Constraint Logic Programming

Sylvain Soliman
Sylvain.Soliman@inria.fr

Project-Team LIFEWARE

MPRI 2.35.1 Course - September-November 2017

Part I

CLP - Introduction and Logical Background

Part I: CLP - Introduction and Logical Background

(1) The Constraint Programming paradigm

2 Examples and Applications
(3) First Order Logic
4. Models
(5) Logical Theories

The Constraint programming Machine

memory of values programming variables
memory of constraints mathematical variables

The Paradigm of Constraint Programming

Program = Logical Formula

Execution = Proof search

Axiomatization:
"Domain of discourse" \mathcal{X}, Model of the problem P

Constraint satisfiability, Logical resolution principle

Class of languages $\operatorname{CLP}(\mathcal{X})$ parametrized by \mathcal{X} :

- Primitive Constraints over \mathcal{X}
$U=R \times I$
- Relations defined by logical formulas $\forall x, y$ path $(x, y) \Leftrightarrow e d g e(x, y) \vee \exists z(e d g e(x, z) \wedge$ path $(z, y))$

Languages for defining new relations

- First-order logic predicate calculus
$\forall x, y$ path $(x, y) \Leftrightarrow e d g e(x, y) \vee \exists z(e d g e(x, z) \wedge$ path $(z, y))$
- Prolog/CLP (\mathcal{X}) clauses

```
path(X,Y):- edge(X,Y).
path(X,Y):- edge(X,Z), path(Z,Y).
```

- Concurrent constraint process languages $\mathrm{CC}(\mathcal{X})$ Process $A=c|p(x)|(A \| A)|A+A| \operatorname{ask}(c) \rightarrow A \mid \exists x A$ $\operatorname{path}(X, Y):: \operatorname{edge}(X, Y)+\exists Z(\operatorname{edge}(X, Z) \| \operatorname{path}(Z, Y))$
- Constraint libraries in OO/functional/imperative languages (ILOG, Choco, Google OR-tools, etc.)

CLP(FD) N-Queens Problem
 GNU-Prolog program:

```
queens(N, L):-
    fd_set_vector_max(N),
    length(L, N),
    fd_domain(L, 1, N),
    safe(L),
    fd_labeling(L,
        [variable_method(ff),
    value_method(middle)]).
safe([]).
safe([X | L]) :-
    noattack(L, X, 1),
    safe(L).
noattack([], _, _).
noattack([Y | L], X, I) :-
    X #\= Y,
    X #\= Y + I,
    X #\= Y - I,
    J is I + 1,
    noattack(L, X, J).
```


CLP(FD) N-Queens Problem
 GNU-Prolog program:

queens (N, L) :-
fd_set_vector_max (N),
length (L, N),
fd_domain(L, 1, N),
safe(L),
fd_labeling(L,
[variable_method(ff), value_method(middle)]). safe([]).
safe([X | L]) :-
noattack(L, X, 1),
safe(L).
noattack([], _, _).
noattack([Y | L], X, I) :-
X \# \= Y,
X \# $\backslash=Y+I$,
X \# \= Y - I,
J is $\mathrm{I}+1$,
noattack(L, X, J).

Search space of all solutions

Successes in combinatorial search problems

Job shop scheduling, resource allocation, graph coloring,...

- Decision Problems: existence of a solution (of given cost) in P if algorithm of polynomial time complexity
in NP if non-deterministic algo. of polynomial complexity NP-complete if P encoding of any other NP problem
- Optimization Problems: computation of a solution of optimal cost, NP-hard if the decision problem is NP-complete

Problem Complexity Search space

-	Sort	$O(n \log n)$
SAT	$O\left(2^{n}\right)$	$!n$
	2^{n}	

Hacker News front page on September 1st

N -Queens completion is NP-complete [Gent et al. JAIR]

Demo

Workplan of the Lecture

(1) Introduction to CLP, operational semantics, examples
(2) CLP - Fixpoint and logical semantics
(3) CSP resolution - simplification and domain reduction
(1) CSP - Symmetries - variables, values, breaking Programming project deadline: October 8th
(3) CLP - Descriptive and prescriptive typing, subtyping constraints resolution; CHR or Minizinc; Project discussion
(6) CC - Examples, operational and denotational semantics

- CC - Linear Logic semantics, LCC
(8) SiLCC, relation to CHR, modules, etc.

Hot Research Topics in Constraint Programming

- Combinatorial Benchmarks (open shop $6 \times 6, \ldots$)

Global constraints (graph properties, reification)
Search procedures, randomization
Hybridization of algorithms CP, MILP, local search
Symmetry detection and breaking (dynamic, local, etc.)

- Easily extensible CP languages Adaptive solving strategies
Automatic synthesis of constraint solvers (CHR)
CP-CLP interface (MiniZinc, CLPZinc, ...)
- New applications in Bioinformatics/Systems Biology (BIOCHAM)
\Rightarrow Internships

First-Order Terms

Alphabet:

- set of variables V,
- set of constant and function symbols S_{F}, with their arity α

The set T of first-order terms is the least set satisfying
(1) $V \subset T$
(2) if $f \in S_{F}, \alpha(f)=n, M_{1}, \ldots, M_{n} \in T$
then $f\left(M_{1}, \ldots, M_{n}\right) \in T$

First-order Formulas

Alphabet: set S_{P} of predicate symbols
Atomic propositions: $p\left(M_{1}, \ldots, M_{n}\right)$ s.t. $p \in S_{P}, M_{1}, \ldots, M_{n} \in T$ Formulas: $\neg \phi, \phi \vee \psi, \exists x \phi$

The other logical symbols are defined as abbreviations:

$$
\begin{aligned}
\phi \Rightarrow \psi & =\neg \phi \vee \psi \\
\text { true } & =\phi \Rightarrow \phi \\
\text { false } & =\neg \text { true } \\
\phi \wedge \psi & =\neg(\phi \Rightarrow \neg \psi) \\
\phi \equiv \psi & =(\phi \Rightarrow \psi) \wedge(\psi \Rightarrow \phi) \\
\forall x \phi & =\neg \exists x \neg \phi
\end{aligned}
$$

Clauses

A literal L is

- either an atomic proposition, A (positive literal)
- or the negation of an atomic proposition, $\neg A$ (negative literal)

A clause is a disjunction of universally quantified literals,

$$
\forall\left(L_{1} \vee \cdots \vee L_{n}\right)
$$

A Horn clause is a clause having at most one positive literal

$$
\begin{gathered}
\neg A_{1} \vee \cdots \vee \neg A_{n} \\
A \vee \neg A_{1} \vee \cdots \vee \neg A_{n}
\end{gathered}
$$

Interpretations

An interpretation $<D,[]>$ is a mathematical structure given with

- a domain D,
- distinguished elements $[c] \in D$ for each constant $c \in S_{F}$,
- operators $[f]: D^{n} \rightarrow D$ for each function symbol $f \in S_{F}$ of arity n
- relations $[p]: D^{n} \rightarrow\{$ true, false $\}$ for each predicate symbol $p \in S_{P}$ of arity n

Valuation

A valuation is a function $\rho: V \rightarrow D$ extended to terms by morphism

- $[x]_{\rho}=\rho(x)$ if $x \in V$,
- $\left[f\left(M_{1}, \ldots, M_{n}\right)\right]_{\rho}=[f]\left(\left[M_{1}\right]_{\rho}, \ldots,\left[M_{n}\right]_{\rho}\right)$ if $f \in S_{F}$

The truth value of an atom $p\left(M_{1}, \ldots, M_{n}\right)$ in an interpretation $I=<D,[]>$ and a valuation ρ is the boolean value $[p]\left(\left[M_{1}\right]_{\rho}, \ldots,\left[M_{n}\right]_{\rho}\right)$

The truth value of a formula in I and ρ is determined by truth tables and
$[\exists x \phi]_{\rho}=$ true if $[\phi[d / x]]_{\rho}=$ true for some $d \in D$, false otherwise $[\forall x \phi]_{\rho}=$ true if $[\phi[d / x]]_{\rho}=$ true for every $d \in D$, false otherwise

Models

- An interpretation I is a model of a closed formula $\phi, I=\phi$, if ϕ is true in I
- A closed formula ϕ^{\prime} is a logical consequence of ϕ closed, $\phi=\phi^{\prime}$, if every model of ϕ is a model of ϕ^{\prime}
- A formula ϕ is satisfiable in an interpretation I if $I=\exists(\phi)$, (e.g. $\mathbb{Z} \mid=\exists x x<0$) ϕ is valid in I if $I \models \forall(\phi)$
- A formula ϕ is satisfiable if $\exists(\phi)$ has a model (e.g. $x<0$)
- A formula is valid, noted $\models \phi$, if every interpretation is a model of $\forall(\phi)$ (e.g. $p(x) \Rightarrow \exists y p(y)$)

Proposition 1

For closed formulas, $\phi=\phi^{\prime}$ iff $\mid=\phi \Rightarrow \phi^{\prime}$

Herbrand's Domain \mathcal{H}

Domain of closed terms $T\left(S_{F}\right)$, "Syntactic" interpretation $[c]=c$
$\left[f\left(M_{1}, \ldots, M_{n}\right)\right]=f\left(\left[M_{1}\right], \ldots,\left[M_{n}\right]\right)$

Herbrand's base $B_{\mathcal{H}}=\left\{p\left(M_{1}, \ldots, M_{n}\right) \mid p \in S_{P}, M_{i} \in T\left(S_{F}\right)\right\}$

A Herbrand's interpretation is identified to a subset of $B_{\mathcal{H}}$ (the subset defines the atomic propositions which are true)

Herbrand's Models

Proposition 2

Let S be a set of clauses, S is satisfiable if and only if S has a Herbrand's model

Herbrand's Models

Proposition 2

Let S be a set of clauses, S is satisfiable if and only if S has a Herbrand's model

Proof.

Let I be a model of S, and I^{\prime} be the Herbrand's interpretation defined by

$$
I^{\prime}=\left\{p\left(M_{1}, \ldots, M_{n}\right) \in B_{\mathcal{H}}|I|=p\left(M_{1}, \ldots, M_{n}\right)\right\} .
$$

Since I is a model of S, for every clause $C \in S$ and every valuation ρ, there exists a positive literal A (resp. negative literal $\neg A$) in C such that $I=A \rho$ (resp. $I \not \vDash A \rho$). For every Herbrand's valuation ρ^{\prime}, there exists an I-valuation ρ such that $I \mid=A \rho$ iff $I^{\prime} \mid=A \rho^{\prime}$ Hence, for every clause, there exists a literal $A\left(\right.$ resp. $\neg A$) such that $I^{\prime} \vDash A \rho^{\prime}$ (resp. $\left.I^{\prime} \not \vDash A \rho^{\prime}\right) . I^{\prime}$ is thus a Herbrand's model of S

Skolemization

- Put ϕ in prenex form (all quantifiers in the head)
- Replace an existential variable x by a term $f\left(x_{1}, \ldots, x_{k}\right)$ where f is a new function symbol and the x_{i}^{\prime} s are the universal variables before x
E.g. $\phi=\forall x \exists y \forall z p(x, y, z) \quad \phi^{s}=\forall x \forall z p(x, f(x), z)$

Proposition 3

Any formula ϕ is satisfiable iff its Skolem's normal form ϕ^{s} is satisfiable

Skolemization

- Put ϕ in prenex form (all quantifiers in the head)
- Replace an existential variable x by a term $f\left(x_{1}, \ldots, x_{k}\right)$ where f is a new function symbol and the x_{i}^{\prime} s are the universal variables before x
E.g. $\phi=\forall x \exists y \forall z p(x, y, z) \quad \phi^{s}=\forall x \forall z p(x, f(x), z)$

Proposition 3

Any formula ϕ is satisfiable iff its Skolem's normal form ϕ^{s} is satisfiable

Proof.

If $I=\phi$ then one can choose an interpretation of the Skolem's function symbols in ϕ^{s} according to the I-valuation of the existential variables of ϕ such that $I=\phi^{s}$.
Conversely, if $I=\phi^{s}$, the interpretation of the Skolem's functions in ϕ^{s} gives a valuation of the existential variables in ϕ s.t. $I=\phi$

Logical Theories

A theory is a formal system formed with

- logical axioms and inference rules

$\frac{A \Rightarrow B \quad x \notin V(B)}{\exists x A \Rightarrow B}$ (Existential introduction)
- a set \mathcal{T} of non-logical axioms

Deduction relation: $\mathcal{T} \vdash \phi$ if the closed formula ϕ can be derived in \mathcal{T}
\mathcal{T} is contradictory if $\mathcal{T} \vdash$ false, otherwise \mathcal{T} is consistent

Validity

Theorem 4 (Deduction theorem)
 $\mathcal{T} \vdash \phi \Rightarrow \psi$ iff $\mathcal{T} \cup\{\phi\} \vdash \psi$

The implication is immediate with the cut rule.
Conversely the proof is by induction on the derivation of the formula ψ
Theorem 5 (Validity)
If $\mathcal{T} \vdash \phi$ then $\mathcal{T} \vDash \phi$
By induction on the length of the deduction of ϕ

Corollary 6

If \mathcal{T} has a model then \mathcal{T} is consistent

Validity

Theorem 4 (Deduction theorem)
 $\mathcal{T} \vdash \phi \Rightarrow \psi$ iff $\mathcal{T} \cup\{\phi\} \vdash \psi$

The implication is immediate with the cut rule.
Conversely the proof is by induction on the derivation of the formula ψ
Theorem 5 (Validity)
If $\mathcal{T} \vdash \phi$ then $\mathcal{T} \vDash \phi$
By induction on the length of the deduction of ϕ

Corollary 6

If \mathcal{T} has a model then \mathcal{T} is consistent
We show the contrapositive:

Validity

Theorem 4 (Deduction theorem)
 $\mathcal{T} \vdash \phi \Rightarrow \psi$ iff $\mathcal{T} \cup\{\phi\} \vdash \psi$

The implication is immediate with the cut rule.
Conversely the proof is by induction on the derivation of the formula ψ
Theorem 5 (Validity)
If $\mathcal{T} \vdash \phi$ then $\mathcal{T} \vDash \phi$
By induction on the length of the deduction of ϕ

Corollary 6

If \mathcal{T} has a model then \mathcal{T} is consistent
We show the contrapositive: if \mathcal{T} is contradictory, then $\mathcal{T} \vdash$ false, hence $\mathcal{T} \equiv$ false, hence \mathcal{T} has no model

Gödel's Completeness Theorem

Theorem 7

A theory is consistent iff it has a model
The idea is to construct a Herbrand's model of the theory supposed to be consistent, by interpreting by true the closed atoms which are theorems of \mathcal{T}, and by false the closed atoms whose negation is a theorem of \mathcal{T} For this it is necessary to extend the alphabet to denote domain elements by Herbrand terms

Corollary 8
 $\mathcal{T} \vDash \phi$ iff $\mathcal{T} \vdash \phi$

If $\mathcal{T} \vDash \phi$ then $\mathcal{T} \cup\{\neg \phi\}$ has no model, hence $\mathcal{T} \cup\{\neg \phi\} \vdash$ false, and by the deduction theorem $\mathcal{T} \vdash \neg \neg \phi$, now by the cut rule with the axiom of excluded middle (plus weakening and contraction) we get $\mathcal{T} \vdash \phi$

Axiomatic and Complete Theories

A theory \mathcal{T} is axiomatic if the set of non logical axioms is recursive (i.e., membership can be decided by an algorithm)

Proposition 9

In an axiomatic theory T, valid formulas, $\mathcal{T} \vDash \phi$, are recursively enumerable
(feasibility of the Logic Programming paradigm...)
\mathcal{T} is complete if for every closed ϕ, either $\mathcal{T} \vdash \phi$ or $\mathcal{T} \vdash \neg \phi$
In a complete axiomatic theory, we can decide whether an arbitrary formula is satisfiable or not (Constraint Satisfaction paradigm...)

Compactness theorem

Theorem 10
$\mathcal{T} \equiv \phi$ iff $\mathcal{T}^{\prime}=\phi$ for some finite part \mathcal{T}^{\prime} of \mathcal{T}

Corollary 11
 \mathcal{T} is consistent iff every finite part of \mathcal{T} is consistent.

\mathcal{T} is inconsistent iff $\mathcal{T} \vdash$ false,
iff for some finite part \mathcal{T}^{\prime} of $\mathcal{T}, \mathcal{T}^{\prime} \vdash$ false, iff some finite part of \mathcal{T} is inconsistent

Compactness theorem

```
Theorem 10
\mathcal{T}}=\phi\mathrm{ iff }\mp@subsup{\mathcal{T}}{}{\prime}=\phi\mathrm{ for some finite part }\mp@subsup{\mathcal{T}}{}{\prime}\mathrm{ of }\mathcal{T
```

By Gödel's completeness theorem, $\mathcal{T} \vDash \phi$ iff $\mathcal{T} \vdash \phi$. As the proofs are finite, they use only a finite part of non logical axioms \mathcal{T}. Therefore $\mathcal{T} \vDash \phi$ iff $\mathcal{T}^{\prime} \mid=\phi$ for some finite part \mathcal{T}^{\prime} of \mathcal{T}

Corollary 11
 \mathcal{T} is consistent iff every finite part of \mathcal{T} is consistent.

\mathcal{T} is inconsistent iff $\mathcal{T} \vdash$ false,
iff for some finite part \mathcal{T}^{\prime} of $\mathcal{T}, \mathcal{T}^{\prime} \vdash$ false,
iff some finite part of \mathcal{T} is inconsistent

Coloring infinite maps with four colors

Let \mathcal{T} express the colorability with four colors of an infinite planar graph G :

- $\forall x \bigvee_{i=1}^{4} c_{i}(x)$,
- $\forall x \bigwedge_{1 \leq i<j \leq 4} \neg\left(c_{i}(x) \wedge c_{j}(x)\right)$,
- $\bigwedge_{i=1}^{4} \neg\left(c_{i}(a) \wedge c_{i}(b)\right)$ for every adjacent vertices a, b in G.

Let \mathcal{T}^{\prime} be any finite part of \mathcal{T}, and G^{\prime} be the (finite) subgraph of G containing the vertices which appear in \mathcal{T}^{\prime}. As G^{\prime} is finite and planar it can be colored with 4 colors [Appel and Haken 76], thus \mathcal{T}^{\prime} has a model

Now as every finite part \mathcal{T}^{\prime} of \mathcal{T} is satisfiable, we deduce from the compactness theorem that \mathcal{T} is satisfiable. Therefore every infinite planar graph can be colored with four colors

Complete theory: Presburger's arithmetic

Complete axiomatic theory of $(\mathbb{N}, 0, s,+,=)$,

$$
\begin{aligned}
E_{1} & : \forall x x=x \\
E_{2} & : \forall x \forall y x=y \Rightarrow s(x)=s(y) \\
E_{3} & : \forall x \forall y \forall z \forall v x=y \wedge z=v \Rightarrow(x=z \Rightarrow y=v) \\
E_{4}, \Pi_{1}: & \forall x \forall y s(x)=s(y) \Rightarrow x=y \\
E_{5}, \Pi_{2}: & \forall x 0 \neq s(x) \\
\Pi_{3}: & \forall x x+0=x \\
\Pi_{4}: & \forall x x+\boldsymbol{s}(y)=s(x+y) \\
\Pi_{5}: & \phi[x \leftarrow 0] \wedge(\forall x \phi \Rightarrow \phi[x \leftarrow s(x)]) \Rightarrow \forall x \phi \text { for every } \\
& \text { formula } \phi
\end{aligned}
$$

Note that $E_{6}: \forall x x \neq s(x)$ and $E_{7}: \forall x x=0 \vee \exists y x=s(y)$ are provable by induction

Gödel's Incompleteness Theorem

Peano's arithmetic contains two more axioms for \times :

$$
\begin{array}{ll}
\Pi_{6}: & \forall x x \times 0=0 \\
\Pi_{7}: & \forall x \forall y x \times s(y)=x \times y+x
\end{array}
$$

Theorem 12

Any consistent axiomatic extension of Peano's arithmetic is incomplete

The idea of the proof, following the liar paradox of Epimenides (600 BC) which says: "I lie", is to construct in the language of Peano's arithmetic Π a formula ϕ which is true in the structure of natural numbers \mathbb{N} if and only if ϕ is not provable in Π. As \mathbb{N} is a model of Π, ϕ is necessarily true in \mathbb{N} and not provable in Π, hence Π is incomplete.

Corollary 13

The structure ($\mathbb{N}, 0,1,+, \times$) is not axiomatizable

Part II

Constraint Logic Programs

Part II: Constraint Logic Programs

6 Constraint Languages
(7) $\operatorname{CLP}(\mathcal{X})$
(8) $\operatorname{CLP}(\mathcal{H})$

Constraint Languages

Alphabet: set V of variables, set S_{F} of constant and function symbols, set S_{C} of predicate symbols containing true and $=$

We assume a set of basic constraints, supposed to be closed by variable renaming, and to contain all atomic constraints

The language of constraints is the closure by conjonction and existential quantification of the set of basic constraints Constraints will be denoted by c, d, \ldots

Fixed Interpretation \mathcal{X}

Structure \mathcal{X} for interpreting the constraint language

We assume that the constraint satisfiability problem, $\mathcal{X} \vDash^{?} \exists(c)$, is decidable

This is equivalent to assume that \mathcal{X} is presented by an axiomatic theory \mathcal{T} satisfying:
(1) (soundness) $\mathcal{X} \vDash \mathcal{T}$
(2) (completeness for constraint satisfaction) for every constraint c, either $\mathcal{T} \vdash \exists(c)$, or $\mathcal{T} \vdash \neg \exists(c)$

Clark's Equality Theory for the Herbrand domain

$$
\begin{aligned}
& E_{1} \forall x x=x \\
& E_{2} \forall\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n}=y_{n} \Rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)\right) \\
& E_{3} \forall\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n}=y_{n} \Rightarrow p\left(x_{1}, \ldots, x_{n}\right) \Rightarrow p\left(y_{1}, \ldots, y_{n}\right)\right) \\
& E_{4} \forall\left(f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right) \Rightarrow x_{1}=y_{1} \wedge \cdots \wedge x_{n}=y_{n}\right)
\end{aligned}
$$

$E_{5} \forall\left(f\left(x_{1}, \ldots, x_{m}\right) \neq g\left(y_{1}, \ldots, y_{n}\right)\right)$ for different function symbols $f, g \in S_{F}$ with arity m and n respectively
$E_{6} \forall x M[x] \neq x$ for every term M strictly containing x

Proposition 14 $\mathcal{H}=$ CET

Proposition 15

Furthermore if the set of function symbols is infinite, CET is a complete theory

CLP (\mathcal{X}) Programs

Alphabet V, S_{F}, S_{C} of constraint symbols Structure \mathcal{X} presented by a satisfaction complete theory \mathcal{T}

Alphabet S_{P} of program predicate symbols

A CLP (\mathcal{X}) program is a finite set of program clauses
Program clause $\forall\left(A \vee \neg c_{1} \vee \ldots \neg c_{m} \vee \neg A_{1} \vee \cdots \vee \neg A_{n}\right)$

$$
A \leftarrow c_{1}, \ldots, c_{m} \mid A_{1}, \ldots, A_{n}
$$

Goal clause $\forall\left(\neg c_{1} \vee \ldots \neg c_{m} \vee \neg A_{1} \vee \cdots \vee \neg A_{n}\right)$

$$
c_{1}, \ldots, c_{m} \mid A_{1}, \ldots, A_{n}
$$

Operational semantics: CSLD Resolution

$$
\frac{\left(p\left(t_{1}, t_{2}\right) \leftarrow c^{\prime} \mid A_{1}, \ldots, A_{n}\right) \theta \in P \quad \mathcal{X} \mid=\exists\left(c \wedge s_{1}=t_{1} \wedge s_{2}=t_{2} \wedge c^{\prime}\right)}{\left(c \mid \alpha, p\left(s_{1}, s_{2}\right), \alpha^{\prime}\right) \longrightarrow\left(c, s_{1}=t_{1}, s_{2}=t_{2}, c^{\prime} \mid \alpha, A_{1}, \ldots, A_{n}, \alpha^{\prime}\right)}
$$

where θ is a renaming substitution of the program clause with new variables
$p\left(t_{1}, \ldots, t_{n}\right)$ works in the same way, but can be encoded with binary predicates

A successful derivation is a derivation of the form

$$
G \longrightarrow G_{1} \longrightarrow G_{2} \longrightarrow \ldots \longrightarrow c \mid \square
$$

c is called a computed answer constraint for G

Prolog as CLP(H)

The programming language Prolog is an implementation of $\operatorname{CLP}(\mathcal{H})$ in which:

- the constraints are only equalities between terms,
- the selection strategy consists in solving the atoms from left to right according to their order in the goal,
- the search strategy consists in searching the derivation tree depth-first by backtracking

Only constants: Deductive Databases

```
gdfather(X, Y) :- father(X, Z), parent(Z, Y).
gdmother(X, Y) :- mother(X, Z), parent(Z, Y).
parent(X, Y) :- father(X, Y).
parent(X, Y) :- mother(X, Y).
father(alphonse, chantal).
mother(emilie, chantal).
mother(chantal, julien).
father(julien, simon).
| ?- gdfather(X, Y).
X = alphonse, Y = julien ? ;
no
| ?- gdmother(X, Y).
X = emilie, Y = julien ? ;
X = chantal, Y = simon ? ;
no
```


Lists

```
member(X, cons(X, L)).
member(X, cons(_Y, L)) :-
    member(X, L).
| ?- member(X, cons(a, cons(b, cons(c, nil)))).
X = a ? ;
X = b ? ;
X = c ? ;
no
| ?- member(X, Y).
Y = cons(X,_A) ? ;
Y = cons(_B,cons(X,_A)) ? ;
Y = cons(_C,cons(_B,cons(X,_A))) ?
yes
```


Appending lists

```
append([], L, L).
append([X | L], L2, [X | L3]) :-
    append(L, L2, L3).
    | ?- append([a, b], [c, d], L).
L = [a,b,c,d] ? ;
no
| ?- append(X, Y, L).
X = [],
Y = L ? ;
L = [_A|Y],
X = [_A] ? ;
L = [_A,_B|Y],
X = [_A,_B] ?
yes
```


Reversing a list

```
reverse([], []).
reverse([X | L], R) :-
    reverse(L, K), append(K, [X], R).
| ?- reverse([a, b, c, d], M).
M = [d,c,b,a] ? ;
no
| ?- reverse(M, [a, b, c, d]).
M = [d,c,b,a] ?
```


Reversing a list

```
reverse([], []).
reverse([X | L], R) :-
    reverse(L, K), append(K, [X], R).
| ?- reverse([a, b, c, d], M).
M = [d,c,b,a] ? ;
no
| ?- reverse(M, [a, b, c, d]).
M = [d,c,b,a] ?
rev(L, R) :- rev_lin(L, [], R).
rev_lin([], R, R).
rev_lin([X | L], K, R) :- rev_lin(L, [X | K], R).
| ?- rev(X,Y).
X = [], Y = [] ? ;
X = [_A], Y = [_A] ? ;
```


Quicksort

```
quicksort([], []).
quicksort([X | L], R):-
    partition(L, Linf, X, Lsup),
    quicksort(Linf, L1),
    quicksort(Lsup, L2),
    append(L1, [X | L2], R).
partition([], [], _, []).
partition([Y | L], [Y | Linf], X, Lsup):-
    Y =< X,
    partition(L, Linf, X, Lsup).
partition([Y | L], Linf, X, [Y | Lsup]):-
    Y > X,
    partition(L, Linf, X, Lsup).
```


Parsing

```
sentence(L) :-
    nounphrase(L1), verbphrase(L2), append(L1, L2, L).
nounphrase(L) :-
    determiner(L1), noun(L2), append(L1, L2, L).
nounphrase(L) :- noun(L).
verbphrase(L) :- verb(L) .
verbphrase(L) :-
    verb(L1), nounphrase(L2), append(L1, L2, L).
verb([eats]).
determiner([the]).
noun([monkey]).
noun([banana]).
```


Parsing/Synthesis (continued)

```
| ?- sentence([the, monkey, eats]).
yes
| ?- sentence([the, eats]).
no
| ?- sentence(L).
L = [the, monkey, eats] ? ;
L = [the, monkey, eats, the, monkey] ? ;
L = [the, monkey, eats, the, banana] ? ;
L = [the, monkey, eats, monkey] ?
yes
```


Prolog Meta-interpreter

```
solve((A, B)) :- solve(A), solve(B).
solve(A) :- clause(A).
solve(A) :- clause((A :- B)), solve(B).
```

clause (member (X, [X | _])).
clause ((member (X, [_ | L]) :- member(X, L))).
| ?- solve (member (X, L)).
$\mathrm{L}=\left[\mathrm{X} \mid _\mathrm{A}\right]$? ;
$\mathrm{L}=\left[\ldots \mathrm{A}, \mathrm{X} \mid _\mathrm{B}\right]$? ;
$\mathrm{L}=\left[\ldots \mathrm{A}, \mathrm{B}_{\mathrm{B}}, \mathrm{XI}\right.$ _C] ? ;
$\mathrm{L}=\left[_\mathrm{A}, \mathrm{B}^{\mathrm{B}}, \mathrm{C}, \mathrm{XI}\right.$ _D] ?
yes

