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A classical way to describe and analyse biochemical reaction
systems: Differential equations.

Reaction model
S + E

k1


k2
ES

k3−→ E + P

dS/dt = −k1 × S × E + k2 × ES
dP/dt = k3 × ES
dE/dt = −k1 × S × E + (k2 + k3)× ES
dES/dt = k1 × S × E − (k2 + k3)× ES

1913 Die Kinetik der Invertinwirkung.
L. Menten, M.I. Michaelis. Biochemistry Zeitung 49.
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Reaction model
S + E

k1


k2
ES

k3−→ E + P

dS/dt = −k1 × S × E + k2 × ES
dP/dt = k3 × ES
dE/dt = −k1 × S × E + (k2 + k3)× ES
dES/dt = k1 × S × E − (k2 + k3)× ES

+ Conservation laws
E + ES = cte
P + S + ES = cte

⇓
Equivalent model: dS/dt = k2 × ES − k1 × E × S

dES/dt = k1 × E × S − (k2 + k3)× ES
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Use of Petri nets structural properties to say something
about the system dynamics without knowing the kinetics.
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Michaelis–Menten enzymatic reactions

Structural model: Reaction graph

S P

E

ES
t1

t2

t3

S + E 
 ES −→ E + P

Petri-net = reaction graph + discrete dynamics
1962 Kommunikation mit Automaten. Carl Adam Petri.

Ph. D. Thesis. University of Bonn.
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Siphons and traps

Biological interpretation: A siphon (resp. trap) refers to a
non-empty set of chemical species that once none (resp. some) of
them is present, they will never be produced (resp. disappear at
the same time).

2003 Topological analysis of metabolic networks based on
Petri net theory. I.Zevedei-Oancea and S.Schuster.
In Silico Biology.

Dynamical characterisation: A siphon is a non-empty set of places
that, once it is unmarked, remains so, whatever the dynamics are.

Structural characterisation: A siphon is a non-empty set of places
S such that •S ⊆ S•.
A siphon is minimal if it does not contain any other siphon.
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Siphons/Traps and Computation Tree Logic

CTL is used for verifying temporal properties by model checking.
2003 Symbolic model checking of biochemical networks.

Nathalie Chabrier and François Fages. CMSB.
http://contraintes.inria.fr/biocham

Definition. Given a marking m, for any subset P ′ ⊆ P of places, let
φP ′ =

∨
p∈P ′ mp ≥ 1.

Theorem. The set P ′ ⊆ P is a trap if and only if for all s ∈ NP ,
(SP N , s) |= φP ′ ⇒ AGφP ′ .

Theorem. The set P ′ ⊆ P is a siphon if and only if for all s ∈ NP ,
(SP N , s) |= ¬φP ′ ⇒ AG¬φP ′ .
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Minimal siphon example

S P

E

ES
t1

t2

t3

•{S, ES} = {t1, t2} {S, ES}• = {t1, t2, t3}

S siphon iff •S ⊆ S•
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Minimal trap example

S P

E

ES
t1

t2

t3

{E, ES}• = {t1, t2, t3} •{E, ES} = {t1, t2, t3}

D trap iff D• ⊆ •D

8/42
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Siphon-Trap Property (STP)

Definition. The STP holds when every siphon includes a marked trap.

Theorem. An ordinary Petri net in which the STP holds is deadlock-free.

2010 On the importance of the deadlock trap property for
monotonic liveness.
M. Heiner, C. Mahulea, and M. Silva. In Int. Workshop
on Biological Processes and Petri Nets (BioPPN).

2010 New Algorithms for Deciding the Siphon-Trap Property.
O. Oanea, H. Wimmel, and K. Wolf. Petri nets 2010.
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P-invariant: Biological interpretation
A P-invariant corresponds to a conservation law.

1993 Petri net representations in metabolic pathways.
V. N. Reddy, M. L. Mavrovouniotis and M. N.
Liebman. ISMB.

S P

E

ES
t1

t2

t3

E + ES = cte
P + S + ES = cte
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T-invariants: Biological interpretation
Minimal T-invariants correspond to elementary flux modes or
reversible reactions.

1994 On elementary flux modes in biochemical reaction systems
at steady state. S. Schuster and C. Hilgetag. Biol. Syst.

S P

E

ES
t1

t2

t3

t1 = t2 = 1 ∧ t3 = 0
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Benchmark for evaluation

Database Biomodels.net (version March 2012)

404 manually curated quantitative biochemical models.
Average ∼ 50 species, ∼ 90 reactions.
Biggest model has 194 species, 313 reactions.
Reference publication for each model.

2006 BioModels Database: a free, centralized database of
curated, published, quantitative kinetic models of
biochemical and cellular systems.
le Novère et al. Nucleic Acid Research.
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Benchmark for evaluation (2)

Database Petriweb

Repository of 80 models modelling real industrial processes.
Average ∼ 10 places, ∼ 8 transitions.
Biggest model has 68 places, 51 transitions.

2006 Petriweb: A Repository for Petri Nets,
R. Goud et al. Petri Nets and Other Models of
Concurrency - ICATPN.

13/42
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Complexity

Our challenge: enumerate all minimal siphons in
Biomodels.net and Petriweb databases.

There can be an exponential number of minimal siphons and
minimal T-invariants.

Deciding the existence of a minimal siphon of a given
cardinality in a general Petri net is NP-complete.

1996 Finding minimal siphons in general Petri nets.
S. Tanimoto, M. Yamauchi, and T. Watanabe. IEICE.

Deciding the existence of a minimal siphon containing a given
set of places in a general Petri net is NP-complete.

1999 Time complexity analysis of the minimal siphon extraction
problem of petri nets. S. Tanimoto, M. Yamauchi, and
T. Watanabe. IEICE.
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Thesis contribution

Finding minimal siphons and minimal T-invariants as a
constraint satisfaction problem.

Enumerating all minimal siphons with a Customized branch &
bound procedure.

Successful enumeration of all minimal siphons on all
Biomodels.net and Petriweb.

Outperforming state-of-the-art algorithms on Biomodels.net
and Petriweb.

Towards understanding why our techniques are efficient:
Linear time complexity on classes of Petri nets of bounded
tree-widths.
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Boolean model for siphons and
traps
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Boolean Model of Siphons

variables (∀p) Xp = 1⇐⇒ p ∈ S

constraints
(∀p) Xp = 1⇒

∧
t∈•p

∨
p′∈•t

Xp′ = 1

Finding siphons is reduced to finding
Boolean assignments satisfying these formulas.

17/42
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Search strategy ensuring minimality

Try absence 0 then presence 1

Xp = 0 Xp = 1

p /∈ S0 p ∈ S1

0 before 1 and S0 before S1 in the search tree =⇒ S1 6⊆ S0

18/42
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Enumerating all minimal siphons by iteration

Once a (minimal) siphon S is found

1 add the constraint
∨
p∈S

Xp = 0

2 restart the search

19/42
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Optimisation of the search in CLP(B)

"Those who cannot remember the past are condemned to repeat it"
George Santayana

already explored

S0 S

2 possible strategies:
add constraint S >lex S0

replay search procedure: most efficient!
20/42



Outline Motivation from systems biology Boolean model for siphons and traps Finite domain model for T-/P-invariants Conclusion

Example: Michaelis-Menten enzymatic reaction

Boolean variables

e, s, es and p

initial clauses

e ∨ s ∨ es ∨ p
¬es ∨ e ∨ s
¬s ∨ es
¬e ∨ es
¬e ∨ es
¬p ∨ es

S P

E

ES
t1

t2

t3
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Example: Michaelis-Menten enzymatic reaction

Boolean variables

e, s, es and p

assignment

s = es = 1 ∧ e = p = 0
é {S,ES} is a minimal

siphon.

minimality constraint:

¬s ∨ ¬es

S P

E

ESS ES
t1

t2

t3
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Example: Michaelis-Menten enzymatic reaction

Boolean variables

e, s, es and p

second iteration. assignment:

e = es = 1 ∧ s = p = 0
é {E,ES} is also a minimal

siphon.

minimality constraint:

¬e ∨ ¬es

S P

E

ES

E

ES
t1

t2

t3
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Example: Michaelis-Menten enzymatic reaction

Boolean variables

e, s, es and p

No more variable assignment.
2 minimal siphons: {S,ES}
and {E,ES}. S P

E

ES
t1

t2

t3
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State-of-the-art algorithms for enumerating minimal
siphons

2002 Characterization of minimal and basis siphons with predicate logic
and binary programming. R. Cordone, L. Ferrarini, and L. Piroddi.
IEEE CACSD.

2005 Enumeration algorithms for minimal siphons in Petri nets based on
place constraints. R. Cordone, L. Ferrarini, and L. Piroddi. IEEE
TSC.

PN #minimal total time (in s.)
size siphons (avg) MIP dedicated

2002 2005
5 2 0.03 0.05
10 10 0.28 0.07
15 60 5.45 0.39
20 302 303.47 6.84

2012 Computation of all minimal siphons in Petri nets S.G. Wang, Y. Li,
C.Y. Wang, M.C. Zhou. ICNSC.

2013 Computation of Minimal Siphons in Petri Nets by Using Binary
Decision Diagrams Y. Chen, G. Liu. ACM-TECS
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Enumerating minimal siphons with SAT and CLP(B)

total time (in ms.)
database #models #P,#T #P+#T #siphons algo. mini GNU-

(avg) (max) (avg) 2005 SAT Prolog
Petriweb 80 10,8 119 2.85 2325 156 6

Biomodels.net 403 50,90 507 4.21 19734 611 195
Biomodel #175 - 118, 194 312 3042 ∞ 137000 ∞
Kohn’s map - 509, 775 1284 81 28 1 221

but why are we so efficient?

23/42
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3-SAT phase transition

α = #clauses
#variables

Phase transition for satisfiability at α ' 4.26

1996 Generating Hard Satisfiability Problems. B. Selman, D.
Mitchell and H. Levesque. Artificial Intelligence.
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Initial density ≥ 4.2 ?

initial density3-SAT =
∑

t∈T | t• | +1 + µ

| places | +µ where

µ =
∑
t∈T

max(0, | •t | −2)

3-SAT initial density of BIOMD175=2.39

The density grows during enumeration: potentially hard problems.

Not sufficient to explain good performances.
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Tree-width of non-oriented graph

Tree-decomposition of a graph:
1 Each graph vertex is associated with

at least one tree node.

2 Each graph edge connects two
vertices that are listed together at
some tree node.

3 Each graph vertex is listed at the
nodes of a contiguous sub-tree of
the tree.

The width of a tree-decomposition is
the size of its largest node minus
one.
The tree-width of a graph is the
minimum width among all its
possible tree-decompositions.
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Bounded tree-widths
Theorem. Deciding the existence of a minimal siphon containing a given

set of places Q can be done in linear time for Petri-nets of
bounded tree-width.

Proof. Definable in Monadic Second Order logic =⇒ Recognizable
in linear time.

1990 Definable monadic second-order logic of graphs I.
Recognizable sets of Finite Graphs. Bruno Courcelle.
Information and Computation.

siphon(S): ∀v(S(v)⇒ place(v))
∧∃v(S(v))

∧∀t(∃v(S(v) ∧ edge(t, v))⇒ ∃v(S(v) ∧ edge(v, t)))

Min-Siphon(Q): ∃S(siphon(S)
∧∀S′(siphon(S′) ∧ ∀v(S′(v)⇒ S(v))⇒ ∀v(S(v)⇒ S′(v)))

∧∀v(Q(v)⇒ v ∈ S))
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Biochemicals networks seem to have a bounded tree-width

Biomodels.net tree-width as a function of the size (places and
transitions) of the Petri net Computed tree-width ≤ 10

Does not explain our good performance but suggests that the problem is
tractable.
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Siphon-Trap Property (STP) in MSO

Theorem. Deciding the STP in linear time for Petri nets of bounded
tree-width.

Proof. trap(S): ∀v(S(v)⇒ place(S))
∧∃v(S(v))

∧∀t(∃v(S(v) ∧ edge(v, t))⇒ ∃v(S(v) ∧ edge(t, v)))

stp: ∀S(siphon(S)⇒
∃S′(∀v(S′(v)⇒ S(v)) ∧ trap(S′)
∧∃v(S′(v) ∧marked(v))))
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Finite domain model for
T-/P-invariants
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Minimal T-invariants

Dynamical characterisation: Multi-set of transitions whose
weighted firing produces any initial marking.

Structural characterisation: A vector V of integers solution of
I.V = 0. I is the incidence (stoichiometric) matrix.
I = Post− Pre

A T-invariant is minimal if its support is not the support of any
other T-invariant, and the greatest common divisor of all entries is
1.
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CSP model for P/T-invariants

A Petri net with n places and m transitions

variables

m Finite Domains variables.

constraints

n (linear) equality constraints

∀1 ≤ i ≤ n, Prei · V = Posti · V

Finding (some) T-invariants is reduced to finding
integer assignments satisfying these formulas.
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Enumerating all minimal T-invariants

CSP model for an invariant V:

∀1 ≤ i ≤ n, Prei · V = Posti · V ∧ V · 1 > 0

repeat
find a solution, enumerating from low to high
add the solution to the basis
remove non-minimal T-invariants from the basis if there are
any
post the new constraint

∀B ∈ B
∏

Bi 6=0
Vi = 0

until no solution found

33/42



Outline Motivation from systems biology Boolean model for siphons and traps Finite domain model for T-/P-invariants Conclusion

Experimental results: minimal T-invariants enumeration

Using GNU-Prolog solver:
404 models of Biomodels.net

6 models include non-integer stoichiometry

22 models could not be solved within 10 min

376 models: all minimal T-invariants of each model are
enumerated in less than 10 seconds

80 models of Petriweb
all instances in less than 1 second
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T-invariants and Steady states

R = {R1, R2, ..., Rm} reactions, X = {X1, X2, .., Xn} species.

Rj :
n∑

i=1
PreijXi

ej⇒
n∑

i=1
PostijXi Preij and Postij positive integers

Finding a steady state amounts to solving:

∀Xi ∈ X,
dXi

dt
= 0

equivalent to:

I · E(X) = 0 where E = (e1, . . . , em).

ÙLet V =
∑
αjV

′
j . (V ′j is a minimal T-invariants, αj ∈ R+) Solving

E(X) = V will lead to steady states of the original system.
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Solving E(X)=V for computing steady states

Given (V) a linear combination of minimal T-invariants:

For support:
Restriction to General Mass Action
ÙGauss Elimination on
log-linearised equations

For null entries of V:
Restriction to multiplicative kinetics
ej(X) = 0⇔ ∃i, Preij > 0∧Xi = 0
Ùsimple enumeration

Solve (1) to compute steady states:

(1)


(a) kj

n∏
i=1

X
P reij

i = Vj j ∈ support(V )

(b) ∃i, Preij > 0 ∧Xi = 0 j 6∈ support(V )

2000 Biochemical systems analysis of genome-wide expression
data.
E. O. Voit and T. Radivoyevitch. Bioinformatics.
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Heuristic enumeration of steady states

Infinity of T-invariants ⇒ Restriction to specific combinations of minimal
invariants.

(1)


(a) kj

n∏
i=1

X
P reij

i = Vj j ∈ support(V )

(b) ∃i, Preij > 0, Xi = 0 j 6∈ support(V )

Look for minimal T-invariants;
For minimal T-invariant combinations (starting with 0 or 1 invariant),
try to solve the system (1)
if (b) is not satisfiable then

add another minimal T-invariant (heuristic)
else

try to add all other minimal T-invariants and stop if (a) is
unsatisfiable

end if
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Other choices

We can apply this approach to any T-invariant (even not
minimal).
The method does not need all minimal T-invariants.
The computational cost of trying to compute steady states is
low, compared to the T-invariant computation.
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Steady states computation
Analytical solutions computed in less than 2 min:

Biomodels (241 models)

Models with ODE (227)

GNU-
Prolog
solvable

Maple-
solvable

(31) (63) (59)
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Conclusion

Petri nets structural properties can give us some information
about the biochemical network dynamics when the kinetics are
missing.

Constraint programming over finite domain can be
successfully applied to Petri nets structural problems.
GNU-Prolog and miniSAT solvers outperform state-of-the-art
algorithms for enumerating minimal siphons.
Surprisingly good performance on real-size practical models.
Linear-time complexity result for Petri nets with bounded
tree-width.
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Perspectives

Add biological constraints to the computation of T-invariants
(compute only those of interest).

Provide a generic tool for the verification of graphs structural
properties having a biological meaning, with an underlying
CLP engine. (e.g. model reduction as sub-graph
epimorphism)

Identify parameters for certain structural properties
computation that ensure no performance issues.

Understand the links between structural properties of graphs
and the practical complexity of solving NP-hard problems on
them.
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