
Trace Simplifications preserving
Temporal Logic Formulae

with Case Study in a Coupled Model of
the Cell Cycle and the Circadian Clock

Pauline Traynard and François Fages and Sylvain Soliman

Inria Paris-Rocquencourt, Team Lifeware, France

Abstract. Calibrating dynamical models on experimental data time se-
ries is a central task in computational systems biology. When numerical
values for model parameters can be found to fit the data, the model can
be used to make predictions, whereas the absence of any good fit may
suggest to revisit the structure of the model and gain new insights in
the biology of the system. Temporal logic provides a formal framework
to deal with imprecise data and specify a wide variety of dynamical
behaviors. It can be used to extract information from numerical traces
coming from either experimental data or model simulations, and to spec-
ify the expected behaviors for model calibration. The computation time
of the different methods depends on the number of points in the trace so
the question of trace simplification is important to improve their perfor-
mance. In this paper we study this problem and provide a series of trace
simplifications which are correct to perform for some common tempo-
ral logic formulae. We give some general soundness theorems, and apply
this approach to period and phase constraints on the circadian clock
and the cell cycle. In this application, temporal logic patterns are used
to compute the relevant characteristics of the experimental traces, and
to measure the adequacy of the model to its specification on simula-
tion traces. Speed-ups by several orders of magnitude are obtained by
trace simplification even when produced by smart numerical integration
methods.

1 Introduction

Calibrating dynamical models on experimental data time series is a central task
in computational systems biology. When numerical values for model parameters
can be found to fit the data, the model can be used to make predictions, whereas
the absence of any good fit may suggest to revisit the structure of the model
and gain new insights in the biology of the system, see for instance [23,15].

Temporal logic provides a formal framework to deal with imprecise data
and specify a wide variety of dynamical behaviors. In the early days of systems
biology, propositional temporal logic was proposed by computer scientists to
formalize the Boolean properties of the behavior of biochemical reaction sys-
tems [11,5] or gene regulatory networks [4,3]. Generalizing these techniques to

quantitative models can be done in two ways: either by discretizing the differ-
ent regimes of the dynamics in piece-wise linear or affine models [8,2], or by
relying on numerical simulations and taking a first-order version of temporal
logic with constraints on concentrations, as query language for the numerical
traces [1,13,14]. Such language can be used not only to extract information from
numerical traces coming from either experimental data or model simulations,
but also to specify the expected behaviors as constraints for model calibration
and robustness measure [20,21,9].

The general idea of model-checking a single finite trace has been well known
for years, notably in the framework of Runtime Verification [17]. It usually re-
lies on the classical bottom-up algorithm, which is bilinear [22]. This extends
even to quantitative model-checking like the continuous interpretation of Signal
Temporal Logic [10] since the combination of two booleans or two reals by min/-
max is cheap. However, when using the full power of First-Order Linear Time
Logic (FO-LTL) to compute validity domains, the dependency of the complex-
ity on the size of the trace is no longer linear but exponential in the number of
variables [13], reflecting the computational cost of combining complex domains.
The question of trace simplification [14] is therefore important to improve the
performance of FO-LTL constraint solving, and with it of the corresponding
calibration methods.

Fig. 1. Traces of some elements of the coupled cell cycle (MPF and Wee1 in grey,
respectively solid and dashed lines) and circadian clock (PerCry, Bmal1 and RevErbα
in black, respectively solid, dashed and dotted lines) models with different parameter
sets.

In this paper we provide a series of trace simplifications which are correct to
perform for some common temporal logic formulae. We give some general sound-
ness theorems, and apply this approach to period and phase constraints on the
circadian clock and the cell cycle. The traces shown in Fig. 1, and detailed in
Sect. 6, contain each several thousands of time-points. Computing the domains
of the formula describing the period between each pair of successive peaks by
polyhedral methods [13] becomes quite computationally expensive. In this appli-

cation, temporal logic patterns are used to compute the relevant characteristics
of the experimental traces, and to measure the adequacy of the model to its
specification on simulation traces. Speed-ups by several orders of magnitude are
obtained by trace simplification, even when produced by smart numerical inte-
gration methods (e.g. Rosenbrock’s implicit method), making trace simplification
comparable with ad-hoc solvers.

2 Temporal Logic Patterns

The Linear Time Logic LTL is a temporal logic [6] which extends classical logic
with modal operators for qualifying when a formula is true in a series of timed
states. The temporal operators are X (”next”, for at the next time point), F
(”finally”, for at some time point in the future), G (”globally”, for at all time
points in the future), U (”until”, for a first formula must be true until a second
one becomes true), and W (” weak until”, a dual operator of U). These operators
enjoy some simple duality properties, ¬Xφ = X¬φ, ¬Fφ = G¬φ, ¬Gφ = F¬φ,
¬(ψ U φ) = (¬φ W ¬ψ), ¬(ψ W φ) = (¬ψ U ¬φ), and we have Fφ = true U φ,
Gφ = φ W false.

In this paper we consider a first-order version of LTL, denoted by FO-
LTL(Rlin), with variables and linear constraints over R, and quantifiers. The
grammar of FO-LTL(Rlin) formulae is defined as follows:
φ ::= c | ¬φ | φ⇒ ψ | φ∧φ | φ∨φ | ∃x φ | ∀x φ | Xφ | Fφ | Gφ | φUφ | φWφ
where c denotes linear constraints between molecular concentrations (written
with upper case letters) their first derivative (written dA/dt), free variables (writ-
ten with lower case letters), real numbers, and the state time variable, denoted
by Time; e.g., F(A < v) is an FO-LTL(Rlin) formula. To denote the value of
state variable A in the state si we shall use a subscript notation such as Asi .

Temporal logic formulae are classically interpreted in a Kripke structure,
i.e. a transition relation over a set of states such that each state has at least one
successor [6]. In this paper, we consider finite traces obtained either by biological
experiments, or by numerical integration. To give meaning to LTL formulae, a
finite trace (s0, ..., sn) is thus complemented in an infinite trace by adding a
loop on the last state, (s0, ..., sn, sn, ...). The practical assumption behind this
classical convention for interpreting temporal logic on finite traces [22] is that the
time horizon considered is sufficiently long for properly evaluating the formulas of
interest. We also replace the computed value of dAdt by 0 in the last state, in order
to maintain the coherence between the concentrations and their derivatives. In
this interpretation over finite traces, the formula Gφ is thus true in the last state
if φ is true in the last state. The semantics of formulae containing free variables
is given by the validity domains of the variables.

Definition 1. The validity domain D(s0,...,sn),φ of the free variables of an FO-
LTL(Rlin) formula φ on a finite trace T = (s0, ..., sn), is a vector of least do-
mains for the variables, noted D(s0,...,sn),φ, satisfying the following equations:

– DT,φ = DTs0,φ,

– DTsi,c(x) = {v ∈ Rk | si |= c[v/x]} for a constraint c(x),

– DTsi,φ∧ψ = DTsi,φ ∩ D
T
si,ψ

, and DTsi,φ∨ψ = DTsi,φ ∪ D
T
si,ψ

,

– DTsi,¬φ = { DTsi,φ,

– DTsi,∃xφ = ΠxDTsi,φ, and DTsi,∀xφ = DTsi,¬∃x¬φ,

– DTsi,Xφ = DTsi+1,φ
if i < n, and DTsn,Xφ = DTsn,φ,

– DTsi,Fφ =
⋃n
j=iDTsj ,φ, and DTsi,Gφ =

⋂n
j=iDTsj ,φ,

– DTsi,φUψ =
⋃n
j=i(DTsj ,ψ ∩

⋂j−1
k=i DTsk,φ).

where { is the set complement operator over domains, and Πx is the domain
projection operator out of x, restoring domain R for x, and the other operators
are defined by duality.

3 Trace Simplifications

The usual computation of the validity domains involves computing domains for
each subformula on each point of the trace si. When dealing with temporal data
coming from numerical integration, especially of stiff systems, n can be very
high, which induces a high computational cost, O(nk), where k is the number
of variables. As mentionned in [14], and justified in the following sections of
this paper, a practical solution to this issue involves simplifying the numerical
trace without changing the generic domain solving algorithm. In this section
we therefore define more precisely the formal framework for defining such trace
simplifications.

Definition 2 (Trace simplification). Let T be a finite trace (s0, . . . , sn) and
φ an FO-LTL(Rlin) formula with constraints over the states of T .

T ′ is a simplification of T for φ at i, written T ′ �iφ T if:

– T ′ = (sj0 , . . . , sjk) for J = {j0, . . . , jk} a subset of the indices {0, . . . , n}
such that j0 < ... < jk, i.e., T ′ is a subtrace of T ;

– DTsi,φ = DT ′

sji ,φ
, where ji is the smallest index in J such that ji ≥ i, i.e. the

validity domains on T at i and T ′ at ji are equal.

T ′ is a simplification of T for φ, written T ′ �φ T when it is a simplification of
T at s0, i.e., DT,φ = DT ′,φ.

T ′ is a strict simplification of T for φ, written T ′ ≺ T if J ({0, . . . , n}.
T ′ is an optimal simplification of T for φ if its cardinal is minimal in the

set of the simplifications of T for φ.

Property-driven reduction of the system under analysis is a technique that
has been addressed many times in the history of computer science. In the frame-
work of abstract interpretation [7], not only the states but also the transitions can
be abstracted in a new system for simplifying the analysis of some given proper-
ties. The definition above can be seen as a particular instance of this framework
where a subset of states on the trace is preserved without abstraction, and the
transitions are abstracted accordingly to this subset. This abstraction reflects
our motivation of computing exact validity domains for formula variables (no
state domain abstraction) more efficiently (transition abstraction).

4 Examples

Most of the equations for DTsi,φ in Definition 1 are local, in the sense that they
only need information about the state at si. One obvious case of simplification
is when the unions or intersections involved in the domains for F, G and U can
be computed on a strict subset of the points, sometimes even a singleton. Since
it will come up often in the following examples, let us define a simple subtrace
containing all the local extrema and the initial point of the trace.

Definition 3 (Extrema Subtrace). Let T = (s0, . . . , sn) be a trace, T ex is the
subtrace of T defined as follows:

T ex = {si ∈ T | (dx/dt)i−1 > 0 ∧ (dx/dt)i ≤ 0}
∪ {si ∈ T | (dx/dt)i−1 < 0 ∧ (dx/dt)i ≥ 0} ∪ {s0}

We shall write T e =
⋃
x T

e
x

In the following examples, we will use the formulae given in [14] plus a few
other ones, and for each, we will compute the corresponding domain and examine
possible trace simplifications.

Example 1 (Minimal Amplitude).

Formula: φ = ∃v | F(A < v) ∧ F(A > v + a)

Validity Domain Let sminA and smaxA be some points of the trace where A
is respectively minimum and maximum.

DT,φ = Πa(DTs0,F(A<v) ∩ D
T
s0,F(A>v+a))

= Πa((

n⋃
i=0

DTsi,A<v) ∩ (

n⋃
i=0

DTsj ,A>v+a)) (*)

= Πa(DTsminA,A<v ∩ D
T
smaxA,A>v+a) (*)

Trace Simplification From the computation of the domain, equations marked
with a (∗), one can see that both unions are actually equal to a single domain,
only dependent on the state but not on T . Therefore any choice of sminA, smaxA
leads to an optimal trace simplification TJ where J = {minA,maxA}.

Note that because of the semantic link between A and dA
dt , T eA contains sminA

and smaxA and therefore will result in the same unions in the computation of
the domain, hence T eA is a simplification of T for φ.

Example 2 (Threshold).

Formula: φ = F(Time > 20 ∧A < v)

Validity Domain Let T be a trace (s0, . . . , sn) and T>20 its subtrace on the
points J = {0 ≤ i ≤ n | Timesi > 20}. As before, we chose some sminA>20

, a
point where A is minimum on T>20.

DT,φ = DTs0,F(Time>20∧A<v) =

n⋃
i=0

DTsi,Time>20∧A<v

=

n⋃
i=0

(DTsi,Time>20 ∩ DTsi,A<v) (*)

=
⋃
i∈J
DTsi,A<v = DTsminA>20

,A<v (*)

Trace Simplification As shown by the marked equations, the single point
{sminA>20} is enough to compute the big union of the domain, it defines an
optimal trace simplification of T for φ.

Notice that T eA is not a simplification unless it does contain a local minimum
such that Time > 20: if that is not the case, e.g. always increasing trace, sminA>20

will be the first state after Time = 20, which is not a local extremum.

Example 3 (Crossing).

Formula: φ = F(A > B ∧X(A ≤ B ∧ Time = t))

Validity Domain DT,φ =

n⋃
i=0

(DTsi,Asi
>Bsi

∩ (DTsi+1,Asi
≤Bsi

∩ DTsi+1,Time=t))

=
⋃

i∈{0,...,n}]|Asi
>Bsi

∧Asi+1
≤Bsi+1

{Timesi+1}

The computation above simply discards from the union the trace points where
the intersection is empty because one of the two first members is empty.

Trace Simplification Once again, for any trace T = (s0, . . . , sn), the validity
domain is a big union that can be restricted to the points of J = {i, i + 1 ∈
{0, . . . , n}] | Asi > Bsi ∧ Asi+1

≤ Bsi+1
}, which defines a simplification TJ of T

for φ. As in Example 2, T eA is not a simplification of T for φ since it obviously
misses the points at which Time has to be computed.

Example 4 (Peak).

Formula: φ = F(dAdt > 0 ∧X(dAdt ≤ 0 ∧ Time = t))

Validity Domain The reasoning is the same as for Example 3.

DT,φ = DTs0,φ =

n⋃
i=0

(DT
si,

dA
dt >0

∩ (DT
si+1,

dA
dt ≤0

∩ DTsi+1,Time=t))

=
⋃

i∈{0,...,n}]|(dA
dt)si>0∧(dA

dt)si+1
≤0

DTsi+1,Time=t

=
⋃

i∈{0,...,n}]|(dA
dt)si>0∧(dA

dt)si+1
≤0

{Timesi+1}

Trace Simplification As above, for any trace T = (s0, . . . , sn), J = {i, i+ 1 ∈
{0, . . . , n}] | dAdt si > 0 ∧ dA

dt si+1
≤ 0} defines a simplification TJ of T for φ.

Note that T eA is also a simplification of T for φ since it contains all i + 1 at
which Asi is used and a predecessor with the right sign of the derivative, either
s0 or a nadir preceding the peak. Note also that |T eA| ≤ |TJ |+ 2 since there can
be one nadir more than there are peaks, plus the origin s0.

Example 5 (Period).

Formula: φ =∃(t1, t2) | p = t2 − t1 ∧ t1 < t2

∧ F(
dA

dt
> 0 ∧X(

dA

dt
≤ 0 ∧ Time = t1))

∧ F(
dA

dt
> 0 ∧X(

dA

dt
≤ 0 ∧ Time = t2))

∧ ¬∃t3 | t1 < t3 < t2 ∧ F(
dA

dt
> 0 ∧X(

dA

dt
≤ 0 ∧ Time = t3))

φ encodes the fact that t1 and t2 are peaks, with no peak in between.

Trace Simplification One can notice that the domain is formed of the same
kind of union as in Example 4, repeated three times, and under top-level projec-
tions/intersections/complementations. Now, remark that a simplification for the
formula of Example 4 will, by definition, allow to compute correctly the domains
for all three F formulae, and therefore is a simplification for the compound φ.
This is a special case of Theorem 1 detailed in the next section.

It follows that TJ of Example 4 and T eA are simplifications of T for φ.

Equivalent Formula:

φ = ∃(t1, t2) | p = t2 − t1 ∧ F(
dA

dt
> 0 ∧X(

dA

dt
≤ 0 ∧ Time = t1

∧ (
dA

dt
≤ 0)U(

dA

dt
> 0

∧ ((
dA

dt
> 0)U(

dA

dt
≤ 0 ∧ Time = t2)))))

Validity Domain Note first that the validity domain of the subformula ψ =
dA
dt > 0 ∧ ((dAdt > 0)U(dAdt ≤ 0 ∧ Time = t2)) is computed at each time point si
like this:

DTsi,ψ = DT
si,

dA
dt >0

∩
n⋃
j=i

(DT
sj ,

dA
dt ≤0∧Time=t2 ∩ (

j−1⋂
k=i

(DT
sk,

dA
dt >0

))

Since DT
si,

dA
dt >0

is either empty or equal to the whole space when dA
dt si

is re-

spectively negative or strictly positive, it holds that DT
si,ψ

is empty if dA
dt si

≤ 0,
otherwise:

DTsi,ψ =

n⋃
j=i

(DT
sj ,

dA
dt ≤0∧Time=t2 ∩ (

j−1⋂
k=i

(DT
sk,

dA
dt >0

))

=

n⋃
j=i

(DT
sj ,

dA
dt ≤0

∩ DTsj ,T ime=t2 ∩ (

j−1⋂
k=i

(DT
sk,

dA
dt >0

))

=
⋃

j∈{i,...,n}|(dA
dt)sj≤0∧∀k∈{i,...,j−1},(dA

dt)sk>0

DTsj ,Time=t2

=
⋃

j∈{i,...,n}|(dA
dt)sj≤0∧∀k∈{i,...,j−1},(dA

dt)sk>0

{Timesj}

This union is in fact restricted to the first point sj after siwhere dA
dt is no longer

strictly positive.
With the same reasoning, the validity domain for the whole formula becomes:

DT,φ =

n⋃
(i,j)∈P

{Timesj+1
− Timest+1

}

where P is the set of pairs of successive peaks:

P = {(i, j) |(dA
dt

)si > 0 ∧ (
dA

dt
)si+1 ≤ 0 ∧ (

dA

dt
)sj > 0 ∧ (

dA

dt
)sj+1 ≤ 0

∧ ¬∃i < k < j | (dA
dt

)sk > 0 ∧ (
dA

dt
)sk+1

≤ 0}

T eA is a simplification of T for φ since it contains all the peaks of the trace.

5 General Simplification Results

Example 5 shows that if one can simplify subformulae, one might obtain a sim-
plification for the whole formula. Indeed, with some hypotheses, the patterns
described in the previous section can actually be composed.

The first theorem simply notices that if the highest-level temporal subformu-
lae have a simplification, it also holds for the compound formula.

Theorem 1. Let T be a trace containing a state si, φ and ψ two formulae and
T ′ such that T ′ �iφ T and T ′ �iψ T . Then T ′ �iµ T for µ equal to

φ ∧ ψ or φ ∨ ψ or ¬φ or ∃xφ or ∀xφ

Proof. We have DTsi,φ = DT ′

sji ,φ
and the same for ψ, therefore DTsi,φ∧ψ = DTsi,φ ∩

DTsi,ψ = DT ′

sji ,φ
∩ DT ′

sji ,ψ
= DT ′

sji ,φ∧ψ
and the same for the other operators. ut

Note that it is not true that if T ′ is a simplification for φ and T ′′ a simplifi-
cation for ψ, then the union of the points in T ′ and T ′′ defines a simplification
for φ∨ψ: indeed, adding points to a simplification can invalidate it, for instance
if the formula contains X. Now, remark that if a subtrace contains extreme
domains, it is a simplification for F and G:

Theorem 2. Let T = (s0, . . . , sn) be a trace, φ a formula and T ′ = TJ a sub-
strace of T such that:
∀j ∈ J, T ′ �jφ T and ∀0 ≤ i ≤ n,∃j ∈ J, DTsi,φ ⊂ D

T ′

sj ,φ
(resp. DTsi,φ ⊃ D

T ′

sj ,φ
)

then: T ′ �Fφ T (resp. T ′ �Gφ T)

Proof. We have, ∀0 ≤ i ≤ n, DTsi,φ ⊂ D
T ′

sj ,φ
it follows that

⋃n
i=0DTsi,φ ⊂⋃

j∈J DT
′

sj ,φ
. The other inclusion is immediate since J is a subset of the indices

{0, . . . , n} and we have simplification for φ at those indices. The result for G is
obtained similarly. ut

Consider now the case of formulae without free variables, their domain is
either empty or full, which can be taken advantage of:

Corollary 1. Let T = (s0, . . . , sn) be a trace, φ a formula, c a constraint without
free variables and Jc be the subset of indices defined by Jc = {0 ≤ i ≤ n | si |= c}
If ∀i ∈ Jc, TJc �iφ T then TJc �F(c∧φ) T and TJc �G(¬c∨φ) T

Proof. Let us prove the result for F, then Thm. 1 can give it for G. We will
simply apply the above theorem to c ∧ φ. The first hypothesis of Thm. 2 is
satisfied by TJc since TJc �iφ T ⇒ TJc �ic∧φ T . For the second hypothesis, it is

enough to notice that if i 6∈ Jc then DTsi,c∧φ = DTsi,c ∩ D
T
si,φ

= ∅. ut

Note that in general Fφ∧ψ is not easy to simplify. On the contraryDT,F(φ∨ψ) =
DT,F(φ)∨F(ψ) which can benefit from Theorem 1.

In many cases it is worth noticing that T eA satisfies the hypothesis of Thm. 2
for any formula F(dAdt > 0 ∧X(dAdt ≤ 0 ∧ c)).

Proposition 1. Let φ = F(dAdt > 0 ∧X(dAdt ≤ 0 ∧ c)) be a formula, T eA �φ T

Proof. We will apply Thm. 2. First note that for any extremum j in T eA we

have T eA �
j
φ T . Indeed, s0 is in T eA but will not be used to compute Dc, on the

other hand it ensures that even the first extremum does have a predecessor of
the correct sign for the derivative. Now, notice that DTsi,φ will be empty at each
point not a predecessor of a state of T eA. At those points the domain on T is the
same as that at the preceding extremum (or s0 for the first) on T eA. This enforces
the inclusion needed for the second hypothesis of Thm. 2. ut

Taken together, these results prove all the simplifications of the previous
examples except the second formula of Example 5, which is a deeply nested
formula with U that relies on the semantics of the Time variable.

6 Evaluation on Oscillation Constraints between the Cell
Cycle and Circadian Clock

Cellular rhythms represent an interesting field of research for systems biology,
where models should satisfy qualitative properties like oscillations, synchroniza-
tion among elements, and stability, as well as quantitative properties on the
lengths of the oscillations and phases. FO-LTL(Rlin) formulae are particularly
adequate to constraint biological oscillators models after these considerations.

We illustrate the use of FO-LTL(Rlin) constraints on a coupled model of the
cell cycle and the circadian clock, which are two such biological oscillators also
inter-regulated through clock-controlled cell cycle components. This gives rise to
complex behaviors as suggested in a detailed study by Nagoshi et al. [12].

We use a reference model of the mammalian circadian clock [16] and a model
of a generic cell cycle oscillator focusing on the G2/M transition [19]. A molecular
link between the two systems is introduced with the regulation of the cell cycle
kinase Wee1 by the clock gene bmal1 [18].

Figure 1 shows two examples of traces obtained with different sets of pa-
rameters values, simulated over a time horizon of 200 hours. They give different
dynamical behaviors with correct oscillations of the components on the first one,
and damped oscillations on the other. By applying specifications expressed with
the temporal logic formalism on these traces, we investigate the behavior of the
system, or evaluate how far each set of parameter values is from reproducing
desired properties in a calibrating process.

The chosen FO-LTL(Rlin) formulae express constraints on the periods of
each module, phases between the components, as well as stability constraints.
Each formula accept T eM as a simplification of T , where M is the set of molecules
appearing in the formula. They correspond to patterns associated to dedicated
solvers defined in [14] and listed below with the corresponding properties. De-
tailed formulae are given in Appendix B with justifications for the simplifications.

– Constraints on the amplitude: MinAmpl(A,min). This constraints the molecule
A to an amplitude of at least min.

– Constraints on the period: DistanceSuccPeaks(A,d) specifies that there should
be two successive peaks of the molecule A distant by d. The results for the
evaluation on the first trace, computed either with the FO-LTL(Rlin) for-
mula and the generic solver or with the ad hoc pattern and dedicated solver
are the same and shown in Appendix A. This gives an example of information
extraction from a trace with a FO-LTL(Rlin) formula.

– Constraints on the phases: DistancePeaks(A,B,d). Here d take as values the
possible distances between a peak of A and the following peak of B.

– Stability constraints on the oscillations: the specification MaxDiffDistance-
Peaks(A,d) ensures that two successive peak-to-peak distances are not too
different, with a maximum difference of d, so that the oscillations of the
molecule have a relative regularity over time. A second stability constraint,
MaxDiffDistancePeaks(A,d), constraints the differences between the peak
amplitudes, and is thus useful to filter out damped oscillations. The evalua-
tion of MaxDiffAmplPeaks(PerCry,d) on the trace gives [d > 8.48801e− 05]
as the validity domain for the first trace and [d > 1.90466] for the second
trace. Thus the evaluation of the constraint extracts the maximum difference
in amplitudes between two successive peaks, and this result can be used as
a penalty for the set of parameter values that result in damped oscillations.

We apply these constraints to the traces presented above, before and after
performing the generic trace simplification where the trace T is replaced by the
trace T eM , that is T ePerCry for all constrains in Table 1, except for Distance-
Peaks(MPF,PerCry) where the simplified trace is T eMPF,PerCry.

The initial traces are obtained with two different integration methods:

– In Biocham the default simulation method is the Rosenbrock’s numerical
integration method. This implicit method with variable step-size avoids gen-
erating too many points and does an impressively good job in producing rel-
atively sparse traces. With this method the first trace counts 971 point, 18
of which are kept in the simplified trace T ePerCry and 34 in T eMPF,PerCry. The
second trace T counts 1047 points, T ePerCry counts 35 points and T eMPF,PerCry

counts 58 points. Since the initial traces have reasonable sizes the computing
times for the simplifications are short: between 8 and 16ms.

– However in some cases, the Rosenbrock method is less adequate than other
non-adaptive methods. For example, this is the case when the model in-
volves events, since the approximation done for numerical integration with
big steps, may not be valid for determining when an event becomes true.
Therefore we also consider the fourth order Runge-Kutta method with a
fixed step size. With this method, the trace optimisation is all the more
beneficial since the traces originally count more points: 20002 points here
for a time horizon of 200 hours. However the same trace simplifications take
longer: around 160ms for T ePerCry and 250ms for T eMPF,PerCry.

The execution times are compared in Table 1 where each constraint is identi-
fied by the equivalent pattern. We compare the evaluation of the constraints on a
trace with a high number of points (fixed Runge-Kutta method) or a reduced size
(adaptive Rosenbrock method), and either complete or simplified. Furthermore
the generic solver is compared to the dedicated solvers defined in [14].

Table 1 clearly shows that trace simplification provides a faster evaluation for
all constraints on all traces, with a speed-up up to 100 fold for the more complex
ones. The dedicated solvers benefit as well from this speed-up, however it has to
be noted that applying the dedicated solver on the full trace is faster than the
time needed for the trace simplification in this example. Although the simplifi-
cation can be done just once on a trace that can be then evaluated repeatedly

Table 1. Computing time (in ms) for the validity domain of different formula patterns.
Comparison between the first and second parameter sets, with variable or fixed step-size
over 200h, before (Bef.) and after (Aft.) simplification.

First trace Second trace
variable fixed variable fixed

Formula Solver Bef. Aft. Bef. Aft. Bef. Aft. Bef. Aft.

Reached(PerCry)
generic 12 0 260 4 12 0 204 0
dedicated 0 0 16 0 4 0 16 0

MinAmpl(PerCry)
generic 132 0 2728 0 132 4 2516 4
dedicated 0 0 16 0 4 0 16 0

LocalMax(PerCry)
generic 64 0 1308 4 72 4 1316 4
dedicated 0 0 36 8 4 0 44 4

DistancePeaks(PerCry)
generic 512 12 9584 12 708 80 12373 104
dedicated 4 4 40 8 32 28 80 48

DistanceSuccPeaks(PerCry)
generic 532 12 10980 12 1188 36 23101 156
dedicated 4 0 40 8 4 0 28 4

MaxDiffDistancePeaks(PerCry)
generic 1700 32 34818 32 3056 96 60776 108
dedicated 0 0 36 0 4 0 52 20

DistancePeaks(MPF,PerCry)
generic 456 16 9332 16 496 32 9365 32
dedicated 4 4 68 12 4 0 76 20

for different patterns, the number of evaluations would have to be unlikely high
for any real benefit. In contrast, the time gain obtained with the combined use
of the trace simplification and the generic solver is clear. This suggests that the
trace simplification is a good strategy when the desired constraint is not covered
by the patterns with dedicated solvers, provided that the FO-LTL(Rlin) formula
accepts a good trace simplification accordingly with the theorems presented in
Sect. 3.

7 Conclusion

We have shown that trace simplifications can result in speed-ups by several
orders of magnitude for the evaluation of temporal logic constraints. In particular
we have given some general conditions on the syntax of the formulae under
which it is correct to keep in the trace only the time points corresponding to
the local extrema of the molecules, or the crossing points between molecular
concentrations.

On an application concerning the modeling of the coupling between the circa-
dian clock and the cell cycle, we have shown that temporal logic patterns provide
an elegant way to extract information on the periods and phases from numerical
traces, and to use these formulae as constraints for parameter search. On simu-
lation traces, the speedup obtained in computation time was by several orders of
magnitude, even on relatively sparse simulation traces obtained by Rosenbrock’s
implicit method for numerical integration.

The trace simplifications described in this paper are implemented in Biocham
release 3.6.

Acknowledgements This work has been supported by the French OSEO Bioin-
telligence project. We acknowledge discussions with our partners at Dassault-
Systèmes and the CMSB reviewers for their remarks.

References

1. M. Antoniotti, A. Policriti, N. Ugel, and B. Mishra. Model building and model
checking for biochemical processes. Cell Biochemistry and Biophysics, 38:271–286,
2003.

2. G. Batt, M. Page, I. Cantone, G. Goessler, P. Monteiro, and H. de Jong. Efficient
parameter search for qualitative models of regulatory networks using symbolic
model checking. Bioinformatics, 26(18):i603–i610, 2010.

3. G. Batt, D. Ropers, H. de Jong, J. Geiselmann, R. Mateescu, M. Page, and
D. Schneider. Validation of qualitative models of genetic regulatory networks by
model checking : Analysis of the nutritional stress response in Escherichia coli.
Bioinformatics, 21(Suppl.1):i19–i28, 2005.

4. G. Bernot, J.-P. Comet, A. Richard, and J. Guespin. A fruitful application of for-
mal methods to biological regulatory networks: Extending Thomas’ asynchronous
logical approach with temporal logic. Journal of Theoretical Biology, 229(3):339–
347, 2004.

5. N. Chabrier and F. Fages. Symbolic model checking of biochemical networks. In
C. Priami, editor, CMSB’03: Proceedings of the first workshop on Computational
Methods in Systems Biology, volume 2602 of Lecture Notes in Computer Science,
pages 149–162, Rovereto, Italy, Mar. 2003. Springer-Verlag.

6. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
7. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In POPL’77:
Proceedings of the 6th ACM Symposium on Principles of Programming Languages,
pages 238–252, New York, 1977. ACM Press. Los Angeles.

8. H. de Jong, J.-L. Gouzé, C. Hernandez, M. Page, T. Sari, and J. Geiselmann.
Qualitative simulation of genetic regulatory networks using piecewise-linear mod-
els. Bulletin of Mathematical Biology, 66(2):301–340, 2004.

9. A. Donzé, T. Ferrère, and O. Maler. Efficient robust monitoring for STL. In
25th International Conference on Computer Aided Verification, CAV’13, Berkeley,
USA, 2013.

10. A. Donzé and O. Maler. Robust satisfaction of temporal logic over real-valued
signals. In FORMATS 2010, volume 6246 of Lecture Notes in Computer Science,
pages 92–106. Springer-Verlag, 2010.

11. S. Eker, M. Knapp, K. Laderoute, P. Lincoln, J. Meseguer, and M. K. Sönmez.
Pathway logic: Symbolic analysis of biological signaling. In Proceedings of the
seventh Pacific Symposium on Biocomputing, pages 400–412, Jan. 2002.

12. N. Emi, S. Camille, B. Christoph, L. Thierry, N. Felix, and U. Schibler. Circa-
dian gene expression in individual fibroblasts: cell-autonomous and self-sustained
oscillators pass time to daughter cells. Cell, 119:693–705, 2004.

13. F. Fages and A. Rizk. On temporal logic constraint solving for the analysis of
numerical data time series. Theoretical Computer Science, 408(1):55–65, Nov. 2008.

14. F. Fages and P. Traynard. Temporal logic modeling of dynamical behaviors: First-
order patterns and solvers. In L. F. del Cerro and K. Inoue, editors, Logical Mod-
eling of Biological Systems, chapter 8, pages 307–338. ISTE Ltd, 2014.

15. D. Heitzler, G. Durand, N. Gallay, A. Rizk, S. Ahn, J. Kim, J. D. Violin, L. Dupuy,
C. Gauthier, V. Piketty, P. Crépieux, A. Poupon, F. Clément, F. Fages, R. J.
Lefkowitz, and E. Reiter. Competing G protein-coupled receptor kinases balance
G protein and β-arrestin signaling. Molecular Systems Biology, 8(590), June 2012.

16. J.-C. Leloup and A. Goldbeter. Toward a detailed computational model for the
mammalian circadian clock. Proceedings of the National Academy of Sciences,
100:7051–7056, 2003.

17. N. Markey and P. Schnoebelen. Model checking a path. In CONCUR 2003, volume
2761 of Lecture Notes in Computer Science, pages 251–265. Springer-Verlag, 2003.

18. T. Matsuo, S. Yamaguchi, S. Mitsui, A. Emi, F. Shimoda, and H. Okamura. Con-
trol mechanism of the circadian clock for timing of cell division in vivo. Science,
302(5643):255–259, Oct. 2003.

19. Z. Qu, W. R. MacLellan, and J. N. Weiss. Dynamics of the cell cycle: checkpoints,
sizers, and timers. Biophysics Journal, 85(6):3600–3611, 2003.

20. A. Rizk, G. Batt, F. Fages, and S. Soliman. A general computational method for
robustness analysis with applications to synthetic gene networks. Bioinformatics,
12(25):il69–il78, June 2009.

21. A. Rizk, G. Batt, F. Fages, and S. Soliman. Continuous valuations of temporal
logic specifications with applications to parameter optimization and robustness
measures. Theoretical Computer Science, 412(26):2827–2839, 2011.

22. G. Roşu and K. Havelund. Rewriting-based techniques for runtime verification.
Automated Software Engineering, 12(2):151–197, 2005.

23. S. Stoma, A. Donzé, F. Bertaux, O. Maler, and G. Batt. STL-based analysis of
TRAIL-induced apoptosis challenges the notion of type I/type II cell line classifi-
cation. PLoS Computational Biology, 9(5):e1003056, May 2013.

A Example of computation with both the generic solver
and a dedicated one

domains(t2-t1=d & F(d([CRY_nucl-PER_nucl])/dt>0 & X(Time=t1 & d([CRY_nucl-PER_nucl
])/dt=<0 & (d([CRY_nucl-PER_nucl])/dt=<0) U (d([CRY_nucl-PER_nucl])/dt>0 & ((
d([CRY_nucl-PER_nucl])/dt>0) U (d([CRY_nucl-PER_nucl])/dt=<0 & Time=t2)))))).

Domain computed in 532 ms
d = 24.6095, t1 = 15.2848, t2 = 39.8944
| d = 24.7193, t1 = 39.8944, t2 = 64.6137
| d = 25.1225, t1 = 64.6137, t2 = 89.7362
| d = 24.7623, t1 = 89.7362, t2 = 114.499
| d = 24.7984, t1 = 114.499, t2 = 139.297
| d = 24.8047, t1 = 139.297, t2 = 164.102
| d = 24.7704, t1 = 164.102, t2 = 188.872

domains(distanceSuccPeaks([CRY_nucl-PER_nucl],[d])).
Domain computed in 4 ms
d = 24.6095
| d = 24.7193
| d = 25.1225
| d = 24.7623
| d = 24.7984
| d = 24.8047
| d = 24.7704

B Oscillation constraints

Constraints on the amplitude As shown in Ex. 1, the following formula,
accepting T eA as a simplification of T , ensures that a molecule A has an amplitude
of at least min: φ = ∃v | F(A < v) ∧ F(A > v +min).

It is equivalent to the pattern MinAmpl(A,min) described in [14] and asso-
ciated to a specific solver which computes the amplitude of A directly from the
trace.

Constraints on the period This formula extracts the distances between suc-
cessive peaks:

φ = ∃(t1, t2) | d = t2 − t1 ∧ F(
dA

dt
> 0 ∧X(

dA

dt
≤ 0 ∧ Time = t1

∧ (
dA

dt
≤ 0)U(

dA

dt
> 0

∧ ((
dA

dt
> 0)U(

dA

dt
≤ 0 ∧ Time = t2))))))

This formula accepts T eA as a simplification of T , as shown in Ex. 4 and with
Thm. 1. It is equivalent to the pattern DistanceSuccPeaks(A,d). The specific
solver associated to this pattern computes the list of peaks of A directly from
the trace and exhibits the possible distances between two successive peaks. Com-
puting the validity domain of this formula enables to extract each peak-to-peak
distance from the trace, giving an estimation of the period of the oscillations.

Constraints on the phases

φ = ∃(t1, t2) | t2− t1 = d ∧ F(
dA

dt
≥ 0 ∧X(

dA

dt
< 0 ∧ Time = t1))

∧ F(
dB

dt
≥ 0 ∧X(

dB

dt
< 0 ∧ Time = t2))

corresponds to DistancePeaks([A,B],d). T eA ∪ T eB is a simplification of T for φ.

Stability constraints The following formula constraints two successive peak-
to-peak distances to be similar by setting a maximum for the difference between

the two distances.

φ = ∃(t1, t2, t3) |t2− t1 = d1 ∧ t3− t2 = d2 ∧ d2− d1 ≤ d ∧ d1− d2 ≤ d

∧ F(
dA

dt
> 0 ∧X(

dA

dt
≤ 0 ∧ Time = t1

∧ (
dA

dt
≤ 0)U(

dA

dt
> 0

∧ ((
dA

dt
> 0)U(

dA

dt
≤ 0 ∧ Time = t2

∧ (
dA

dt
≤ 0)U(

dA

dt
> 0

∧ ((
dA

dt
> 0)U(

dA

dt
≤ 0 ∧ Time = t3))))))))

This formula accepts T eA as a simplification of T and the equivalent pattern is
MaxDiffDistancePeaks(A,d). A similar formula, useful to filter out damped os-
cillations, constraints the differences between the peak amplitudes, and is equiv-
alent to the pattern MaxDiffAmplPeaks(A,d).

	Trace Simplifications preserving Temporal Logic Formulae with Case Study in a Coupled Model of the Cell Cycle and the Circadian Clock

