
Constraint Logic Programming

Sylvain Soliman
Sylvain.Soliman@inria.fr

Project-Team LIFEWARE

MPRI 2.35.1 Course – September–November 2017

1

mailto:Sylvain.Soliman@inria.fr

Part I: CLP - Introduction and Logical
Background

1 The Constraint Programming paradigm

2 Examples and Applications

3 First Order Logic

4 Models

5 Logical Theories

2

Compactness theorem

Theorem 1

T |= ϕ iff T ′ |= ϕ for some finite part T ′ of T

By Gödel’s completeness theorem, T |= ϕ iff T ⊢ ϕ.
As the proofs are finite, they use only a finite part of non logical axioms T .
Therefore T |= ϕ iff T ′ |= ϕ for some finite part T ′ of T

Corollary 2
T is consistent iff every finite part of T is consistent.

T is inconsistent iff T ⊢ false,
iff for some finite part T ′ of T , T ′ ⊢ false,
iff some finite part of T is inconsistent

3

Compactness theorem

Theorem 1
T |= ϕ iff T ′ |= ϕ for some finite part T ′ of T

By Gödel’s completeness theorem, T |= ϕ iff T ⊢ ϕ.
As the proofs are finite, they use only a finite part of non logical axioms T .
Therefore T |= ϕ iff T ′ |= ϕ for some finite part T ′ of T

Corollary 2
T is consistent iff every finite part of T is consistent.

T is inconsistent iff T ⊢ false,
iff for some finite part T ′ of T , T ′ ⊢ false,
iff some finite part of T is inconsistent

3

Part II

Constraint Logic Programs

4

Part II: Constraint Logic Programs

6 Constraint Languages

7 CLP(X)

8 CLP(H)

9 CLP(R,FD,B)

5

Linear Programming

Variables with a continuous domain R

A.x ≤ B

Satisfiability and optimization has polynomial complexity
(Simplex algorithm, interior point method)

Mixed Integer Linear Programming
Variables with a continuous or a discrete domain Z

x ∈ Z A.x ≤ B

NP-hard (Branch and bound, Gomory’s cuts,…)

6

CLP(R) mortgage program

int(P,T,I,B,M) :- T > 0, T <= 1, B + M = P * (1 + I)
int(P,T,I,B,M) :-

T > 1, int(P * (1 + I) - M, T - 1, I, B, M).

| ?- int(120000, 120, 0.01, 0, M).
M = 1721.651381 ?
yes
| ?- int(P, 120, 0.01, 0, 1721.651381).
P = 120000 ?
yes
| ?- int(P, 120, 0.01, 0, M).
P = 69.700522*M ?
yes
| ?- int(P, 120, 0.01, B, M).
P = 0.302995*B + 69.700522*M ?
yes
| ?- int(999, 3, Int, 0, 400).
400 = (-400 + (599 + 999*Int) * (1 + Int)) * (1 + Int) ?

7

CLP(R) heat equation
| ?- X=[[0,0,0,0,0,0,0,0,0,0, 0],

[100,_,_,_,_,_,_,_,_,_,100],
[100,_,_,_,_,_,_,_,_,_,100],
[100,_,_,_,_,_,_,_,_,_,100],
[100,_,_,_,_,_,_,_,_,_,100],
[100,_,_,_,_,_,_,_,_,_,100],
[100,_,_,_,_,_,_,_,_,_,100],
[100,_,_,_,_,_,_,_,_,_,100],
[100,_,_,_,_,_,_,_,_,_,100],
[100,_,_,_,_,_,_,_,_,_,100],
[100,100,100,100,100,100,100,100,100,100,100]],

laplace(X).

X=[[0,0,0,0,0,0,0,0,0,0,0],
[100,51.11,32.52,24.56,21.11,20.12,21.11,24.56,32.52,51.11,100],
[100,71.91,54.41,44.63,39.74,38.26,39.74,44.63,54.41,71.91,100],
[100,82.12,68.59,59.80,54.97,53.44,54.97,59.80,68.59,82.12,100],
[100,87.97,78.03,71.00,66.90,65.56,66.90,71.00,78.03,87.97,100],
[100,91.71,84.58,79.28,76.07,75.00,76.07,79.28,84.58,91.71,100],
[100,94.30,89.29,85.47,83.10,82.30,83.10,85.47,89.29,94.30,100],
[100,96.20,92.82,90.20,88.56,88.00,88.56,90.20,92.82,96.20,100],
[100,97.67,95.59,93.96,92.93,92.58,92.93,93.96,95.59,97.67,100],
[100,98.89,97.90,97.12,96.63,96.46,96.63,97.12,97.90,98.89,100],
[100,100,100,100,100,100,100,100,100,100,100]] ?

8

CLP(R) heat equation

laplace([H1, H2, H3 | T]) :-
laplace_vec(H1, H2, H3), laplace([H2, H3 | T]).

laplace([_, _]).

laplace_vec([TL, T, TR | T1], [ML, M, MR | T2], [BL, B, BR | T3]) :-
B + T + ML + MR - 4 * M = 0,
laplace_vec([T, TR | T1], [M, MR | T2], [B, BR | T3]).

laplace_vec([_, _],[_, _],[_, _]).

| ?- laplace([[B11, B12, B13, B14],
[B21, M22, M23, B24],
[B31, M32, M33, B34],
[B41, B42, B43, B44]]).

B12 = -B21 - 4*B31 + 16*M32 - 8*M33 + B34 - 4*B42 + B43,
B13 = -B24 + B31 - 8*M32 + 16*M33 - 4*B34 + B42 - 4*B43,
M22 = -B31 + 4*M32 - M33 - B42,
M23 = -M32 + 4*M33 - B34 - B43 ?

9

CLP(FD)= over Finite Domains

Variables {x1, . . . ,xv}
over a finite domain D = {e1, . . . ,ed}

Constraints to satisfy:
unary constraints of domains x ∈ {ei,ej,ek}
binary constraints: c(x,y)
defined intentionally, x > y+ 2,
or extentionally, {c(a,b), c(d, c), c(a,d)}
n-ary global constraints: c(x1, . . . ,xn)

10

CLP(FD) send+more=money
:- use_module(library(clpfd)).

send(L) :-
sendc(L),
label(L).

sendc([S, E, N, D, M, O, R, Y]) :-
[S, E, N, D, M, O, R, Y] ins 0..9,
all_different([S, E, N, D, M, O, R, Y]),
S #\= 0, M #\= 0,

1000*S + 100*E + 10*N + D
+ 1000*M + 100*O + 10*R + E

#= 10000*M+1000*O + 100*N + 10*E + Y.

| ?- send(L).
L = [9, 5, 6, 7, 1, 0, 8, 2] ;
false.

11

CLP(FD) send+more=money

| ?- sendc([S,E,N,D,M,O,R,Y]).
S = 9,
D = 1,
O = 0,
E = 4..7,
all_different([9, E, N, D, 1, 0, R, Y]),
91*E+D+10*R#=90*N+Y,
N = 5..8,
D = 2..8,
R = 2..8,
Y = 2..8.

12

Part III

CLP - Operational and Fixpoint
Semantics

13

Part III: CLP - Operational and Fixpoint
Semantics

10 Operational Semantics

11 Fixpoint Semantics

12 Program Analysis

14

Operational semantics: CSLD Resolution

A CLP(X) program P is a set of clauses representing inductive
definitions of constraints. Taking the solver as a black-box a
Constraint Selective Linear Definite clause resolution step is:

(p(t1, t2)← c′|A1, . . . ,An)θ ∈ P X |= ∃(c ∧ s1 = t1 ∧ s2 = t2 ∧ c′)
(c|α,p(s1, s2), α′) −→ (c, s1 = t1, s2 = t2, c′ | α,A1, . . . ,An, α′)

where θ is a renaming substitution of the program clause
with new variables

A successful derivation is a derivation of the form

G −→ G1 −→ G2 −→ . . . −→ c|□

c is called a

computed answer constraint

for G

15

Operational semantics: CSLD Resolution

A CLP(X) program P is a set of clauses representing inductive
definitions of constraints. Taking the solver as a black-box a
Constraint Selective Linear Definite clause resolution step is:

(p(t1, t2)← c′|A1, . . . ,An)θ ∈ P X |= ∃(c ∧ s1 = t1 ∧ s2 = t2 ∧ c′)

(c|α,p(s1, s2), α′) −→

(c, s1 = t1, s2 = t2, c′ | α,A1, . . . ,An, α′)

where θ is a renaming substitution of the program clause
with new variables

A successful derivation is a derivation of the form

G −→ G1 −→ G2 −→ . . . −→ c|□

c is called a

computed answer constraint

for G

15

Operational semantics: CSLD Resolution

A CLP(X) program P is a set of clauses representing inductive
definitions of constraints. Taking the solver as a black-box a
Constraint Selective Linear Definite clause resolution step is:

(p(t1, t2)← c′|A1, . . . ,An)θ ∈ P

X |= ∃(c ∧ s1 = t1 ∧ s2 = t2 ∧ c′)

(c|α,p(s1, s2), α′) −→

(c, s1 = t1, s2 = t2, c′ | α,A1, . . . ,An, α′)

where θ is a renaming substitution of the program clause
with new variables

A successful derivation is a derivation of the form

G −→ G1 −→ G2 −→ . . . −→ c|□

c is called a

computed answer constraint

for G

15

Operational semantics: CSLD Resolution

A CLP(X) program P is a set of clauses representing inductive
definitions of constraints. Taking the solver as a black-box a
Constraint Selective Linear Definite clause resolution step is:

(p(t1, t2)← c′|A1, . . . ,An)θ ∈ P X |= ∃(c ∧ s1 = t1 ∧ s2 = t2 ∧ c′)
(c|α,p(s1, s2), α′) −→ (c, s1 = t1, s2 = t2, c′ | α,A1, . . . ,An, α′)

where θ is a renaming substitution of the program clause
with new variables

A successful derivation is a derivation of the form

G −→ G1 −→ G2 −→ . . . −→ c|□

c is called a

computed answer constraint

for G

15

Operational semantics: CSLD Resolution

A CLP(X) program P is a set of clauses representing inductive
definitions of constraints. Taking the solver as a black-box a
Constraint Selective Linear Definite clause resolution step is:

(p(t1, t2)← c′|A1, . . . ,An)θ ∈ P X |= ∃(c ∧ s1 = t1 ∧ s2 = t2 ∧ c′)
(c|α,p(s1, s2), α′) −→ (c, s1 = t1, s2 = t2, c′ | α,A1, . . . ,An, α′)

where θ is a renaming substitution of the program clause
with new variables

A successful derivation is a derivation of the form

G −→ G1 −→ G2 −→ . . . −→ c|□

c is called a computed answer constraint for G

15

∧-Compositionality of CSLD-derivations

Lemma 3 (∧-compositionality)

c is a computed answer for the goal (d|A1, . . . ,An)
iff
there exist computed answers c1, . . . , cn for the goals
true|A1, . . . , true|An, such that c = d ∧

∧n
i=1 ci is satisfiable.

Corollary 4

Independence of the selection strategy

16

∧-Compositionality of CSLD-derivations

Proof.
(⇐) d|A1, . . . ,An →∗

d ∧ c1|A2, . . . ,An · · · →∗ d ∧ c1 ∧ · · · ∧ cn|□.
(⇒) By induction on the length l of the derivation
If l = 1 we have true|A1 → c1|□
Otherwise, suppose A1 is the selected atom, there exists a
rule (A1 ← d1|B1, . . . ,Bk) ∈ P such that
d|A1, . . . ,An → d ∧ d1|B1, . . . ,Bk,A2, . . . ,An →∗ c|□
By induction, there exist computed answers
e1, . . . ,ek, c2, . . . , cn for the goals B1, . . . ,Bk,A2, . . . ,An such that
c = d ∧ d1 ∧

∧k
i=1 ei ∧

∧n
j=2 cj. Now let c1 = d1 ∧

∧k
i=1 ei, c1 is a

computed answer for true|A1

17

∧-Compositionality of CSLD-derivations

Proof.
(⇐) d|A1, . . . ,An →∗ d ∧ c1|A2, . . . ,An · · · →∗ d ∧ c1 ∧ · · · ∧ cn|□.

(⇒) By induction on the length l of the derivation
If l = 1 we have true|A1 → c1|□
Otherwise, suppose A1 is the selected atom, there exists a
rule (A1 ← d1|B1, . . . ,Bk) ∈ P such that
d|A1, . . . ,An → d ∧ d1|B1, . . . ,Bk,A2, . . . ,An →∗ c|□
By induction, there exist computed answers
e1, . . . ,ek, c2, . . . , cn for the goals B1, . . . ,Bk,A2, . . . ,An such that
c = d ∧ d1 ∧

∧k
i=1 ei ∧

∧n
j=2 cj. Now let c1 = d1 ∧

∧k
i=1 ei, c1 is a

computed answer for true|A1

17

∧-Compositionality of CSLD-derivations

Proof.
(⇐) d|A1, . . . ,An →∗ d ∧ c1|A2, . . . ,An · · · →∗ d ∧ c1 ∧ · · · ∧ cn|□.
(⇒) By induction on the length l of the derivation

If l = 1 we have true|A1 → c1|□
Otherwise, suppose A1 is the selected atom, there exists a
rule (A1 ← d1|B1, . . . ,Bk) ∈ P such that
d|A1, . . . ,An → d ∧ d1|B1, . . . ,Bk,A2, . . . ,An →∗ c|□
By induction, there exist computed answers
e1, . . . ,ek, c2, . . . , cn for the goals B1, . . . ,Bk,A2, . . . ,An such that
c = d ∧ d1 ∧

∧k
i=1 ei ∧

∧n
j=2 cj. Now let c1 = d1 ∧

∧k
i=1 ei, c1 is a

computed answer for true|A1

17

∧-Compositionality of CSLD-derivations

Proof.
(⇐) d|A1, . . . ,An →∗ d ∧ c1|A2, . . . ,An · · · →∗ d ∧ c1 ∧ · · · ∧ cn|□.
(⇒) By induction on the length l of the derivation
If l = 1 we have true|A1 → c1|□

Otherwise, suppose A1 is the selected atom, there exists a
rule (A1 ← d1|B1, . . . ,Bk) ∈ P such that
d|A1, . . . ,An → d ∧ d1|B1, . . . ,Bk,A2, . . . ,An →∗ c|□
By induction, there exist computed answers
e1, . . . ,ek, c2, . . . , cn for the goals B1, . . . ,Bk,A2, . . . ,An such that
c = d ∧ d1 ∧

∧k
i=1 ei ∧

∧n
j=2 cj. Now let c1 = d1 ∧

∧k
i=1 ei, c1 is a

computed answer for true|A1

17

∧-Compositionality of CSLD-derivations

Proof.
(⇐) d|A1, . . . ,An →∗ d ∧ c1|A2, . . . ,An · · · →∗ d ∧ c1 ∧ · · · ∧ cn|□.
(⇒) By induction on the length l of the derivation
If l = 1 we have true|A1 → c1|□
Otherwise, suppose A1 is the selected atom, there exists a
rule (A1 ← d1|B1, . . . ,Bk) ∈ P such that
d|A1, . . . ,An → d ∧ d1|B1, . . . ,Bk,A2, . . . ,An →∗ c|□
By induction, there exist computed answers
e1, . . . ,ek, c2, . . . , cn for the goals B1, . . . ,Bk,A2, . . . ,An such that
c = d ∧ d1 ∧

∧k
i=1 ei ∧

∧n
j=2 cj. Now let c1 = d1 ∧

∧k
i=1 ei, c1 is a

computed answer for true|A1

17

Operational Semantics of CLP(X) Programs

Observation of the sets of projected computed answer
constraints

O(P) = {(∃X c)|A : true|A −→∗ c|□, X |= ∃(c), X = V(c) \ V(A)}

Program equivalence: P ≡ P′ iff O(P) = O(P′) iff for every goal
G, P and P′ have same sets of computed answer constraints

Finer observables:
multisets of computed answer constraints
sets of successful CSLD derivations (equivalence of traces)

More abstract observable:
sets of goals having a success
(theorem proving versus programming point of view)

18

Operational Semantics of CLP(X) Programs

Observation of computed answer constraints

Oca(P) = {c|A : true|A −→∗ c|□, X |= ∃(c)}

P ≡ca P′ iff for every goal G, P and P′ have the same sets of
computed answer constraints

Observation of ground successes

Ogs(P) = {Aρ ∈ BX : true|A −→∗ c|□, X |= cρ}

P ≡gs P′ iff P and P′ have the same ground success sets, iff for
every goal G, G has a CSLD refutation in P iff G has one in P′

19

Some definitions

Let (S,≤) be a partial order Let X ⊂ S be a subset of S

- An upper bound of X is an element a ∈ S such that
∀x ∈ X x ≤ a
- The maximum element of X, if it exists, is the unique upper
bound of X belonging to X
- The least upper bound (lub) of X, if it exists, is the minimum
of the upper bounds of X
- A sup-semi-lattice is a partial order such that every finite
part admits a lub
- A lattice is a sup-semi-lattice and an inf-semi-lattice
- A chain is an increasing sequence x1 ≤ x2 ≤ …
- A partial order is complete if every chain admits a lub
- A function f : S→ S is monotonic if x ≤ y⇒ f(x) ≤ f(y)
- f is continuous if f(lub(X)) = lub(f(X)) for every chain X

20

Fixpoint theorems
Theorem 5 (Knaster-Tarski)
Let (S,≤) be a complete partial order, and f : S→ S a
continuous operator over S
Then f admits a least fixed point lfp(f) = f ↑ ω

Proof.
First,

as f is continuous, f is monotonic, hence
⊥ ≤ f(⊥) ≤ f(f(⊥)) ≤ . . . forms an increasing chain.
Let

a

= lub({f n(⊥) | n ∈ N})

= f ↑ ω.

By continuity
f(a) = lub({f n+1(⊥) | n ∈ N}) = a, hence

a is a fixed point of f

Let e be any fixed point of f.

We show that for all integer n,
f n(⊥) ≤ e, by induction on n. Clearly ⊥ ≤ e. Furthermore if
f n(⊥) ≤ e then by monotonicity, f n+1(⊥) ≤ f(e) = e.
Thus f n(⊥) ≤ e for all n,

hence a ≤ e

21

Fixpoint theorems
Theorem 5 (Knaster-Tarski)
Let (S,≤) be a complete partial order, and f : S→ S a
continuous operator over S
Then f admits a least fixed point lfp(f) = f ↑ ω

Proof.
First, as f is continuous, f is monotonic, hence
⊥ ≤ f(⊥) ≤ f(f(⊥)) ≤ . . . forms an increasing chain.
Let a = lub({f n(⊥) | n ∈ N})= f ↑ ω. By continuity
f(a) = lub({f n+1(⊥) | n ∈ N}) = a, hence a is a fixed point of f

Let e be any fixed point of f.

We show that for all integer n,
f n(⊥) ≤ e, by induction on n. Clearly ⊥ ≤ e. Furthermore if
f n(⊥) ≤ e then by monotonicity, f n+1(⊥) ≤ f(e) = e.
Thus f n(⊥) ≤ e for all n,

hence a ≤ e

21

Fixpoint theorems
Theorem 5 (Knaster-Tarski)
Let (S,≤) be a complete partial order, and f : S→ S a
continuous operator over S
Then f admits a least fixed point lfp(f) = f ↑ ω

Proof.
First, as f is continuous, f is monotonic, hence
⊥ ≤ f(⊥) ≤ f(f(⊥)) ≤ . . . forms an increasing chain.
Let a = lub({f n(⊥) | n ∈ N})= f ↑ ω. By continuity
f(a) = lub({f n+1(⊥) | n ∈ N}) = a, hence a is a fixed point of f

Let e be any fixed point of f. We show that for all integer n,
f n(⊥) ≤ e, by induction on n.

Clearly ⊥ ≤ e. Furthermore if
f n(⊥) ≤ e then by monotonicity, f n+1(⊥) ≤ f(e) = e.
Thus f n(⊥) ≤ e for all n,

hence a ≤ e

21

Fixpoint theorems
Theorem 5 (Knaster-Tarski)
Let (S,≤) be a complete partial order, and f : S→ S a
continuous operator over S
Then f admits a least fixed point lfp(f) = f ↑ ω

Proof.
First, as f is continuous, f is monotonic, hence
⊥ ≤ f(⊥) ≤ f(f(⊥)) ≤ . . . forms an increasing chain.
Let a = lub({f n(⊥) | n ∈ N})= f ↑ ω. By continuity
f(a) = lub({f n+1(⊥) | n ∈ N}) = a, hence a is a fixed point of f

Let e be any fixed point of f. We show that for all integer n,
f n(⊥) ≤ e, by induction on n. Clearly ⊥ ≤ e. Furthermore if
f n(⊥) ≤ e then by monotonicity, f n+1(⊥) ≤ f(e) = e.
Thus f n(⊥) ≤ e for all n, hence a ≤ e

21

Least Post-Fixed Point

Theorem 6
Let (S,≤) be a complete sup-semi-lattice. Let f be a
continuous operator over S. Then f admits a least post-fixed
point (i.e., an element e satisfying f(e) ≤ e) which is equal to
lfp(f).

Proof.

Let g(x) = lub(x, f(x)).
An element e is a post fixed point of f, i.e., f(e) ≤ e, iff e is a
fixed point of g, g(e) = e.
Now g is continuous, hence lfp(g) is the least fixed point of g
and the least post-fixed point of f.
Furthermore, lfp(g) = lub{fn(⊥)} = lfp(f).

22

Least Post-Fixed Point

Theorem 6
Let (S,≤) be a complete sup-semi-lattice. Let f be a
continuous operator over S. Then f admits a least post-fixed
point (i.e., an element e satisfying f(e) ≤ e) which is equal to
lfp(f).

Proof.
Let g(x) = lub(x, f(x)).

An element e is a post fixed point of f, i.e., f(e) ≤ e, iff e is a
fixed point of g, g(e) = e.
Now g is continuous, hence lfp(g) is the least fixed point of g
and the least post-fixed point of f.
Furthermore, lfp(g) = lub{fn(⊥)} = lfp(f).

22

Least Post-Fixed Point

Theorem 6
Let (S,≤) be a complete sup-semi-lattice. Let f be a
continuous operator over S. Then f admits a least post-fixed
point (i.e., an element e satisfying f(e) ≤ e) which is equal to
lfp(f).

Proof.
Let g(x) = lub(x, f(x)).
An element e is a post fixed point of f, i.e., f(e) ≤ e, iff e is a
fixed point of g, g(e) = e.
Now g is continuous, hence lfp(g) is the least fixed point of g
and the least post-fixed point of f.
Furthermore, lfp(g) = lub{fn(⊥)} = lfp(f).

22

Fixpoint semantics of Ogs

Consider the complete lattice of X -interpretations (2BX ,⊂)
The bottom element is the empty X -interpretation (all atoms
false)
The top element is BX (all atoms true)

A chain X is an increasing sequence I1 ⊂ I2 ⊂ . . .
lub(X) =

∪
i≥1 Ii

Let us define the semantics Ogs(P) as the least solution of a
fixpoint equation over 2BX : I = T(I)

23

TXP immediate consequence operator

TX
P : 2BX → 2BX is defined by:
TX
P (I) = {Aρ ∈ BX | there exists a renamed clause in normal

form (A← c|A1, . . . ,An) ∈ P, and a valuation ρ s.t.
X |= cρ and {A1ρ, . . . ,Anρ} ⊂ I}

append(A,B,C):- A=[], B=C.
append(A,B,C):- A=[X|L], C=[X|R], append(L,B,R).

Example 7
TH
P (∅) =

{append([],B,B) | B ∈ H}
TH
P (TH

P (∅)) = TH
P (∅) ∪ {append([X],B, [X|B]) | X,B ∈ H}

TH
P (TH

P (TH
P (∅))) = TH

P (TH
P (∅)) ∪

{append([X,Y],B, [X,Y|B]) | X,Y,B ∈ H}

24

TXP immediate consequence operator

TX
P : 2BX → 2BX is defined by:
TX
P (I) = {Aρ ∈ BX | there exists a renamed clause in normal

form (A← c|A1, . . . ,An) ∈ P, and a valuation ρ s.t.
X |= cρ and {A1ρ, . . . ,Anρ} ⊂ I}

append(A,B,C):- A=[], B=C.
append(A,B,C):- A=[X|L], C=[X|R], append(L,B,R).

Example 7
TH
P (∅) = {append([],B,B) | B ∈ H}

TH
P (TH

P (∅)) =

TH
P (∅) ∪ {append([X],B, [X|B]) | X,B ∈ H}

TH
P (TH

P (TH
P (∅))) = TH

P (TH
P (∅)) ∪

{append([X,Y],B, [X,Y|B]) | X,Y,B ∈ H}

24

TXP immediate consequence operator

TX
P : 2BX → 2BX is defined by:
TX
P (I) = {Aρ ∈ BX | there exists a renamed clause in normal

form (A← c|A1, . . . ,An) ∈ P, and a valuation ρ s.t.
X |= cρ and {A1ρ, . . . ,Anρ} ⊂ I}

append(A,B,C):- A=[], B=C.
append(A,B,C):- A=[X|L], C=[X|R], append(L,B,R).

Example 7
TH
P (∅) = {append([],B,B) | B ∈ H}

TH
P (TH

P (∅)) = TH
P (∅) ∪ {append([X],B, [X|B]) | X,B ∈ H}

TH
P (TH

P (TH
P (∅))) =

TH
P (TH

P (∅)) ∪
{append([X,Y],B, [X,Y|B]) | X,Y,B ∈ H}

24

TXP immediate consequence operator

TX
P : 2BX → 2BX is defined by:
TX
P (I) = {Aρ ∈ BX | there exists a renamed clause in normal

form (A← c|A1, . . . ,An) ∈ P, and a valuation ρ s.t.
X |= cρ and {A1ρ, . . . ,Anρ} ⊂ I}

append(A,B,C):- A=[], B=C.
append(A,B,C):- A=[X|L], C=[X|R], append(L,B,R).

Example 7
TH
P (∅) = {append([],B,B) | B ∈ H}

TH
P (TH

P (∅)) = TH
P (∅) ∪ {append([X],B, [X|B]) | X,B ∈ H}

TH
P (TH

P (TH
P (∅))) = TH

P (TH
P (∅)) ∪

{append([X,Y],B, [X,Y|B]) | X,Y,B ∈ H}

24

Continuity of TXP operator

Proposition 8

TX
P is a continuous operator on the complete lattice of
X -interpretations

Proof.

Let X be a chain of X -interpretations. Aρ ∈ TX
P (lub(X)),

iff (A← c|A1, . . . ,An) ∈ P, X |= cρ and {A1ρ, . . . ,Anρ} ⊂ lub(X),
iff (A← c|A1, . . . ,An) ∈ P, X |= cρ and {A1ρ, . . . ,Anρ} ⊂ I,
for some I ∈ X (as X is a chain)

iff Aρ ∈ TX
P (I) for some I ∈ X, iff Aρ ∈ lub(TX

P (X)).

Corollary 9
TX
P admits a least (post) fixed point TX

P ↑ ω

25

Continuity of TXP operator

Proposition 8

TX
P is a continuous operator on the complete lattice of
X -interpretations

Proof.
Let X be a chain of X -interpretations. Aρ ∈ TX

P (lub(X)),
iff (A← c|A1, . . . ,An) ∈ P, X |= cρ and {A1ρ, . . . ,Anρ} ⊂ lub(X),

iff (A← c|A1, . . . ,An) ∈ P, X |= cρ and {A1ρ, . . . ,Anρ} ⊂ I,
for some I ∈ X (as X is a chain)

iff Aρ ∈ TX
P (I) for some I ∈ X,

iff Aρ ∈ lub(TX
P (X)).

Corollary 9
TX
P admits a least (post) fixed point TX

P ↑ ω

25

Continuity of TXP operator

Proposition 8

TX
P is a continuous operator on the complete lattice of
X -interpretations

Proof.
Let X be a chain of X -interpretations. Aρ ∈ TX

P (lub(X)),
iff (A← c|A1, . . . ,An) ∈ P, X |= cρ and {A1ρ, . . . ,Anρ} ⊂ lub(X),
iff (A← c|A1, . . . ,An) ∈ P, X |= cρ and {A1ρ, . . . ,Anρ} ⊂ I,
for some I ∈ X (as X is a chain)

iff Aρ ∈ TX
P (I) for some I ∈ X, iff Aρ ∈ lub(TX

P (X)).

Corollary 9
TX
P admits a least (post) fixed point TX

P ↑ ω

25

Full abstraction

Theorem 10 ([JL87popl])

TX
P ↑ ω = Ogs(P)

TX
P ↑ ω ⊂ Ogs(P) is proved by induction on the powers n of TX

P .

n = 0, i.e., ∅, is trivial. Let Aρ ∈ TX
P ↑ n, there exists a rule

(A← c|A1, . . . ,An) ∈ P, s.t. {A1ρ, . . . ,Anρ} ⊂ TX
P ↑ n− 1 and X |= cρ. By

induction {A1ρ, . . . ,Anρ} ⊂ Ogs(P). By definition of Ogs and
∧-compositionality. we get Aρ ∈ Ogs(P).
Ogs(P) ⊂ TX

P ↑ ω is proved by induction on the length of derivations.
Successes with derivation of length 0 are ground facts in TX

P ↑ 1.
Let Aρ ∈ Ogs(P) with a derivation of length n. By definition of Ogs

there exists (A← c|A1, . . . ,An) ∈ P s.t. {A1ρ, . . . ,Anρ} ⊂ Ogs(P) and
X |= cρ. By induction {A1ρ, . . . ,Anρ} ⊂ TX

P ↑ ω. Hence by definition of
TX
P we get Aρ ∈ TX

P ↑ ω.

26

Full abstraction

Theorem 10 ([JL87popl])

TX
P ↑ ω = Ogs(P)

TX
P ↑ ω ⊂ Ogs(P) is proved by induction on the powers n of TX

P .
n = 0, i.e., ∅, is trivial.

Let Aρ ∈ TX
P ↑ n, there exists a rule

(A← c|A1, . . . ,An) ∈ P, s.t. {A1ρ, . . . ,Anρ} ⊂ TX
P ↑ n− 1 and X |= cρ. By

induction {A1ρ, . . . ,Anρ} ⊂ Ogs(P). By definition of Ogs and
∧-compositionality. we get Aρ ∈ Ogs(P).
Ogs(P) ⊂ TX

P ↑ ω is proved by induction on the length of derivations.
Successes with derivation of length 0 are ground facts in TX

P ↑ 1.
Let Aρ ∈ Ogs(P) with a derivation of length n. By definition of Ogs

there exists (A← c|A1, . . . ,An) ∈ P s.t. {A1ρ, . . . ,Anρ} ⊂ Ogs(P) and
X |= cρ. By induction {A1ρ, . . . ,Anρ} ⊂ TX

P ↑ ω. Hence by definition of
TX
P we get Aρ ∈ TX

P ↑ ω.

26

Full abstraction

Theorem 10 ([JL87popl])

TX
P ↑ ω = Ogs(P)

TX
P ↑ ω ⊂ Ogs(P) is proved by induction on the powers n of TX

P .
n = 0, i.e., ∅, is trivial. Let Aρ ∈ TX

P ↑ n,

there exists a rule
(A← c|A1, . . . ,An) ∈ P, s.t. {A1ρ, . . . ,Anρ} ⊂ TX

P ↑ n− 1 and X |= cρ. By
induction {A1ρ, . . . ,Anρ} ⊂ Ogs(P). By definition of Ogs and
∧-compositionality. we get Aρ ∈ Ogs(P).
Ogs(P) ⊂ TX

P ↑ ω is proved by induction on the length of derivations.
Successes with derivation of length 0 are ground facts in TX

P ↑ 1.
Let Aρ ∈ Ogs(P) with a derivation of length n. By definition of Ogs

there exists (A← c|A1, . . . ,An) ∈ P s.t. {A1ρ, . . . ,Anρ} ⊂ Ogs(P) and
X |= cρ. By induction {A1ρ, . . . ,Anρ} ⊂ TX

P ↑ ω. Hence by definition of
TX
P we get Aρ ∈ TX

P ↑ ω.

26

Full abstraction

Theorem 10 ([JL87popl])

TX
P ↑ ω = Ogs(P)

TX
P ↑ ω ⊂ Ogs(P) is proved by induction on the powers n of TX

P .
n = 0, i.e., ∅, is trivial. Let Aρ ∈ TX

P ↑ n, there exists a rule
(A← c|A1, . . . ,An) ∈ P, s.t. {A1ρ, . . . ,Anρ} ⊂ TX

P ↑ n− 1 and X |= cρ.

By
induction {A1ρ, . . . ,Anρ} ⊂ Ogs(P). By definition of Ogs and
∧-compositionality. we get Aρ ∈ Ogs(P).
Ogs(P) ⊂ TX

P ↑ ω is proved by induction on the length of derivations.
Successes with derivation of length 0 are ground facts in TX

P ↑ 1.
Let Aρ ∈ Ogs(P) with a derivation of length n. By definition of Ogs

there exists (A← c|A1, . . . ,An) ∈ P s.t. {A1ρ, . . . ,Anρ} ⊂ Ogs(P) and
X |= cρ. By induction {A1ρ, . . . ,Anρ} ⊂ TX

P ↑ ω. Hence by definition of
TX
P we get Aρ ∈ TX

P ↑ ω.

26

Full abstraction

Theorem 10 ([JL87popl])

TX
P ↑ ω = Ogs(P)

TX
P ↑ ω ⊂ Ogs(P) is proved by induction on the powers n of TX

P .
n = 0, i.e., ∅, is trivial. Let Aρ ∈ TX

P ↑ n, there exists a rule
(A← c|A1, . . . ,An) ∈ P, s.t. {A1ρ, . . . ,Anρ} ⊂ TX

P ↑ n− 1 and X |= cρ. By
induction {A1ρ, . . . ,Anρ} ⊂ Ogs(P).

By definition of Ogs and
∧-compositionality. we get Aρ ∈ Ogs(P).
Ogs(P) ⊂ TX

P ↑ ω is proved by induction on the length of derivations.
Successes with derivation of length 0 are ground facts in TX

P ↑ 1.
Let Aρ ∈ Ogs(P) with a derivation of length n. By definition of Ogs

there exists (A← c|A1, . . . ,An) ∈ P s.t. {A1ρ, . . . ,Anρ} ⊂ Ogs(P) and
X |= cρ. By induction {A1ρ, . . . ,Anρ} ⊂ TX

P ↑ ω. Hence by definition of
TX
P we get Aρ ∈ TX

P ↑ ω.

26

Full abstraction

Theorem 10 ([JL87popl])

TX
P ↑ ω = Ogs(P)

TX
P ↑ ω ⊂ Ogs(P) is proved by induction on the powers n of TX

P .
n = 0, i.e., ∅, is trivial. Let Aρ ∈ TX

P ↑ n, there exists a rule
(A← c|A1, . . . ,An) ∈ P, s.t. {A1ρ, . . . ,Anρ} ⊂ TX

P ↑ n− 1 and X |= cρ. By
induction {A1ρ, . . . ,Anρ} ⊂ Ogs(P). By definition of Ogs and
∧-compositionality. we get Aρ ∈ Ogs(P).

Ogs(P) ⊂ TX
P ↑ ω is proved by induction on the length of derivations.

Successes with derivation of length 0 are ground facts in TX
P ↑ 1.

Let Aρ ∈ Ogs(P) with a derivation of length n. By definition of Ogs

there exists (A← c|A1, . . . ,An) ∈ P s.t. {A1ρ, . . . ,Anρ} ⊂ Ogs(P) and
X |= cρ. By induction {A1ρ, . . . ,Anρ} ⊂ TX

P ↑ ω. Hence by definition of
TX
P we get Aρ ∈ TX

P ↑ ω.

26

Full abstraction

Theorem 10 ([JL87popl])

TX
P ↑ ω = Ogs(P)

TX
P ↑ ω ⊂ Ogs(P) is proved by induction on the powers n of TX

P .
n = 0, i.e., ∅, is trivial. Let Aρ ∈ TX

P ↑ n, there exists a rule
(A← c|A1, . . . ,An) ∈ P, s.t. {A1ρ, . . . ,Anρ} ⊂ TX

P ↑ n− 1 and X |= cρ. By
induction {A1ρ, . . . ,Anρ} ⊂ Ogs(P). By definition of Ogs and
∧-compositionality. we get Aρ ∈ Ogs(P).
Ogs(P) ⊂ TX

P ↑ ω is proved by induction on the length of derivations.

Successes with derivation of length 0 are ground facts in TX
P ↑ 1.

Let Aρ ∈ Ogs(P) with a derivation of length n. By definition of Ogs

there exists (A← c|A1, . . . ,An) ∈ P s.t. {A1ρ, . . . ,Anρ} ⊂ Ogs(P) and
X |= cρ. By induction {A1ρ, . . . ,Anρ} ⊂ TX

P ↑ ω. Hence by definition of
TX
P we get Aρ ∈ TX

P ↑ ω.

26

Full abstraction

Theorem 10 ([JL87popl])

TX
P ↑ ω = Ogs(P)

TX
P ↑ ω ⊂ Ogs(P) is proved by induction on the powers n of TX

P .
n = 0, i.e., ∅, is trivial. Let Aρ ∈ TX

P ↑ n, there exists a rule
(A← c|A1, . . . ,An) ∈ P, s.t. {A1ρ, . . . ,Anρ} ⊂ TX

P ↑ n− 1 and X |= cρ. By
induction {A1ρ, . . . ,Anρ} ⊂ Ogs(P). By definition of Ogs and
∧-compositionality. we get Aρ ∈ Ogs(P).
Ogs(P) ⊂ TX

P ↑ ω is proved by induction on the length of derivations.
Successes with derivation of length 0 are ground facts in TX

P ↑ 1.

Let Aρ ∈ Ogs(P) with a derivation of length n. By definition of Ogs

there exists (A← c|A1, . . . ,An) ∈ P s.t. {A1ρ, . . . ,Anρ} ⊂ Ogs(P) and
X |= cρ. By induction {A1ρ, . . . ,Anρ} ⊂ TX

P ↑ ω. Hence by definition of
TX
P we get Aρ ∈ TX

P ↑ ω.

26

Full abstraction

Theorem 10 ([JL87popl])

TX
P ↑ ω = Ogs(P)

TX
P ↑ ω ⊂ Ogs(P) is proved by induction on the powers n of TX

P .
n = 0, i.e., ∅, is trivial. Let Aρ ∈ TX

P ↑ n, there exists a rule
(A← c|A1, . . . ,An) ∈ P, s.t. {A1ρ, . . . ,Anρ} ⊂ TX

P ↑ n− 1 and X |= cρ. By
induction {A1ρ, . . . ,Anρ} ⊂ Ogs(P). By definition of Ogs and
∧-compositionality. we get Aρ ∈ Ogs(P).
Ogs(P) ⊂ TX

P ↑ ω is proved by induction on the length of derivations.
Successes with derivation of length 0 are ground facts in TX

P ↑ 1.
Let Aρ ∈ Ogs(P) with a derivation of length n. By definition of Ogs

there exists

(A← c|A1, . . . ,An) ∈ P s.t. {A1ρ, . . . ,Anρ} ⊂ Ogs(P) and
X |= cρ. By induction {A1ρ, . . . ,Anρ} ⊂ TX

P ↑ ω. Hence by definition of
TX
P we get Aρ ∈ TX

P ↑ ω.

26

Full abstraction

Theorem 10 ([JL87popl])

TX
P ↑ ω = Ogs(P)

TX
P ↑ ω ⊂ Ogs(P) is proved by induction on the powers n of TX

P .
n = 0, i.e., ∅, is trivial. Let Aρ ∈ TX

P ↑ n, there exists a rule
(A← c|A1, . . . ,An) ∈ P, s.t. {A1ρ, . . . ,Anρ} ⊂ TX

P ↑ n− 1 and X |= cρ. By
induction {A1ρ, . . . ,Anρ} ⊂ Ogs(P). By definition of Ogs and
∧-compositionality. we get Aρ ∈ Ogs(P).
Ogs(P) ⊂ TX

P ↑ ω is proved by induction on the length of derivations.
Successes with derivation of length 0 are ground facts in TX

P ↑ 1.
Let Aρ ∈ Ogs(P) with a derivation of length n. By definition of Ogs

there exists (A← c|A1, . . . ,An) ∈ P s.t. {A1ρ, . . . ,Anρ} ⊂ Ogs(P) and
X |= cρ.

By induction {A1ρ, . . . ,Anρ} ⊂ TX
P ↑ ω. Hence by definition of

TX
P we get Aρ ∈ TX

P ↑ ω.

26

Full abstraction

Theorem 10 ([JL87popl])

TX
P ↑ ω = Ogs(P)

TX
P ↑ ω ⊂ Ogs(P) is proved by induction on the powers n of TX

P .
n = 0, i.e., ∅, is trivial. Let Aρ ∈ TX

P ↑ n, there exists a rule
(A← c|A1, . . . ,An) ∈ P, s.t. {A1ρ, . . . ,Anρ} ⊂ TX

P ↑ n− 1 and X |= cρ. By
induction {A1ρ, . . . ,Anρ} ⊂ Ogs(P). By definition of Ogs and
∧-compositionality. we get Aρ ∈ Ogs(P).
Ogs(P) ⊂ TX

P ↑ ω is proved by induction on the length of derivations.
Successes with derivation of length 0 are ground facts in TX

P ↑ 1.
Let Aρ ∈ Ogs(P) with a derivation of length n. By definition of Ogs

there exists (A← c|A1, . . . ,An) ∈ P s.t. {A1ρ, . . . ,Anρ} ⊂ Ogs(P) and
X |= cρ. By induction {A1ρ, . . . ,Anρ} ⊂ TX

P ↑ ω.

Hence by definition of
TX
P we get Aρ ∈ TX

P ↑ ω.

26

Full abstraction

Theorem 10 ([JL87popl])

TX
P ↑ ω = Ogs(P)

TX
P ↑ ω ⊂ Ogs(P) is proved by induction on the powers n of TX

P .
n = 0, i.e., ∅, is trivial. Let Aρ ∈ TX

P ↑ n, there exists a rule
(A← c|A1, . . . ,An) ∈ P, s.t. {A1ρ, . . . ,Anρ} ⊂ TX

P ↑ n− 1 and X |= cρ. By
induction {A1ρ, . . . ,Anρ} ⊂ Ogs(P). By definition of Ogs and
∧-compositionality. we get Aρ ∈ Ogs(P).
Ogs(P) ⊂ TX

P ↑ ω is proved by induction on the length of derivations.
Successes with derivation of length 0 are ground facts in TX

P ↑ 1.
Let Aρ ∈ Ogs(P) with a derivation of length n. By definition of Ogs

there exists (A← c|A1, . . . ,An) ∈ P s.t. {A1ρ, . . . ,Anρ} ⊂ Ogs(P) and
X |= cρ. By induction {A1ρ, . . . ,Anρ} ⊂ TX

P ↑ ω. Hence by definition of
TX
P we get Aρ ∈ TX

P ↑ ω.

26

TXP and X -models

Proposition 11

I is a X -model of P iff I is a post-fixed point of TX
P , T

X
P (I) ⊂ I

Proof.
I is a X -model of P,
iff

for each clause A← c|A1, . . . ,An ∈ P and for each
X -valuation ρ, if X |= cρ and {A1ρ, . . . ,Anρ} ⊂ I then Aρ ∈ I,
iff TX

P (I) ⊂ I

27

TXP and X -models

Proposition 11

I is a X -model of P iff I is a post-fixed point of TX
P , T

X
P (I) ⊂ I

Proof.
I is a X -model of P,
iff for each clause A← c|A1, . . . ,An ∈ P and for each
X -valuation ρ, if X |= cρ and {A1ρ, . . . ,Anρ} ⊂ I then Aρ ∈ I,
iff TX

P (I) ⊂ I

27

TXP and X -models

Theorem 12 (Least X -model [JL87popl])

Let P be a constraint logic program on X . P has a least
X -model, denoted by MX

P satisfying:

MX
P = TX

P ↑ ω

Proof.
TX
P ↑ ω = lfp(TX

P) is also the least post-fixed point of T
X
P , thus

by Prop. 11, lfp(TX
P) is the least X -model of P.

28

Fixpoint semantics of Oca

Consider the set of constrained atoms
B′X = {c|A : A is an atom and X |= ∃(c)} modulo renaming

Consider the lattice of constrained interpretations (2B
′
X ,⊂)

For a constrained interpretation I, let us define the closed
X -interpretation:
[I]X = {Aρ : there exists a valuation ρ and c|A ∈ I s.t. X |= cρ}

Let us define the semantics Oca(P) as the least solution of a
fixpoint equation over 2B′

X

29

Non-ground immediate consequence operator
SX
P : 2B

′
X → 2B

′
X is defined as:

SX
P (I) = {c|A ∈ B′X | there exists a renamed clause in normal

form (A← d|A1, . . . ,An) ∈ P, and constrained atoms
{c1|A1, . . . , cn|An} ⊂ I, s.t. c = d ∧

∧n
i=1 ci is X -satisfiable}

Proposition 13

For any B′X -interpretation I, [SX
P (I)]X = TX

P ([I]X)

Proof.
Aρ ∈ [SX

P (I)]X

iff (A← d|A1, . . . ,An) ∈ P, c = d ∧
∧n
i=1 ci, X |= cρ and

{c1|A1, . . . , cn|An} ⊂ I
iff (A← d|A1, . . . ,An) ∈ P, c = d ∧

∧n
i=1 ci, X |= cρ and

{A1ρ, . . . ,Anρ} ⊂ [I]X
iff Aρ ∈ TX

P ([I]X)

30

Non-ground immediate consequence operator
SX
P : 2B

′
X → 2B

′
X is defined as:

SX
P (I) = {c|A ∈ B′X | there exists a renamed clause in normal

form (A← d|A1, . . . ,An) ∈ P, and constrained atoms
{c1|A1, . . . , cn|An} ⊂ I, s.t. c = d ∧

∧n
i=1 ci is X -satisfiable}

Proposition 13

For any B′X -interpretation I, [SX
P (I)]X = TX

P ([I]X)

Proof.
Aρ ∈ [SX

P (I)]X
iff (A← d|A1, . . . ,An) ∈ P, c = d ∧

∧n
i=1 ci, X |= cρ and

{c1|A1, . . . , cn|An} ⊂ I

iff (A← d|A1, . . . ,An) ∈ P, c = d ∧
∧n
i=1 ci, X |= cρ and

{A1ρ, . . . ,Anρ} ⊂ [I]X
iff Aρ ∈ TX

P ([I]X)

30

Non-ground immediate consequence operator
SX
P : 2B

′
X → 2B

′
X is defined as:

SX
P (I) = {c|A ∈ B′X | there exists a renamed clause in normal

form (A← d|A1, . . . ,An) ∈ P, and constrained atoms
{c1|A1, . . . , cn|An} ⊂ I, s.t. c = d ∧

∧n
i=1 ci is X -satisfiable}

Proposition 13

For any B′X -interpretation I, [SX
P (I)]X = TX

P ([I]X)

Proof.
Aρ ∈ [SX

P (I)]X
iff (A← d|A1, . . . ,An) ∈ P, c = d ∧

∧n
i=1 ci, X |= cρ and

{c1|A1, . . . , cn|An} ⊂ I
iff (A← d|A1, . . . ,An) ∈ P, c = d ∧

∧n
i=1 ci, X |= cρ and

{A1ρ, . . . ,Anρ} ⊂ [I]X

iff Aρ ∈ TX
P ([I]X)

30

Non-ground immediate consequence operator
SX
P : 2B

′
X → 2B

′
X is defined as:

SX
P (I) = {c|A ∈ B′X | there exists a renamed clause in normal

form (A← d|A1, . . . ,An) ∈ P, and constrained atoms
{c1|A1, . . . , cn|An} ⊂ I, s.t. c = d ∧

∧n
i=1 ci is X -satisfiable}

Proposition 13

For any B′X -interpretation I, [SX
P (I)]X = TX

P ([I]X)

Proof.
Aρ ∈ [SX

P (I)]X
iff (A← d|A1, . . . ,An) ∈ P, c = d ∧

∧n
i=1 ci, X |= cρ and

{c1|A1, . . . , cn|An} ⊂ I
iff (A← d|A1, . . . ,An) ∈ P, c = d ∧

∧n
i=1 ci, X |= cρ and

{A1ρ, . . . ,Anρ} ⊂ [I]X
iff Aρ ∈ TX

P ([I]X)

30

Continuity of SXP operator

Proposition 14

SX
P is continuous

Proof.

Let X be a chain of constrained interpretations. c|A ∈ SX
P (lub(X)),

iff (A← d|A1, . . . ,An) ∈ P, c = d ∧
∧n
i=1 ci, X |= ∃(c) and

{c1|A1, . . . , cn|An} ⊂ lub(X)
iff (A← d|A1, . . . ,An) ∈ P, c = d ∧

∧n
i=1 ci, X |= ∃(c) and

{c1|A1, . . . , cn|An} ⊂ I, for some I ∈ X (as X is a chain)
iff c|A ∈ SX

P (I) for some I ∈ X,
iff c|A ∈ lub(SX

P (X))

Corollary 15
SX
P admits a least (post) fixed point lfp(SX

P) = SX
P ↑ ω

31

Continuity of SXP operator

Proposition 14

SX
P is continuous

Proof.
Let X be a chain of constrained interpretations. c|A ∈ SX

P (lub(X)),
iff (A← d|A1, . . . ,An) ∈ P, c = d ∧

∧n
i=1 ci, X |= ∃(c) and

{c1|A1, . . . , cn|An} ⊂ lub(X)

iff (A← d|A1, . . . ,An) ∈ P, c = d ∧
∧n
i=1 ci, X |= ∃(c) and

{c1|A1, . . . , cn|An} ⊂ I, for some I ∈ X (as X is a chain)
iff c|A ∈ SX

P (I) for some I ∈ X,
iff c|A ∈ lub(SX

P (X))

Corollary 15
SX
P admits a least (post) fixed point lfp(SX

P) = SX
P ↑ ω

31

Continuity of SXP operator

Proposition 14

SX
P is continuous

Proof.
Let X be a chain of constrained interpretations. c|A ∈ SX

P (lub(X)),
iff (A← d|A1, . . . ,An) ∈ P, c = d ∧

∧n
i=1 ci, X |= ∃(c) and

{c1|A1, . . . , cn|An} ⊂ lub(X)
iff (A← d|A1, . . . ,An) ∈ P, c = d ∧

∧n
i=1 ci, X |= ∃(c) and

{c1|A1, . . . , cn|An} ⊂ I, for some I ∈ X (as X is a chain)

iff c|A ∈ SX
P (I) for some I ∈ X,

iff c|A ∈ lub(SX
P (X))

Corollary 15
SX
P admits a least (post) fixed point lfp(SX

P) = SX
P ↑ ω

31

Continuity of SXP operator

Proposition 14

SX
P is continuous

Proof.
Let X be a chain of constrained interpretations. c|A ∈ SX

P (lub(X)),
iff (A← d|A1, . . . ,An) ∈ P, c = d ∧

∧n
i=1 ci, X |= ∃(c) and

{c1|A1, . . . , cn|An} ⊂ lub(X)
iff (A← d|A1, . . . ,An) ∈ P, c = d ∧

∧n
i=1 ci, X |= ∃(c) and

{c1|A1, . . . , cn|An} ⊂ I, for some I ∈ X (as X is a chain)
iff c|A ∈ SX

P (I) for some I ∈ X,

iff c|A ∈ lub(SX
P (X))

Corollary 15
SX
P admits a least (post) fixed point lfp(SX

P) = SX
P ↑ ω

31

Continuity of SXP operator

Proposition 14

SX
P is continuous

Proof.
Let X be a chain of constrained interpretations. c|A ∈ SX

P (lub(X)),
iff (A← d|A1, . . . ,An) ∈ P, c = d ∧

∧n
i=1 ci, X |= ∃(c) and

{c1|A1, . . . , cn|An} ⊂ lub(X)
iff (A← d|A1, . . . ,An) ∈ P, c = d ∧

∧n
i=1 ci, X |= ∃(c) and

{c1|A1, . . . , cn|An} ⊂ I, for some I ∈ X (as X is a chain)
iff c|A ∈ SX

P (I) for some I ∈ X,
iff c|A ∈ lub(SX

P (X))

Corollary 15

SX
P admits a least (post) fixed point lfp(SX

P) = SX
P ↑ ω

31

Continuity of SXP operator

Proposition 14

SX
P is continuous

Proof.
Let X be a chain of constrained interpretations. c|A ∈ SX

P (lub(X)),
iff (A← d|A1, . . . ,An) ∈ P, c = d ∧

∧n
i=1 ci, X |= ∃(c) and

{c1|A1, . . . , cn|An} ⊂ lub(X)
iff (A← d|A1, . . . ,An) ∈ P, c = d ∧

∧n
i=1 ci, X |= ∃(c) and

{c1|A1, . . . , cn|An} ⊂ I, for some I ∈ X (as X is a chain)
iff c|A ∈ SX

P (I) for some I ∈ X,
iff c|A ∈ lub(SX

P (X))

Corollary 15
SX
P admits a least (post) fixed point lfp(SX

P) = SX
P ↑ ω

31

Example CLP(H)
append(A,B,C):- A=[], B=C.
append(A,B,C):- A=[X|L], C=[X|R], append(L,B,R).

Example 16

SH
P ↑ 0 = ∅

SH
P ↑ 1 =

{A = [],B = C | append(A,B,C)}
SH
P ↑ 2 = SH

P ↑ 1 ∪
{A = [X|L],C = [X|R],L = [],B = R | append(A,B,C)}

= SH
P ↑ 1 ∪ {A = [X],C = [X|B] | append(A,B,C)}

SH
P ↑ 3 = SH

P ↑ 2 ∪
{A = [X,Y],C = [X,Y|B] | append(A,B,C)}

SH
P ↑ 4 = SH

P ↑ 3 ∪
{A = [X,Y,Z],C = [X,Y,Z|B] | append(A,B,C)}

. . . = . . .

32

Example CLP(H)
append(A,B,C):- A=[], B=C.
append(A,B,C):- A=[X|L], C=[X|R], append(L,B,R).

Example 16

SH
P ↑ 0 = ∅

SH
P ↑ 1 = {A = [],B = C | append(A,B,C)}

SH
P ↑ 2 = SH

P ↑ 1 ∪

{A = [X|L],C = [X|R],L = [],B = R | append(A,B,C)}
= SH

P ↑ 1 ∪ {A = [X],C = [X|B] | append(A,B,C)}
SH
P ↑ 3 = SH

P ↑ 2 ∪
{A = [X,Y],C = [X,Y|B] | append(A,B,C)}

SH
P ↑ 4 = SH

P ↑ 3 ∪
{A = [X,Y,Z],C = [X,Y,Z|B] | append(A,B,C)}

. . . = . . .

32

Example CLP(H)
append(A,B,C):- A=[], B=C.
append(A,B,C):- A=[X|L], C=[X|R], append(L,B,R).

Example 16

SH
P ↑ 0 = ∅

SH
P ↑ 1 = {A = [],B = C | append(A,B,C)}

SH
P ↑ 2 = SH

P ↑ 1 ∪
{A = [X|L],C = [X|R],L = [],B = R | append(A,B,C)}

= SH
P ↑ 1 ∪ {A = [X],C = [X|B] | append(A,B,C)}

SH
P ↑ 3 = SH

P ↑ 2 ∪

{A = [X,Y],C = [X,Y|B] | append(A,B,C)}
SH
P ↑ 4 = SH

P ↑ 3 ∪
{A = [X,Y,Z],C = [X,Y,Z|B] | append(A,B,C)}

. . . = . . .

32

Example CLP(H)
append(A,B,C):- A=[], B=C.
append(A,B,C):- A=[X|L], C=[X|R], append(L,B,R).

Example 16

SH
P ↑ 0 = ∅

SH
P ↑ 1 = {A = [],B = C | append(A,B,C)}

SH
P ↑ 2 = SH

P ↑ 1 ∪
{A = [X|L],C = [X|R],L = [],B = R | append(A,B,C)}

= SH
P ↑ 1 ∪ {A = [X],C = [X|B] | append(A,B,C)}

SH
P ↑ 3 = SH

P ↑ 2 ∪
{A = [X,Y],C = [X,Y|B] | append(A,B,C)}

SH
P ↑ 4 = SH

P ↑ 3 ∪

{A = [X,Y,Z],C = [X,Y,Z|B] | append(A,B,C)}
. . . = . . .

32

Example CLP(H)
append(A,B,C):- A=[], B=C.
append(A,B,C):- A=[X|L], C=[X|R], append(L,B,R).

Example 16

SH
P ↑ 0 = ∅

SH
P ↑ 1 = {A = [],B = C | append(A,B,C)}

SH
P ↑ 2 = SH

P ↑ 1 ∪
{A = [X|L],C = [X|R],L = [],B = R | append(A,B,C)}

= SH
P ↑ 1 ∪ {A = [X],C = [X|B] | append(A,B,C)}

SH
P ↑ 3 = SH

P ↑ 2 ∪
{A = [X,Y],C = [X,Y|B] | append(A,B,C)}

SH
P ↑ 4 = SH

P ↑ 3 ∪
{A = [X,Y,Z],C = [X,Y,Z|B] | append(A,B,C)}

. . . = . . .

32

Relating SXP and TXP operators

Theorem 17 ([JL87popl])

For every ordinal α, TX
P ↑ α = [SX

P ↑ α]X

Proof.
The base case α = 0 is trivial. For a successor ordinal, we have
[SX

P ↑ α]X = [SX
P (S

X
P ↑ α− 1)]X

=

TX
P ([S

X
P ↑ α− 1]X) by Prop. 13

= TX
P (T

X
P ↑ α− 1) by induction

= TX
P ↑ α

For a limit ordinal, we have
[SX

P ↑ α]X = [
∪

β<α S
X
P ↑ β]X

=
∪

β<α[S
X
P ↑ β]X

=
∪

β<α T
X
P ↑ β by induction

= TX
P ↑ α

33

Relating SXP and TXP operators

Theorem 17 ([JL87popl])

For every ordinal α, TX
P ↑ α = [SX

P ↑ α]X

Proof.
The base case α = 0 is trivial. For a successor ordinal, we have
[SX

P ↑ α]X = [SX
P (S

X
P ↑ α− 1)]X

= TX
P ([S

X
P ↑ α− 1]X) by Prop. 13

= TX
P (T

X
P ↑ α− 1) by induction

= TX
P ↑ α

For a limit ordinal, we have

[SX
P ↑ α]X = [

∪
β<α S

X
P ↑ β]X

=
∪

β<α[S
X
P ↑ β]X

=
∪

β<α T
X
P ↑ β by induction

= TX
P ↑ α

33

Relating SXP and TXP operators

Theorem 17 ([JL87popl])

For every ordinal α, TX
P ↑ α = [SX

P ↑ α]X

Proof.
The base case α = 0 is trivial. For a successor ordinal, we have
[SX

P ↑ α]X = [SX
P (S

X
P ↑ α− 1)]X

= TX
P ([S

X
P ↑ α− 1]X) by Prop. 13

= TX
P (T

X
P ↑ α− 1) by induction

= TX
P ↑ α

For a limit ordinal, we have
[SX

P ↑ α]X = [
∪

β<α S
X
P ↑ β]X

=
∪

β<α[S
X
P ↑ β]X

=
∪

β<α T
X
P ↑ β by induction

= TX
P ↑ α

33

Full abstraction w.r.t. computed answers

Theorem 18 (Theorem of full abstraction [GL91iclp])

Oca(P) = SX
P ↑ ω

SX
P ↑ ω ⊂ Oca(P) is proved by induction on the powers n of SX

P . n = 0
is trivial. Let c|A ∈ SX

P ↑ n, there exists a rule (A← d|A1, . . . ,An) ∈ P,
s.t. {c1|A1, . . . , cn|An} ⊂ SX

P ↑ n− 1, c = d ∧
∧n
i=1 ci and X |= ∃c. By

induction {c1|A1, . . . , cn|An} ⊂ Oca(P). By definition of Oca we get
c|A ∈ Oca(P).
Oca(P) ⊂ SX

P ↑ ω is proved by induction on the length of derivations.
Successes with derivation of length 0 are facts in SX

P ↑ 1. Let
c|A ∈ Oca(P) with a derivation of length n. By definition of Oca there
exists (A← d|A1, . . . ,An) ∈ P s.t. {c1|A1, . . . , cn|An} ⊂ Oca(P),
c = d ∧

∧n
i=1 ci and X |= ∃c. By induction {c1|A1, . . . , cn|An} ⊂ SX

P ↑ ω.
Hence by definition of SX

P we get c|A ∈ SX
P ↑ ω.

34

Full abstraction w.r.t. computed answers

Theorem 18 (Theorem of full abstraction [GL91iclp])

Oca(P) = SX
P ↑ ω

SX
P ↑ ω ⊂ Oca(P) is proved by induction on the powers n of SX

P .

n = 0
is trivial. Let c|A ∈ SX

P ↑ n, there exists a rule (A← d|A1, . . . ,An) ∈ P,
s.t. {c1|A1, . . . , cn|An} ⊂ SX

P ↑ n− 1, c = d ∧
∧n
i=1 ci and X |= ∃c. By

induction {c1|A1, . . . , cn|An} ⊂ Oca(P). By definition of Oca we get
c|A ∈ Oca(P).
Oca(P) ⊂ SX

P ↑ ω is proved by induction on the length of derivations.
Successes with derivation of length 0 are facts in SX

P ↑ 1. Let
c|A ∈ Oca(P) with a derivation of length n. By definition of Oca there
exists (A← d|A1, . . . ,An) ∈ P s.t. {c1|A1, . . . , cn|An} ⊂ Oca(P),
c = d ∧

∧n
i=1 ci and X |= ∃c. By induction {c1|A1, . . . , cn|An} ⊂ SX

P ↑ ω.
Hence by definition of SX

P we get c|A ∈ SX
P ↑ ω.

34

Full abstraction w.r.t. computed answers

Theorem 18 (Theorem of full abstraction [GL91iclp])

Oca(P) = SX
P ↑ ω

SX
P ↑ ω ⊂ Oca(P) is proved by induction on the powers n of SX

P . n = 0
is trivial. Let c|A ∈ SX

P ↑ n, there exists a rule (A← d|A1, . . . ,An) ∈ P,
s.t. {c1|A1, . . . , cn|An} ⊂ SX

P ↑ n− 1, c = d ∧
∧n
i=1 ci and X |= ∃c. By

induction {c1|A1, . . . , cn|An} ⊂ Oca(P). By definition of Oca we get
c|A ∈ Oca(P).

Oca(P) ⊂ SX
P ↑ ω is proved by induction on the length of derivations.

Successes with derivation of length 0 are facts in SX
P ↑ 1. Let

c|A ∈ Oca(P) with a derivation of length n. By definition of Oca there
exists (A← d|A1, . . . ,An) ∈ P s.t. {c1|A1, . . . , cn|An} ⊂ Oca(P),
c = d ∧

∧n
i=1 ci and X |= ∃c. By induction {c1|A1, . . . , cn|An} ⊂ SX

P ↑ ω.
Hence by definition of SX

P we get c|A ∈ SX
P ↑ ω.

34

Full abstraction w.r.t. computed answers

Theorem 18 (Theorem of full abstraction [GL91iclp])

Oca(P) = SX
P ↑ ω

SX
P ↑ ω ⊂ Oca(P) is proved by induction on the powers n of SX

P . n = 0
is trivial. Let c|A ∈ SX

P ↑ n, there exists a rule (A← d|A1, . . . ,An) ∈ P,
s.t. {c1|A1, . . . , cn|An} ⊂ SX

P ↑ n− 1, c = d ∧
∧n
i=1 ci and X |= ∃c. By

induction {c1|A1, . . . , cn|An} ⊂ Oca(P). By definition of Oca we get
c|A ∈ Oca(P).
Oca(P) ⊂ SX

P ↑ ω is proved by induction on the length of derivations.

Successes with derivation of length 0 are facts in SX
P ↑ 1. Let

c|A ∈ Oca(P) with a derivation of length n. By definition of Oca there
exists (A← d|A1, . . . ,An) ∈ P s.t. {c1|A1, . . . , cn|An} ⊂ Oca(P),
c = d ∧

∧n
i=1 ci and X |= ∃c. By induction {c1|A1, . . . , cn|An} ⊂ SX

P ↑ ω.
Hence by definition of SX

P we get c|A ∈ SX
P ↑ ω.

34

Full abstraction w.r.t. computed answers

Theorem 18 (Theorem of full abstraction [GL91iclp])

Oca(P) = SX
P ↑ ω

SX
P ↑ ω ⊂ Oca(P) is proved by induction on the powers n of SX

P . n = 0
is trivial. Let c|A ∈ SX

P ↑ n, there exists a rule (A← d|A1, . . . ,An) ∈ P,
s.t. {c1|A1, . . . , cn|An} ⊂ SX

P ↑ n− 1, c = d ∧
∧n
i=1 ci and X |= ∃c. By

induction {c1|A1, . . . , cn|An} ⊂ Oca(P). By definition of Oca we get
c|A ∈ Oca(P).
Oca(P) ⊂ SX

P ↑ ω is proved by induction on the length of derivations.
Successes with derivation of length 0 are facts in SX

P ↑ 1. Let
c|A ∈ Oca(P) with a derivation of length n. By definition of Oca there
exists (A← d|A1, . . . ,An) ∈ P s.t. {c1|A1, . . . , cn|An} ⊂ Oca(P),
c = d ∧

∧n
i=1 ci and X |= ∃c. By induction {c1|A1, . . . , cn|An} ⊂ SX

P ↑ ω.
Hence by definition of SX

P we get c|A ∈ SX
P ↑ ω.

34

Program analysis by abstract interpretation

SH
P ↑ ω captures the set of computed answer constraints
nevertheless this set may be infinite and
may contain too much information for proving some
properties of the computed constraints

Abstract interpretation [CC77popl] is a method for proving
properties of programs without handling irrelevant
information

The idea is to replace the real computation domain by an
abstract computation domain which retains sufficient
information w.r.t. the property to prove

35

Groundness analysis by abstract interpretation

Consider the CLP(H) append program

append(A,B,C):- A=[], B=C.
append(A,B,C):- A=[X|L], C=[X|R], append(L,B,R).

What is the groundness relation between arguments after a
success?

The term structure can be abstracted by a boolean structure
which expresses the groundness of the arguments.
We thus associate a CLP(B) abstract program:

append(A,B,C):- A=true, B=C.
append(A,B,C):- A=X/\L, C=X/\R, append(L,B,R).

Its least fixed point computed in at most 23 steps will express
the groundness relation between arguments of the concrete
program.

36

Groundness analysis by abstract interpretation

Consider the CLP(H) append program

append(A,B,C):- A=[], B=C.
append(A,B,C):- A=[X|L], C=[X|R], append(L,B,R).

What is the groundness relation between arguments after a
success?

The term structure can be abstracted by a boolean structure
which expresses the groundness of the arguments.
We thus associate a CLP(B) abstract program:

append(A,B,C):- A=true, B=C.
append(A,B,C):- A=X/\L, C=X/\R, append(L,B,R).

Its least fixed point computed in at most 23 steps will express
the groundness relation between arguments of the concrete
program.

36

Groundness analysis (continued)

SB
P ↑ 0 = ∅

SB
P ↑ 1 =

{A = true,B = C | append(A,B,C)}
SB
P ↑ 2 = SB

P ↑ 1 ∪
{A = X ∧ L,C = X ∧ R,L = true,B = R | append(A,B,C)}

= SB
P ↑ 1 ∪ {C = A ∧ B | append(A,B,C)}

SB
P ↑ 3 = SB

P ↑ 2 ∪
{A = X ∧ L,C = X ∧ R,R = L ∧ B | append(A,B,C)}

= SB
P ↑ 2 ∪ {C = A ∧ B | append(A,B,C)}

= SB
P ↑ 2 = SB

P ↑ ω

In a success of append(A,B,C),
C is ground iff A and B are ground.

37

Groundness analysis (continued)

SB
P ↑ 0 = ∅

SB
P ↑ 1 = {A = true,B = C | append(A,B,C)}

SB
P ↑ 2 = SB

P ↑ 1 ∪

{A = X ∧ L,C = X ∧ R,L = true,B = R | append(A,B,C)}
= SB

P ↑ 1 ∪ {C = A ∧ B | append(A,B,C)}
SB
P ↑ 3 = SB

P ↑ 2 ∪
{A = X ∧ L,C = X ∧ R,R = L ∧ B | append(A,B,C)}

= SB
P ↑ 2 ∪ {C = A ∧ B | append(A,B,C)}

= SB
P ↑ 2 = SB

P ↑ ω

In a success of append(A,B,C),
C is ground iff A and B are ground.

37

Groundness analysis (continued)

SB
P ↑ 0 = ∅

SB
P ↑ 1 = {A = true,B = C | append(A,B,C)}

SB
P ↑ 2 = SB

P ↑ 1 ∪
{A = X ∧ L,C = X ∧ R,L = true,B = R | append(A,B,C)}

= SB
P ↑ 1 ∪ {C = A ∧ B | append(A,B,C)}

SB
P ↑ 3 = SB

P ↑ 2 ∪

{A = X ∧ L,C = X ∧ R,R = L ∧ B | append(A,B,C)}
= SB

P ↑ 2 ∪ {C = A ∧ B | append(A,B,C)}
= SB

P ↑ 2 = SB
P ↑ ω

In a success of append(A,B,C),
C is ground iff A and B are ground.

37

Groundness analysis (continued)

SB
P ↑ 0 = ∅

SB
P ↑ 1 = {A = true,B = C | append(A,B,C)}

SB
P ↑ 2 = SB

P ↑ 1 ∪
{A = X ∧ L,C = X ∧ R,L = true,B = R | append(A,B,C)}

= SB
P ↑ 1 ∪ {C = A ∧ B | append(A,B,C)}

SB
P ↑ 3 = SB

P ↑ 2 ∪
{A = X ∧ L,C = X ∧ R,R = L ∧ B | append(A,B,C)}

= SB
P ↑ 2 ∪ {C = A ∧ B | append(A,B,C)}

= SB
P ↑ 2 = SB

P ↑ ω

In a success of append(A,B,C),
C is ground iff A and B are ground.

37

Groundness analysis (continued)

SB
P ↑ 0 = ∅

SB
P ↑ 1 = {A = true,B = C | append(A,B,C)}

SB
P ↑ 2 = SB

P ↑ 1 ∪
{A = X ∧ L,C = X ∧ R,L = true,B = R | append(A,B,C)}

= SB
P ↑ 1 ∪ {C = A ∧ B | append(A,B,C)}

SB
P ↑ 3 = SB

P ↑ 2 ∪
{A = X ∧ L,C = X ∧ R,R = L ∧ B | append(A,B,C)}

= SB
P ↑ 2 ∪ {C = A ∧ B | append(A,B,C)}

= SB
P ↑ 2 = SB

P ↑ ω

In a success of append(A,B,C),
C is ground iff A and B are ground.

37

Groundness analysis of reverse

Concrete CLP(H) program:

rev(A,B) :- A=[], B=[].
rev(A,B) :- A=[X|L], rev(L,K), append(K,[X],B).

Abstract CLP(B) program:

rev(A,B) :- A=true, B=true.
rev(A,B) :- A=X/\L, rev(L,K), append(K,X,B).

SB
P ↑ 0 = ∅

SB
P ↑ 1 = {A = true,B = true | rev(A,B)}

SB
P ↑ 2 = SB

P ↑ 1 ∪ {A = X,B = X | rev(A,B)}
= SB

P ↑ 1 ∪ {A = B | rev(A,B)}
SB
P ↑ 3 = SB

P ↑ 2 ∪ {A = X ∧ L,L = K,B = K ∧ X | rev(A,B)}
= SB

P ↑ 2 ∪ {A = B | rev(A,B)} = SB
P ↑ 2 = SB

P ↑ ω

38

Groundness analysis of reverse

Concrete CLP(H) program:

rev(A,B) :- A=[], B=[].
rev(A,B) :- A=[X|L], rev(L,K), append(K,[X],B).

Abstract CLP(B) program:

rev(A,B) :- A=true, B=true.
rev(A,B) :- A=X/\L, rev(L,K), append(K,X,B).

SB
P ↑ 0 = ∅

SB
P ↑ 1 = {A = true,B = true | rev(A,B)}

SB
P ↑ 2 = SB

P ↑ 1 ∪ {A = X,B = X | rev(A,B)}
= SB

P ↑ 1 ∪ {A = B | rev(A,B)}
SB
P ↑ 3 = SB

P ↑ 2 ∪ {A = X ∧ L,L = K,B = K ∧ X | rev(A,B)}
= SB

P ↑ 2 ∪ {A = B | rev(A,B)} = SB
P ↑ 2 = SB

P ↑ ω

38

Groundness analysis of reverse

Concrete CLP(H) program:

rev(A,B) :- A=[], B=[].
rev(A,B) :- A=[X|L], rev(L,K), append(K,[X],B).

Abstract CLP(B) program:

rev(A,B) :- A=true, B=true.
rev(A,B) :- A=X/\L, rev(L,K), append(K,X,B).

SB
P ↑ 0 = ∅

SB
P ↑ 1 = {A = true,B = true | rev(A,B)}

SB
P ↑ 2 = SB

P ↑ 1 ∪ {A = X,B = X | rev(A,B)}
= SB

P ↑ 1 ∪ {A = B | rev(A,B)}
SB
P ↑ 3 = SB

P ↑ 2 ∪ {A = X ∧ L,L = K,B = K ∧ X | rev(A,B)}
= SB

P ↑ 2 ∪ {A = B | rev(A,B)} = SB
P ↑ 2 = SB

P ↑ ω

38

	CLP - Introduction and Logical Background
	The Constraint Programming paradigm
	Examples and Applications
	First Order Logic
	Models
	Logical Theories
	Constraint Languages
	CLP(X)
	CLP(H)
	CLP(R,FD,B)
	Operational Semantics
	Fixpoint Semantics
	Program Analysis

