
Constraint Logic Programming

Sylvain Soliman
Sylvain.Soliman@inria.fr

Project-Team LIFEWARE

MPRI 2.35.1 Course – September–November 2017

1

mailto:Sylvain.Soliman@inria.fr

Part I

CLP - Introduction and Logical
Background

2

Part I: CLP - Introduction and Logical
Background

1 The Constraint Programming paradigm

2 Examples and Applications

3 First Order Logic

4 Models

5 Logical Theories

3

The Constraint programming Machine
memory of values

programming variables
memory of constraints
mathematical variables

V1

Vi

Vj

Vi ← Vj + 1

write

read

Xi ∈ [3, 15]∑
aiXi ≥ b

cardinality(1,
[X ≥ Y+ 5,Y ≥ X+ 3])

Xi = Xj + 2

Xi ≥ 5?

ad
d

test

4

The Paradigm of Constraint Programming

Program = Logical Formula Axiomatization:
“Domain of discourse” X ,
Model of the problem P

Execution = Proof search Constraint satisfiability,
Logical resolution principle

Class of languages CLP(X) parametrized by X :

Primitive Constraints over X
U = R× I
Relations defined by logical formulas
∀x,y path(x,y)⇔ edge(x,y) ∨ ∃z(edge(x, z) ∧ path(z,y))

5

Languages for defining new relations

First-order logic predicate calculus
∀x,y path(x,y)⇔ edge(x,y) ∨ ∃z(edge(x, z) ∧ path(z,y))

Prolog/CLP(X) clauses

path(X,Y):- edge(X,Y).
path(X,Y):- edge(X,Z), path(Z,Y).

Concurrent constraint process languages CC(X)
Process A = c | p(x) | (A ∥ A) | A+ A | ask(c)→ A | ∃xA
path(X,Y) :: edge(X,Y) + ∃Z(edge(X,Z) ∥ path(Z,Y))

Constraint libraries in OO/functional/imperative
languages (ILOG, Choco, Google OR-tools, etc.)

6

CLP(FD) N-Queens Problem
GNU-Prolog program:
queens(N, L):-
fd_set_vector_max(N),
length(L, N),
fd_domain(L, 1, N),
safe(L),
fd_labeling(L,
[variable_method(ff),

value_method(middle)]).
safe([]).
safe([X | L]) :-
noattack(L, X, 1),
safe(L).

noattack([], _, _).
noattack([Y | L], X, I) :-
X #\= Y,
X #\= Y + I,
X #\= Y - I,
J is I + 1,
noattack(L, X, J).

7

CLP(FD) N-Queens Problem
GNU-Prolog program:
queens(N, L):-
fd_set_vector_max(N),
length(L, N),
fd_domain(L, 1, N),
safe(L),
fd_labeling(L,
[variable_method(ff),

value_method(middle)]).
safe([]).
safe([X | L]) :-
noattack(L, X, 1),
safe(L).

noattack([], _, _).
noattack([Y | L], X, I) :-
X #\= Y,
X #\= Y + I,
X #\= Y - I,
J is I + 1,
noattack(L, X, J).

7

Search space of all solutions

8

Successes in combinatorial search problems

Job shop scheduling, resource allocation, graph coloring,…

Decision Problems: existence of a solution (of given cost)
in P if algorithm of polynomial time complexity
in NP if non-deterministic algo. of polynomial complexity
NP-complete if P encoding of any other NP problem

Optimization Problems: computation of a solution of
optimal cost, NP-hard if the decision problem is
NP-complete

Problem Complexity Search space

Sort O(n logn) !n
SAT O(2n) 2n

9

Hacker News front page on September 1st

N-Queens completion is NP-complete [Gent et al. JAIR]
10

Demo

11

Workplan of the Lecture

1 Introduction to CLP, operational semantics, examples

2 CLP - Fixpoint and logical semantics

3 CSP resolution - simplification and domain reduction

4 CSP - Symmetries - variables, values, breaking

Programming project deadline: October 8th

5 CLP - Descriptive and prescriptive typing, subtyping
constraints resolution; CHR or Minizinc; Project discussion

6 CC - Examples, operational and denotational semantics

7 CC - Linear Logic semantics, LCC

8 SiLCC, relation to CHR, modules, etc.

12

http://lifeware.inria.fr/~soliman/project.html

Hot Research Topics in Constraint Programming

Combinatorial Benchmarks (open shop 6×6, …)
Global constraints (graph properties, reification)
Search procedures, randomization
Hybridization of algorithms CP, MILP, local search
Symmetry detection and breaking (dynamic, local, etc.)

Easily extensible CP languages
Adaptive solving strategies
Automatic synthesis of constraint solvers (CHR)
CP-CLP interface (MiniZinc, CLPZinc, …)

New applications in Bioinformatics/Systems Biology
(BIOCHAM)

⇒ Internships

13

http://lifeware.inria.fr/wiki/jobs/

First-Order Terms

Alphabet:

set of variables V,
set of constant and function symbols SF, with their arity α

The set T of first-order terms is the least set satisfying

1 V ⊂ T
2 if f ∈ SF, α(f) = n, M1, . . . ,Mn ∈ T
then f(M1, . . . ,Mn) ∈ T

14

First-order Formulas

Alphabet: set SP of predicate symbols

Atomic propositions: p(M1, . . . ,Mn) s.t. p ∈ SP, M1, . . . ,Mn ∈ T
Formulas: ¬ϕ, ϕ ∨ ψ, ∃x ϕ

The other logical symbols are defined as abbreviations:

ϕ⇒ ψ = ¬ϕ ∨ ψ
true = ϕ⇒ ϕ

false = ¬true
ϕ ∧ ψ = ¬(ϕ⇒ ¬ψ)
ϕ ≡ ψ = (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ)

∀xϕ = ¬∃x¬ϕ

15

Clauses

A literal L is
either an atomic proposition, A (positive literal)
or the negation of an atomic proposition, ¬A (negative
literal)

A clause is a disjunction of universally quantified literals,

∀(L1 ∨ · · · ∨ Ln),

A Horn clause is a clause having at most one positive literal

¬A1 ∨ · · · ∨ ¬An

A ∨ ¬A1 ∨ · · · ∨ ¬An

16

Interpretations

An interpretation < D, [] > is a mathematical structure given
with

a domain D,
distinguished elements [c] ∈ D for each constant c ∈ SF,
operators [f] : Dn → D for each function symbol f ∈ SF of
arity n
relations [p] : Dn → {true, false} for each predicate symbol
p ∈ SP of arity n

17

Valuation

A valuation is a function ρ : V→ D extended to terms by
morphism

[x]ρ = ρ(x) if x ∈ V,
[f(M1, . . . ,Mn)]ρ = [f]([M1]ρ, . . . , [Mn]ρ) if f ∈ SF

The truth value of an atom p(M1, . . . ,Mn) in an interpretation
I =< D, [] > and a valuation ρ is the boolean value
[p]([M1]ρ, . . . , [Mn]ρ)

The truth value of a formula in I and ρ is determined by truth
tables and
[∃xϕ]ρ = true if [ϕ[d/x]]ρ = true for some d ∈ D, false otherwise
[∀xϕ]ρ = true if [ϕ[d/x]]ρ = true for every d ∈ D, false otherwise

18

Models

An interpretation I is a model of a closed formula ϕ, I |= ϕ,
if ϕ is true in I
A closed formula ϕ′ is a logical consequence of ϕ closed,
ϕ |= ϕ′, if every model of ϕ is a model of ϕ′

A formula ϕ is satisfiable in an interpretation I if I |= ∃(ϕ),
(e.g. Z |= ∃x x < 0)
ϕ is valid in I if I |= ∀(ϕ)
A formula ϕ is satisfiable if ∃(ϕ) has a model (e.g. x < 0)
A formula is valid, noted |= ϕ, if every interpretation is a
model of ∀(ϕ) (e.g. p(x)⇒ ∃yp(y))

Proposition 1
For closed formulas, ϕ |= ϕ′ iff |= ϕ⇒ ϕ′

19

Herbrand’s Domain H

Domain of closed terms T(SF), “Syntactic” interpretation
[c] = c
[f(M1, . . . ,Mn)] = f([M1], . . . , [Mn])

Herbrand’s base BH = {p(M1, . . . ,Mn) | p ∈ SP, Mi ∈ T(SF)}

A Herbrand’s interpretation is identified to a subset of BH
(the subset defines the atomic propositions which are true)

20

Herbrand’s Models

Proposition 2

Let S be a set of clauses, S is satisfiable if and only if S has a
Herbrand’s model

Proof.
Let I be a model of S, and I′ be the Herbrand’s interpretation defined by

I′ = {p(M1, . . . ,Mn) ∈ BH | I |= p(M1, . . . ,Mn)}.

Since I is a model of S, for every clause C ∈ S and every valuation ρ, there
exists a positive literal A (resp. negative literal ¬A) in C such that I |= Aρ
(resp. I ̸|= Aρ). For every Herbrand’s valuation ρ′, there exists an
I-valuation ρ such that I |= Aρ iff I′ |= Aρ′ Hence, for every clause, there
exists a literal A (resp. ¬A) such that I′ |= Aρ′ (resp. I′ ̸|= Aρ′). I′ is thus a
Herbrand’s model of S

21

Herbrand’s Models

Proposition 2

Let S be a set of clauses, S is satisfiable if and only if S has a
Herbrand’s model

Proof.
Let I be a model of S, and I′ be the Herbrand’s interpretation defined by

I′ = {p(M1, . . . ,Mn) ∈ BH | I |= p(M1, . . . ,Mn)}.

Since I is a model of S, for every clause C ∈ S and every valuation ρ, there
exists a positive literal A (resp. negative literal ¬A) in C such that I |= Aρ
(resp. I ̸|= Aρ). For every Herbrand’s valuation ρ′, there exists an
I-valuation ρ such that I |= Aρ iff I′ |= Aρ′ Hence, for every clause, there
exists a literal A (resp. ¬A) such that I′ |= Aρ′ (resp. I′ ̸|= Aρ′). I′ is thus a
Herbrand’s model of S

21

Skolemization
- Put ϕ in prenex form (all quantifiers in the head)
- Replace an existential variable x by a term f(x1, . . . ,xk) where
f is a new function symbol and the xi’s are the universal
variables before x
E.g. ϕ = ∀x∃y∀z p(x,y, z) ϕs = ∀x∀z p(x, f(x), z)

Proposition 3
Any formula ϕ is satisfiable iff its Skolem’s normal form ϕs is
satisfiable

Proof.
If I |= ϕ then one can choose an interpretation of the Skolem’s function
symbols in ϕs according to the I-valuation of the existential variables of ϕ
such that I |= ϕs.
Conversely, if I |= ϕs, the interpretation of the Skolem’s functions in ϕs gives
a valuation of the existential variables in ϕ s.t. I |= ϕ

22

Skolemization
- Put ϕ in prenex form (all quantifiers in the head)
- Replace an existential variable x by a term f(x1, . . . ,xk) where
f is a new function symbol and the xi’s are the universal
variables before x
E.g. ϕ = ∀x∃y∀z p(x,y, z) ϕs = ∀x∀z p(x, f(x), z)

Proposition 3
Any formula ϕ is satisfiable iff its Skolem’s normal form ϕs is
satisfiable

Proof.
If I |= ϕ then one can choose an interpretation of the Skolem’s function
symbols in ϕs according to the I-valuation of the existential variables of ϕ
such that I |= ϕs.
Conversely, if I |= ϕs, the interpretation of the Skolem’s functions in ϕs gives
a valuation of the existential variables in ϕ s.t. I |= ϕ

22

Logical Theories

A theory is a formal system formed with
logical axioms and inference rules
¬A ∨ A (excluded middle) A[x← B]⇒ ∃x A (substitution)
A

B ∨ A
(Weakening)

A ∨ A
A

(Contraction)
A ∨ (B ∨ C)
(A ∨ B) ∨ C

(Associativity)
A ∨ B ¬A ∨ C

B ∨ C
(Cut)

A⇒ B x ̸∈ V(B)
∃xA⇒ B

(Existential introduction)

a set T of non-logical axioms

Deduction relation: T ⊢ ϕ if the closed formula ϕ can be
derived in T
T is contradictory if T ⊢ false, otherwise T is consistent

23

Validity

Theorem 4 (Deduction theorem)
T ⊢ ϕ⇒ ψ iff T ∪ {ϕ} ⊢ ψ

The implication is immediate with the cut rule.
Conversely the proof is by induction on the derivation of the formula ψ

Theorem 5 (Validity)
If T ⊢ ϕ then T |= ϕ

By induction on the length of the deduction of ϕ

Corollary 6
If T has a model then T is consistent

We show the contrapositive: if T is contradictory, then T ⊢ false, hence
T |= false, hence T has no model

24

Validity

Theorem 4 (Deduction theorem)
T ⊢ ϕ⇒ ψ iff T ∪ {ϕ} ⊢ ψ

The implication is immediate with the cut rule.
Conversely the proof is by induction on the derivation of the formula ψ

Theorem 5 (Validity)
If T ⊢ ϕ then T |= ϕ

By induction on the length of the deduction of ϕ

Corollary 6
If T has a model then T is consistent

We show the contrapositive:

if T is contradictory, then T ⊢ false, hence
T |= false, hence T has no model

24

Validity

Theorem 4 (Deduction theorem)
T ⊢ ϕ⇒ ψ iff T ∪ {ϕ} ⊢ ψ

The implication is immediate with the cut rule.
Conversely the proof is by induction on the derivation of the formula ψ

Theorem 5 (Validity)
If T ⊢ ϕ then T |= ϕ

By induction on the length of the deduction of ϕ

Corollary 6
If T has a model then T is consistent

We show the contrapositive: if T is contradictory, then T ⊢ false, hence
T |= false, hence T has no model

24

Gödel’s Completeness Theorem
Theorem 7

A theory is consistent iff it has a model

The idea is to construct a Herbrand’s model of the theory supposed to be
consistent, by interpreting by true the closed atoms which are theorems of
T , and by false the closed atoms whose negation is a theorem of T For this
it is necessary to extend the alphabet to denote domain elements by
Herbrand terms

Corollary 8

T |= ϕ iff T ⊢ ϕ

If T |= ϕ then T ∪ {¬ϕ} has no model, hence T ∪ {¬ϕ} ⊢ false, and by the
deduction theorem T ⊢ ¬¬ϕ, now by the cut rule with the axiom of
excluded middle (plus weakening and contraction) we get T ⊢ ϕ

25

Axiomatic and Complete Theories

A theory T is axiomatic if the set of non logical axioms is
recursive (i.e., membership can be decided by an algorithm)

Proposition 9
In an axiomatic theory T, valid formulas, T |= ϕ, are
recursively enumerable

(feasibility of the Logic Programming paradigm…)

T is complete if for every closed ϕ, either T ⊢ ϕ or T ⊢ ¬ϕ

In a complete axiomatic theory, we can decide whether an
arbitrary formula is satisfiable or not (Constraint Satisfaction
paradigm…)

26

Compactness theorem

Theorem 10
T |= ϕ iff T ′ |= ϕ for some finite part T ′ of T

By Gödel’s completeness theorem, T |= ϕ iff T ⊢ ϕ.
As the proofs are finite, they use only a finite part of non logical axioms T .
Therefore T |= ϕ iff T ′ |= ϕ for some finite part T ′ of T

Corollary 11
T is consistent iff every finite part of T is consistent.

T is inconsistent iff T ⊢ false,
iff for some finite part T ′ of T , T ′ ⊢ false,
iff some finite part of T is inconsistent

27

Compactness theorem

Theorem 10
T |= ϕ iff T ′ |= ϕ for some finite part T ′ of T

By Gödel’s completeness theorem, T |= ϕ iff T ⊢ ϕ.
As the proofs are finite, they use only a finite part of non logical axioms T .
Therefore T |= ϕ iff T ′ |= ϕ for some finite part T ′ of T

Corollary 11
T is consistent iff every finite part of T is consistent.

T is inconsistent iff T ⊢ false,
iff for some finite part T ′ of T , T ′ ⊢ false,
iff some finite part of T is inconsistent

27

Coloring infinite maps with four colors

Let T express the colorability with four colors of an infinite
planar graph G:

∀x
∨4
i=1 ci(x),

∀x
∧

1≤i<j≤4 ¬(ci(x) ∧ cj(x)),∧4
i=1 ¬(ci(a) ∧ ci(b)) for every adjacent vertices a,b in G.

Let T ′ be any finite part of T , and G′ be the (finite) subgraph
of G containing the vertices which appear in T ′. As G′ is finite
and planar it can be colored with 4 colors [Appel and Haken
76], thus T ′ has a model

Now as every finite part T ′ of T is satisfiable, we deduce from
the compactness theorem that T is satisfiable. Therefore
every infinite planar graph can be colored with four colors

28

Complete theory: Presburger’s arithmetic

Complete axiomatic theory of (N, 0, s,+,=),

E1: ∀x x = x
E2: ∀x∀y x = y⇒ s(x) = s(y)
E3: ∀x∀y∀z∀v x = y ∧ z = v⇒ (x = z⇒ y = v)

E4,Π1: ∀x∀y s(x) = s(y)⇒ x = y
E5,Π2: ∀x 0 ̸= s(x)

Π3: ∀x x+ 0 = x
Π4: ∀x x+ s(y) = s(x+ y)
Π5: ϕ[x← 0] ∧ (∀x ϕ⇒ ϕ[x← s(x)])⇒ ∀xϕ for every

formula ϕ
Note that E6 : ∀x x ̸= s(x) and E7 : ∀x x = 0 ∨ ∃y x = s(y) are
provable by induction

29

Gödel’s Incompleteness Theorem
Peano’s arithmetic contains two more axioms for ×:

Π6: ∀x x× 0 = 0

Π7: ∀x∀y x× s(y) = x× y+ x

Theorem 12
Any consistent axiomatic extension of Peano’s arithmetic is
incomplete

The idea of the proof, following the liar paradox of Epimenides (600 BC)
which says: “I lie”, is to construct in the language of Peano’s arithmetic Π a
formula ϕ which is true in the structure of natural numbers N if and only if
ϕ is not provable in Π. As N is a model of Π, ϕ is necessarily true in N and
not provable in Π, hence Π is incomplete.

Corollary 13
The structure (N, 0, 1,+,×) is not axiomatizable

30

Part II

Constraint Logic Programs

31

Part II: Constraint Logic Programs

6 Constraint Languages

7 CLP(X)

8 CLP(H)

32

Constraint Languages

Alphabet: set V of variables,
set SF of constant and function symbols,
set SC of predicate symbols containing true and =

We assume a set of basic constraints, supposed to be closed
by variable renaming, and to contain all atomic constraints

The language of constraints is the closure by conjonction and
existential quantification of the set of basic constraints
Constraints will be denoted by c,d, . . .

33

Fixed Interpretation X

Structure X for interpreting the constraint language

We assume that the constraint satisfiability problem,
X |=? ∃(c), is decidable

This is equivalent to assume that X is presented by an
axiomatic theory T satisfying:
1 (soundness) X |= T
2 (completeness for constraint satisfaction) for every
constraint c, either T ⊢ ∃(c), or T ⊢ ¬∃(c)

34

Clark’s Equality Theory for the Herbrand
domain
E1 ∀x x = x
E2 ∀(x1 = y1 ∧ · · · ∧ xn = yn ⇒ f(x1, . . . ,xn) = f(y1, . . . ,yn))
E3 ∀(x1 = y1 ∧ · · · ∧ xn = yn ⇒ p(x1, . . . ,xn)⇒ p(y1, . . . ,yn))
E4 ∀(f(x1, . . . ,xn) = f(y1, . . . ,yn)⇒ x1 = y1 ∧ · · · ∧ xn = yn)
E5 ∀(f(x1, . . . ,xm) ̸= g(y1, . . . ,yn)) for different function symbols

f,g ∈ SF with arity m and n respectively
E6 ∀x M[x] ̸= x for every term M strictly containing x

Proposition 14
H |= CET

Proposition 15
Furthermore if the set of function symbols is infinite, CET is a
complete theory

35

CLP(X) Programs

Alphabet V, SF, SC of constraint symbols
Structure X presented by a satisfaction complete theory T

Alphabet SP of program predicate symbols

A CLP(X) program is a finite set of program clauses

Program clause ∀(A ∨ ¬c1 ∨ . . .¬cm ∨ ¬A1 ∨ · · · ∨ ¬An)

A← c1, . . . , cm|A1, . . . ,An

Goal clause ∀(¬c1 ∨ . . .¬cm ∨ ¬A1 ∨ · · · ∨ ¬An)

c1, . . . , cm|A1, . . . ,An

36

Operational semantics: CSLD Resolution

(p(t1, t2)← c′|A1, . . . ,An)θ ∈ P X |= ∃(c ∧ s1 = t1 ∧ s2 = t2 ∧ c′)
(c|α,p(s1, s2), α′) −→ (c, s1 = t1, s2 = t2, c′ | α,A1, . . . ,An, α′)

where θ is a renaming substitution of the program clause with
new variables

p(t1, . . . , tn) works in the same way, but can be encoded with
binary predicates

A successful derivation is a derivation of the form
G −→ G1 −→ G2 −→ . . . −→ c|□

c is called a computed answer constraint for G

37

Prolog as CLP(H)

The programming language Prolog is an implementation of
CLP(H) in which:

the constraints are only equalities between terms,

the selection strategy consists in solving the atoms from
left to right according to their order in the goal,

the search strategy consists in searching the derivation
tree depth-first by backtracking

38

Only constants: Deductive Databases
gdfather(X, Y) :- father(X, Z), parent(Z, Y).
gdmother(X, Y) :- mother(X, Z), parent(Z, Y).
parent(X, Y) :- father(X, Y).
parent(X, Y) :- mother(X, Y).
father(alphonse, chantal).
mother(emilie, chantal).
mother(chantal, julien).
father(julien, simon).

| ?- gdfather(X, Y).
X = alphonse, Y = julien ? ;
no

| ?- gdmother(X, Y).
X = emilie, Y = julien ? ;
X = chantal, Y = simon ? ;
no

39

Lists

member(X, cons(X, L)).
member(X, cons(_Y, L)) :-

member(X, L).

| ?- member(X, cons(a, cons(b, cons(c, nil)))).
X = a ? ;
X = b ? ;
X = c ? ;
no

| ?- member(X, Y).
Y = cons(X,_A) ? ;
Y = cons(_B,cons(X,_A)) ? ;
Y = cons(_C,cons(_B,cons(X,_A))) ?
yes

40

Appending lists
append([], L, L).
append([X | L], L2, [X | L3]) :-

append(L, L2, L3).

| ?- append([a, b], [c, d], L).
L = [a,b,c,d] ? ;
no

| ?- append(X, Y, L).
X = [],
Y = L ? ;
L = [_A|Y],
X = [_A] ? ;
L = [_A,_B|Y],
X = [_A,_B] ?
yes

41

Reversing a list
reverse([], []).
reverse([X | L], R) :-

reverse(L, K), append(K, [X], R).
| ?- reverse([a, b, c, d], M).
M = [d,c,b,a] ? ;
no
| ?- reverse(M, [a, b, c, d]).
M = [d,c,b,a] ?

rev(L, R) :- rev_lin(L, [], R).

rev_lin([], R, R).
rev_lin([X | L], K, R) :- rev_lin(L, [X | K], R).

| ?- rev(X,Y).
X = [], Y = [] ? ;
X = [_A], Y = [_A] ? ;
...

42

Reversing a list
reverse([], []).
reverse([X | L], R) :-

reverse(L, K), append(K, [X], R).
| ?- reverse([a, b, c, d], M).
M = [d,c,b,a] ? ;
no
| ?- reverse(M, [a, b, c, d]).
M = [d,c,b,a] ?

rev(L, R) :- rev_lin(L, [], R).

rev_lin([], R, R).
rev_lin([X | L], K, R) :- rev_lin(L, [X | K], R).

| ?- rev(X,Y).
X = [], Y = [] ? ;
X = [_A], Y = [_A] ? ;
...

42

Quicksort

quicksort([], []).
quicksort([X | L], R):-

partition(L, Linf, X, Lsup),
quicksort(Linf, L1),
quicksort(Lsup, L2),
append(L1, [X | L2], R).

partition([], [], _, []).
partition([Y | L], [Y | Linf], X, Lsup):-

Y =< X,
partition(L, Linf, X, Lsup).

partition([Y | L], Linf, X, [Y | Lsup]):-
Y > X,
partition(L, Linf, X, Lsup).

43

Parsing
sentence(L) :-

nounphrase(L1), verbphrase(L2), append(L1, L2, L).

nounphrase(L) :-
determiner(L1), noun(L2), append(L1, L2, L).

nounphrase(L) :- noun(L).

verbphrase(L):- verb(L).
verbphrase(L):-

verb(L1), nounphrase(L2), append(L1, L2, L).

verb([eats]).

determiner([the]).

noun([monkey]).
noun([banana]).

44

Parsing/Synthesis (continued)

| ?- sentence([the, monkey, eats]).
yes

| ?- sentence([the, eats]).
no

| ?- sentence(L).
L = [the, monkey, eats] ? ;
L = [the, monkey, eats, the, monkey] ? ;
L = [the, monkey, eats, the, banana] ? ;
L = [the, monkey, eats, monkey] ?
yes

45

Prolog Meta-interpreter

solve((A, B)) :- solve(A), solve(B).
solve(A) :- clause(A).
solve(A) :- clause((A :- B)), solve(B).

clause(member(X, [X | _])).
clause((member(X, [_ | L]) :- member(X, L))).

| ?- solve(member(X, L)).

L = [X|_A] ? ;
L = [_A,X|_B] ? ;
L = [_A,_B,X|_C] ? ;
L = [_A,_B,_C,X|_D] ?
yes

46

	CLP - Introduction and Logical Background
	The Constraint Programming paradigm
	Examples and Applications
	First Order Logic
	Models
	Logical Theories
	Constraint Languages
	CLP(X)
	CLP(H)

