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Lipid metabolism in chicken/mouse liver cells

Two antagonistic functioning modes

synthesis and storage produce reserves
(induced by normal feeding)
lipolysis and oxidation burn reserves and
produce energy (induced by a lack of food)

Complex regulations

intrinsic regulations related to metabolic
biochemistry
genetic regulations of nuclear receptors on
enzymes of metabolic pathways
action of fatty acids (metabolite) on genes

controlling their metabolism

Mixed regulation network whose nodes are metabolites as well as
genetic variables
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Modelling mixed regulation networks ?

prokaryotes (lactose operon in E.Coli)

eukariotes

metabolic pathways studied separately from their genetic
regulation : problems on long timescales
Petri networks : glycolysis [Mastuno et al., Chaouyia et al]
Piecewise differential sytems : nutritional stress in E. Coli
[Ropers and al.]
Simulation of differential models [Chabrier and al.]
Hybrid models [Langley et al., King et al.]
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Three main questions (at the moment)
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Adapting to external changes ?

Bistability

Historical example : E.Coli bacterium lactose operon
the change in lactose induces an equilibrium switch : jump
from one attractor to another.
efficient in saving resources (enzymes) [produced only on
demand]
less flexible [binary type response] : minimal threshold
stimulus needed to act ; tuning is not possible

Equilibrium shift

uniqueness condition is fulfilled
no jump between attractors ; smooth, gradual changes.

Question 1 : Do the regulations (metabolic, genetic, hormonal) of lipid
metabolism produce multistationarity or an unique equilibrium ?

Answer : Unique equilibrium under reasonable biological assumptions.
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Interactions between metabolic and genetic pathways ?

Action of PUFA’s ?

only a special class (polyunsaturated fatty acids denoted by
PUFA) interfere with genes

PUFA are not synthetized by the organism : produced from
essential fatty acids taken from the diet

Control of metabolism (their own oxidation and synthesis, and
oxidation of de novo fatty acids)

Interactions with nuclear receptors regulating the transcription
of genes coding for enzymes involved in the corresponding
pathways.

Question 2 : quantify the effect of PUFA on the lipid metabolism ?

Answer : PPAR knock-out reduces energy buffering and increases
PUFA entering during fasting.
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Interactions between metabolic and genetic pathways ?

Role of genetic machinery ?

Long timescales : Genetic regulation becomes effective only
when transcriptional machinery is activated and processed

On short timescales genetic variables can be considered to be
constant

Changes of nutritional conditions ask for genetic
readjustments [fasting demands a shift from lipogenetic to
lipolytic functioning modes]

Genetic regulation brings slow but larger changes that push
the shift further.

Question 3 : Differences between fast and slow response of the
system ?

Answer : Genetic regulations reinforce the energy buffering effect.

:
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Method

1 Construction of a mixed differential model

simplified description : 12 main variables
includes the energy available to the cell [variable for ATP
concentration]
do not use explicit forms for flux and regulations : only use
their variations with respect to the variables

2 Study of equilibria : sufficient condition for the uniqueness of
equilibrium

3 Qualitative validation and prediction

effect of suppressing some genetic regulation,
role of genetic regulation for energy recovering at fasting.

4 Generic explicit model : numerical simulations

5 Mathematical framework : successive elimination of variables
to compare equilibria
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Construction of the model

:
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Characteristics of the model

Integrative model
main processes of carbohydrate and lipid metabolism in liver
various regulations (metabolic, genetic, hormonal)

Not explicitly distributed (no space information is taken into
account)

Low complexity abstraction
basic features of metabolism in the main nutritional states
complex metabolic chains of reactions modeled as a single
global reaction

Keep the model as qualitative as possible
no specific numerical values of kinetic constants
no specific forms of the functions relating fluxes to
concentrations
sufficient qualitative conditions chosen as biologically
significant as possible
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Metabolic variables and primitive fluxes

Metabolic variables

Acetyl-CoA [A] (mitochondria)
De novo synthesized fatty acids [F1] (produced
from Acetyl-CoA)
Exogenous PUFA [F2] (brought by diet)
Energy (ATP) [T ] (energy in the cell)

Pyruvate [P] (end of glycolysis)

Parameter : glucose concentration [G ]
(representing food)

Primitive fluxes

lipid metabolism : Glycolysis, Pdh, Krebs cycle,
lipogenesis, β−oxidation
ketone bodies exit transfers energy to the outside
Outtake/intake flux allows F1 and F2 to exit or
enter the liver cell.
Degradation of metabolites is needed on the
genetic timescale.

ATP consumption (energy consumed for living).
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Genetic variables

Nuclear receptors
PP : active form of the nuclear receptor PPAR
(heterodimer with RXR),

L : active form of the nuclear receptor LXR

(heterodimer with RXR)

Metabolic fluc enzyme
E1 : abstract enzyme modelling the set of enzymes
involved in de novo fatty acids synthesis
E2 : abstract enzyme modelling de novo acids
oxidation,
E3 : abstract enzyme modelling PUFA oxidation

E4 : abstract enzyme modelling etone bodies exit

Genetic control
LXR and PPAR control the production of the
abstract enzymes Ei

PUFA control the production of active LXR and

PPAR.
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Main products and fluxes

Variable (Concentration) Symbol
d product

dt
Acetyl Co-A A ΦA
Pyruvate P ΦP
De novo synthesized fatty acids F1 ΦF1
PUFA F2 ΦF2
Energy ATP T ΦT
Active form of PPAR PP Ψ1
Active form of LXR L Ψ2
Enzymes of de novo fatty acids synthesis E1 Ψ3
Enzymes of de novo fatty acids oxidation E2 Ψ4
Enzymes of PUFA oxidation E3 Ψ5
Enzymes of Ketone body exit E4 Ψ6

Parameter Symbol
Glucose G

Primitive flux Symbol
Glycolysis Gly
Pyruvate dehydrogenase reaction Pdh
Krebs cycle Krebs
Ketone bodies exit Kout
Lipogenesis Syn
β−oxidation of de novo fatty acids Oxi1
β−oxidation of PUFA Oxi2
De Novo fatty acids intake/outake Fin1
PUFA fatty acids intake/outake Fin2
ATP consumption DegT
Degradation of a metabolite V DegV
(V = P,A, F1, F2)
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Differential model ?
Express the flux of each variable in terms of primitive fluxes

Production of metabolic variables : sum of primitive fluxes that produce
or consume the metabolite.

Linear degradation reactions (exept for ATP)

No details on variations of the genetic variables [unknown mechanisms]8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

dP
dt

= Gly(G, T) − Pdh(P) − δPP
dA
dt

= Pdh(P) + Oxi1(F1, T, E2) + Oxi2(F2, T, E3) − Krebs(A, T) − Kout(A, E4) − Syn(A, T, E1) − δAA
dF1
dt

= Syn(A, T, E1) − Oxi1(F1, T, E2) + Fin1(F1, T) − δF1
F1

dF2
dt

= −Oxi2(F2, T, E3) + Fin2(F2, T) − δF2
F2

dT
dt

= αGGly(G, T) + αKKrebs(A, T) + αO1Oxi1(F1, T, E2) + αO2Oxi2(F2, T, E3) − DegT(T)
dPP

dt
= eΨ1(F2) − δPPPP

dL
dt

= eΨ2(F2) − δLL
dE1
dt

= eΨ3(L) − δE1
E1

dE2
dt

= eΨ4(PP) − δE2
E2

dE3
dt

= eΨ5(PP) − δE3
E3

dE4
dt

= eΨ6(PP) − δE4
E4

Remark : Only fluxes are modelled here. No regulation information

is provided yet. What is the sign of each ∂ flux
∂ variable ?
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Abstract differential model for regulated lipid metabolism8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

dP
dt

= Gly(G, T) − Pdh(P) − δPP
dA
dt

= Pdh(P) + Oxi1(F1, T, E2) + Oxi2(F2, T, E3) − Krebs(A, T) − Kout(A, E4) − Syn(A, T, E1) − δAA
dF1
dt

= Syn(A, T, E1) − Oxi1(F1, T, E2) + Fin1(F1, T) − δF1
F1

dF2
dt

= −Oxi2(F2, T, E3) + Fin2(F2, T) − δF2
F2

dT
dt

= αGGly(G, T) + αKKrebs(A, T) + αO1Oxi1(F1, T, E2) + αO2Oxi2(F2, T, E3) − DegT(T)
dPP

dt
= eΨ1(F2) − δPPPP

dL
dt

= eΨ2(F2) − δLL
dE1
dt

= eΨ3(L) − δE1
E1

dE2
dt

= eΨ4(PP) − δE2
E2 | dPP,L,E1,E2,E3,E4

dt
| < ε | dP,A,F1,F2,T

dt
|

dE3
dt

= eΨ5(PP) − δE3
E3

dE4
dt

= eΨ6(PP) − δE4
E4

∂ flux
∂ variable

Gly|Pdh|Krebs|Kout|Syn|Oxi1|Oxi2|Fin1|Fin2|DegT|eΨ1|eΨ2|eΨ3|eΨ4|eΨ5|eΨ6

P 0 | + | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
A 0 | 0 | + | + | + | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
F1 0 | 0 | 0 | 0 | 0 | + | 0 | − | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
F2 0 | 0 | 0 | 0 | 0 | 0 | + | 0 | − | 0 | + |− | 0 | 0 | 0 | 0
T − | 0 | − | 0 | + | − | − | − | − | + | 0 | 0 | 0 | 0 | 0 | 0
PP 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | + | +
L 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 0 | 0 | 0
E1 0 | 0 | 0 | 0 | + | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
E2 0 | 0 | 0 | 0 | 0 | + | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
E3 0 | 0 | 0 | 0 | 0 | 0 | + | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
E4 0 | 0 | 0 | + | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
G + | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
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Constraints on the model : biological arguments

Metabolic regulations
Substrate effect.
Passive or active transport effects.

ATP constraints ; hormonal regulations
ATP increases ATP consumption [substrate effect]
Product negative feed-back : ATP controls negatively fluxes
producing ATP [metabolic and hormonal response to glucagon]
control of ATP on de novo acids synthesis [substrate effect and
insulin mediated stimulation]
Hormonal effect on fat intake : a drop in ATP stimulates lipolysis
and fat intake [triggers glucagon and epinephrine production]

Genetic regulations [long time scale]
Abstract enzymes Ei regulate their corresponding fluxes.
PUFA activates PPAR and inhibits active-LXR
LXR or PPAR triggers abstract enzymes production.
Degradation effects occurs on each genetic variable.
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Metabolic (without genetic regulation) model

Genetic regulation only occurs at long timescales.

Non genetically regulated model (short
timescales) : enzymes have a constant
concentration.8>>>>>>>>>><>>>>>>>>>>:

dP
dt

=Gly(G, T) − δPP − Pdh(P)
dA
dt

=Pdh(P) + Oxi1qs (F1, F2, T) + Oxi2qs (F2, T)
−Krebs(A, T) − Koutqs (A, F2) − Synqs (A, F2, T) − δAA

dF1
dt

=Synqs (A, F2, T) − Oxi1qs (F1, F2, T) + Fin1(F1, T) − δF1
F1

dF2
dt

=−Oxi2qs (F2, T) + Fin2(F2, T) − δF2
F2

dT
dt

=αGGly(G, T) + αKKrebs(A, T) + αO1Oxi1qs (F1, F2, T)
+αO2Oxi2qs (F2, T) − DegT(T)

∂ flux
∂ variable

Gly|Pdh|Krebs|Koutqs |Synqs |Oxi1qs |Oxi2qs |Fin1|Fin2|DegT

P 0 | + | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
A 0 | 0 | + | + | + | 0 | 0 | 0 | 0 | 0
F1 0 | 0 | 0 | 0 | 0 | + | 0 | − | 0 | 0
F2 0 | 0 | 0 | 0 | 0 | 0 | + | 0 | − | 0
T − | 0 | − | 0 | + | − | − | − | − | +
G + | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
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Generic model : illustrations
Quantitative versions are used as illustrations of robust dynamical
behaviors.

Rather generic choice of the form of the functions, including
numerical constants.

Check that the constraints are satisfied.

Low complexity abstractions : only robust features of dynamics of
the model are meaningful.8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

dP
dt

=
lGly

LGly+T2

kGlyG
KGly+G − kPdhP

KPdh+P − δPP

dA
dt

=
kPdhP

KPdh+P +
lOxi1

LOxi1+T2
kOxi1E2F1
KOxi1+F1

+
lOxi2

LOxi2+T2
kOxi2E3F2
KOxi2+F2

− lKrebs
LKrebs+T2

kKrebsA
KKrebs+A

− kKoutE4A
KKout+A −

kSynE1A
KSyn+A

lSynT2

LSyn+T2 − δAA

dF1
dt

=
kSynE1A
KSyn+A

lSynT2

LSyn+T2 − kFin1F1 +
lFin1

LFin1+T2 − lOxi1
LOxi1+T2

kOxi1E2F1
KOxi1+F1

− δF1
F1

dF2
dt

= −kFin2F2 +
lFin2

LFin2+T2 − lOxi2
LOxi2+T2

kOxi2E3F2
KOxi2+F2

− δF2
F2

dT
dt

= αG
lGly

LGly+T2

kGlyG
KGly+G + αK

lKrebs
LKrebs+T2

kKrebsA
KKrebs+A + αO1

lOxi1
LOxi1+T2

kOxi1E2F1
KOxi1+F1

+αO2
lOxi2

LOxi2+T2
kOxi2E3F2
KOxi2+F2

− δTT

dPP
dt

=
kPPF

aPP
2

KPP+F
aPP
2

− δPPPP + bPP

dL
dt

=
kL

1+KLF
aL
2

− δLL

dE1
dt

=
kE1

L
aE1

KE1
+L

aE1
− δE1

E1 + bE1

dE2
dt

=
kE2

PP
aE2

KE2
+PP

aE2
− δE2

E2 + bE2

dE3
dt

=
kE3

PP
aE3

KE3
+PP

aE3
− δE3

E3 + bE3

dE4
dt

=
kE4

PP
aE4

KE4
+PP

aE4
− δE4

E4 + bE4
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Predictions of the model

:



Motivations Mixed differential model Predictions Method Conclusion

Existence of an equilibrium

Proposition 1 : The genetically regulated model of lipid
metabolism admits at least a quasi-stationnary state and an
equilibrium state for every parameter G, provided that the
following conditions are satisfied

Fluxes are irreversible [except fatty acids intake/outake]

The fluxes satisfy the differential constraints

Degradation terms are linear (except T )

Irreversible fluxes vanish when there is no substrate.

All fluxes except degradation saturate at high concentrations

ATP consumption is an increasing function of ATP with no saturation effect
[cells can not store ATP]

Recovery effect on each metabolic variable : if a variable is zero, then at
leastone elementary flux that produces the variable is activated [if the cell
contains no PUFA, then PUFA enter the cell]

:
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Uniqueness of equilibrium

The interaction graph of the model always has a positive circuit.

Compute a sufficient condition for unicity of equilibrium in terms of
derivatives of fluxes.

Proposition 2 : Both the equilibrium and the quasi-stationnary
state of the model are unique if the following condition is fulfilled

Mathematic condition
dΦ

(2)
T

dT < 0
dΦ

(2)
T

dT
= αG

∂Gly
∂T + αK( ∂Krebs

∂A
∂A(2)

∂T + ∂Krebs
∂T ) + αO1( ∂Oxi1

∂F1

∂F1
(2)

∂T +

∂Oxi1
∂F2

∂F2
(2)

∂T + ∂Oxi1
∂T ) + αO2( ∂Oxi2

∂F2

∂F2
(2)

∂T + ∂Oxi2
∂T ) − δT

Numerical checking
Biological sufficient conditions

Condition on ATP production : oxidation produces much more energy
than the Krebs cycle

Strong lipolytic response condition : when energy is forced to decrease,
the total amount of fatty acids increases [intake (insured by lipolysis)
overcomes outtake and consumption]

:
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Simulation : fasting/refeeding protocols

Fasting up to t=750 ; followed by refeeding

increase of fatty acids (equilibrium value) after fasting

overshoot after the beginning of fasting ; undershoot after the
beginning of refeeding

Energy (ATP) has an abrupt fall, then it recovers slowly as a result
of oxidation

LXR (equilibrium value) diminishes and PPAR is amplified at fasting

:
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Prediction : fatty acids concentration increase at fasting

The following properties are valid for rapid (at quasi-stationarity) as well as for slow

(at equilibrium) response as soon as unicity and extra conditions are fulfilled

Prediction 1 : ATP decreases during fasting and increases during feeding.

Biological observation mass of regulating PUFA in the hepatic cell
increase during fasting (Lee et al., 2004)

Prediction 2 : PUFA increase at fasting iff the intake control overcomes
the oxidation control for PUFA.

Prediction 3 : The curves representing PUFA concentration during

refeeding must show an overshoot : the increase in concentration is

greater immediately at quasi-stationarity than later at equilibrium.

(

˛̨̨̨
dF2

(3)

dG

˛̨̨̨
qs

>

˛̨̨̨
dF2

(3)

dG

˛̨̨̨
eq

)

:
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Simulation : response curves when food G is changing

Energy T increases with food, fatty acids
concentrations decrease with food

antagonistic relation between synthesis
and oxidation : when food G decreases,
the synthesis dominated regime changes
to an oxidation dominated regime

buffering effect (effet tampon) : energy T
is not zero when food G is zero

Strong buffering effect : the slope of the
dependence of T on G is weaker at
equilibrium than at quasi-stationarity.

Genetic regulation increases buffering.

:
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Prediction : genetic regulation reinforces energy buffering
at fasting

If unicity conditions and control conditions are fulfilled :
Strong lipolytic response condition and condition on the ATP production,`
RFin2

T − ROxi2
T

´
eq,qs

> 0,„
1−ρOxi1

F1

ρOxi1
F1

ROxi1
F2

− (1− ρSyn
A )RSyn

F2
− ρSyn

A RKout
F2

«
eq

> 0

Prediction 4. Then genetic regulation reinforces the energy
buffering effect

The buffering effect is the variation of T for a fixed variation of G.

Increasing energy variations is performed by boosting oxidation at
fasting.

Stimulating the decrease of T with the decrease of G is performed
by the energy losses by ketone exits and diminished synthesis.(

dT(3)

dG

)
qs

>
(

dT(3)

dG

)
eq
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Simulation : Fasting/refeeding protocol for a PPAR-/-
mutant compared to wild-type

PPAR knock-out : no longer genetic control on oxidation.

the enzymes E2, E3, E4 controlled by PPAR have constant, unadjustable values

dot curves : mutant type

incapacity to recover energy on fasting : inefficient oxidation

no ketone production : E4 is not produced in mutants

the fatty acids increase is accentuated under fasting in mutants

the overshoot is replaced by a flat plateau connecting
quasi-stationary and equilibrium values

:
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Predictions about PPAR knock-out

Biological Observation : Experiments on transgenic mice :
72h-fast, fatty acids concentration increases at a higher extent in
PPAR knocked-out cells with respect to wild type cells [Barnouin
2004, Lee 2004]

Prediction 5 : PUFA concentration increase under fasting is
stronger in PPAR
knocked-out cells compared to the same increase in wild type cells.˛̨̨̨
dF2

(3)

dG

˛̨̨̨
eq,PPAR−/−

>

˛̨̨̨
dF2

(3)

dG

˛̨̨̨
eq,WT

.

Prediction 6 : PPAR knock-out reduces energy buffering.“
dT(3)

dG

”
eq,PPAR−/−

>
“

dT(3)

dG

”
eq,WT
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Mathematical framework : successive
elimination of variables

:
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Study of equilibria

(Main) Remark 1 : The predictions concern equilibria states
and not dynamical properties.

Remark 2 : Equilibria are characterized by a set of equations
equal to zero.

Remark 3 : One can equilibriate any equation before any
other. This does not change the equilibrium state at the end
of the process.

:
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Successive reduction of models !

Successively eliminate one or several variables.

Criterion of elimination : existence and unicity of the variable
at equilibrium with respect to the remaining variables.

Compute the constraints of the new model by using the
implicit fonction theorem.

The reduced models have no dynamical meaning but they
have the same equilibrium state as the first model.

The order of reduction can be not intuitive : first reduce the
genetic variables. Then some metabolites...

:
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equilibration of genetic variables

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

dP
dt

= Gly(G, T) − . . .
dA
dt

= Pdh(P) + . . .
dF1
dt

= Syn(A, T, E1) − . . .
dF2
dt

= −Oxi2(F2, T, E3) + . . .
dT
dt

= αGGly(G, T) + . . .
dPP

dt
= eΨ1(F2) − δPPPP

dL
dt

= eΨ2(F2) − δLL
dE1
dt

= eΨ3(L) − δE1
E1

dE2
dt

= eΨ4(PP) − δE2
E2

dE3
dt

= eΨ5(PP) − δE3
E3

dE4
dt

= eΨ6(PP) − δE4
E4

equilibriate genetic variables8>>>>>>>>><>>>>>>>>>:

dPP
dt

= eΨ1(F2) − δPPPP = 0
dL
dt

= eΨ2(F2) − δLL = 0
dE1
dt

= eΨ3(L) − δE1
E1 = 0

dE2
dt

= eΨ4(PP) − δE2
E2 = 0

dE3
dt

= eΨ5(PP) − δE3
E3 = 0

dE4
dt

= eΨ6(PP) − δE4
E4 = 0

existence and unicity of a solution with

respect to the other variables

PPpeq, Lpeq, E1peq, E2peq, E3peq, E4peq =

fonction(F2)

∂Synpeq
∂F2

< 0,
∂Oxi1peq

∂F2
> 0

∂Oxi2peq
∂F2

> 0,
∂Koutpeq

∂F2
> 0.

:
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Partial equilibrium model

Model of lipid metabolism in which genetic
variables are equilibrated

The constraint table integrate the implicit
equilibrated constraints.

The model has no dynamical meaning

Same equilibrium states than the extended model8>>>>>>>>>><>>>>>>>>>>:

dP
dt

= Gly(G, T) − δPP − Pdh(P)
dA
dt

= Pdh(P) + Oxi1peq(F1, F2, T) + Oxi2peq(F2, T)
−Krebs(A, T) − Koutpeq(A, F2) − Synpeq(A, F2, T) − δAA

dF1
dt

= Synpeq(A, F2, T) − Oxi1peq(F1, F2, T) + Fin1(F1, T) − δF1
F1

dF2
dt

= −Oxi2peq(F2, T) + Fin2(F2, T) − δF2
F2

dT
dt

= αGGly(G, T) + αKKrebs(A, T) + αO1Oxi1peq(F1, F2, T)
+αO2Oxi2peq(F2, T) − DegT(T)

∂ flux
∂ variable

GlyPdhKrebsKoutpeqSynpeqOxi1peqOxi2peqFin1Fin2DegT

P 0 + 0 0 0 0 0 0 0 0
A 0 0 + + + 0 0 0 0 0
F1 0 0 0 0 0 + 0 − 0 0
F2 0 0 0 + − + + 0 − 0
T − 0 − 0 + − − − − +
G + 0 0 0 0 0 0 0 0 0

:
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Compare non genetically and genetically regulated models

The equilibrium states of the non genetically regulated and partial equilibriate

models check the qame equations with a different table of constraints.8>>>>>>>>>><>>>>>>>>>>:

dP
dt

= Gly(G, T) − δPP − Pdh(P)
dA
dt

= Pdh(P) + Oxi1peq,gnr (F1, F2, T) + Oxi2peq,gnr (F2, T)
−Krebs(A, T) − Koutpeq,gnr (A, F2) − Synpeq,gnr (A, F2, T) − δAA

dF1
dt

= Synpeq,gnr (A, F2, T) − Oxi1peq,gnr (F1, F2, T) + Fin1(F1, T) − δF1
F1

dF2
dt

= −Oxi2peq,gnr (F2, T) + Fin2(F2, T) − δF2
F2

dT
dt

= αGGly(G, T) + αKKrebs(A, T) + αO1Oxi1peq,gnr (F1, F2, T)
+αO2Oxi2peq,gnr (F2, T) − DegT(T)

∂ flux
∂ variable

GlyPdhKrebsKoutpeqSynpeqOxi1peqOxi2peqFin1Fin2DegT

gnr gnr gnr gnr

P 0 + 0 0 0 0 0 0 0 0
A 0 0 + + + 0 0 0 0 0
F1 0 0 0 0 0 + 0 − 0 0

F2
gnr
peq

0 0 0
0
+

0
−

0
+

+ 0 − 0

T − 0 − 0 + − − − − +
G + 0 0 0 0 0 0 0 0 0

Compare the equilibrium states of the models to

understand the role of genetic regulations

:
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Elimination of metabolic variables

Eliminate P . The equation ΦP(G, P, T) = 0 has a unique solution
P(1)(G, T) for every fixed (G, T) (unicity deduced from ∂ΦP

∂P
< 0)

Eliminate A, F1, F2

ΦA(P(1)(G, T), A, F1, F2, T) = 0; ΦF1
(A, F1, F2, T) = 0; ΦF2

(F2, T) = 0

The system has a unique solution
(A(2)(G, T), F1

(2)(G, T), F2
(2)(G, T)) because of the Gale-Nikaido

theorem.

Gale-Nikaido : If (x , y , z)→ (fx , fy , fz) is differentiable onto R3
+, of

Jacobian J, such that all the principal minors of −J are positive, the
system fx = fy = fz = 0 has a unique solution if a solution exists.

Reduce T with respect to G
ΦT(G, A(2)(G, T), F1

(2)(G, T), F2
(2)(G, T), T) = 0

Unicity condition : sufficient condition for dΦT
dT

< 0.

If the unicity condition is satisfied, compare the signs of the
equilibrated values in different models (non genetically regulated,
PPAR mutant...).

:
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Conclusion

Abstract model : only 12 variables to describe the regulations
and main fluxes in lipid metabolism.

Qualitative model : differential equations together with a table
of constraints on elementary fluxes.

Simulations : provide rough behavior of the system

Reduction method : allows to make predictions on the static
properties of model even if the model is not explicit.

Compatible with observations : behavior of fatty acids ; PPAR
mutants ; understand the role of regulation.
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To do

Find the most efficient sequence of equilibration

Study the stability of equilibria

Distinguish between the different types of fatty acids

Relation with extended models (KEGG and genetic
regulations)

Other species or tissues ?
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