps.

In another direction, CLPGUI is not a visual programming tool
as far as the capabilities for defining new goals from the GUI are
rudimentary. Nevertheless the architecture of CLPGUI could support
visual programming techniques by adding the capability of defining new
constraints and goals graphically, which is certainly worth investigating.
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