Constraint Logic Programming

Sylvain Soliman
Sylvain.Soliman@inria.fr

Project-Team LIFEWARE

MPRI 2.35.1 Course - September-November 2017

Part I: CLP - Introduction and Logical Background

(1) The Constraint Programming paradigm

2 Examples and Applications
(3) First Order Logic
4. Models
(5) Logical Theories

Part II: Constraint Logic Programs

(6) Constraint Languages
(7) $\operatorname{CLP}(\mathcal{X})$
(8) $\operatorname{CLP}(\mathcal{H})$
(9) $\operatorname{CLP}(\mathcal{R}, \mathcal{F D}, \mathcal{B})$

Part III: CLP - Operational and Fixpoint Semantics

(10) Operational Semantics
(11) Fixpoint Semantics
(12) Program Analysis

Part IV: Logical Semantics

(13) Logical Semantics of $\operatorname{CLP}(\mathcal{X})$
(14) Automated Deduction
(15) $\operatorname{CLP}(\lambda)$
(16) Negation as Failure

Part V: Constraint Solving

(17) Solving by Rewriting
(18) Solving by Domain Reduction

Part VI: Practical CLP Programming

(19) CLP implementation, the WAM
(20) Optimizing CLP
(21) Symmetries
(22) Symmetry Breaking During Search
(23) Detecting Symmetries

Part VII: More Constraint Programming

(24) Typing CLP
(25) CHR

Part VIII: Programming Project

26 check_dice

27 dice

28 Optimizing
(29) Theory

Part IX

Concurrent Constraint Programming

Part IX: Concurrent Constraint Programming

(30) Introduction
(31) Operational Semantics
(32) Examples

The Paradigm of Constraint Programming

memory of values programming variables
memory of constraints mathematical variables

Concurrent Constraint Programs

Class of programming languages $\mathrm{CC}(\mathcal{X})$ introduced by Saraswat [Saraswat93mit] as a merge of Constraint and Concurrent Logic Programming.

Processes $\quad P::=\mathcal{D} . A$
Declarations $\mathcal{D}::=p(\vec{x})=A, \mathcal{D} \mid \epsilon$
Agents
A ::= tell(c)|
$|A \| A| A+A|\exists x A| p(\vec{x})$

CC agent
CC agent

Concurrent Constraint Programs

Class of programming languages $\mathrm{CC}(\mathcal{X})$ introduced by Saraswat [Saraswat93mit] as a merge of Constraint and Concurrent Logic Programming.

Processes $\quad P::=\mathcal{D} . A$
Declarations $\mathcal{D}::=p(\vec{x})=A, \mathcal{D} \mid \epsilon$
Agents $\quad A::=\operatorname{tell}(c)|\forall \vec{x}(c \rightarrow A)| A \| A|A+A| \exists x A \mid p(\vec{x})$

CC agent
CC agent

Constraint Store

Translating $\operatorname{CLP}(\mathcal{X})$ into $\operatorname{CC}(\mathcal{X})$ Declarations

$\operatorname{CLP}(\mathcal{X})$ program:

```
A\leftarrowC|B,C
A\leftarrowd|D,E
B\leftarrowe
```

equivalent $\operatorname{CC}(\mathcal{X})$ declaration:
$A=\operatorname{tell}(c)\|B\| C+$ tell(d) || $D \| E$
$B=t e l l(e)$

This is just a process calculus syntax for CLP programs...

Translating $\operatorname{CC}(\mathcal{X})$ without ask into $\operatorname{CLP}(\mathcal{X})$

$(\mathrm{CC} \text { agent })^{\dagger}=$ CLP goal
$(t e l /(c))^{\dagger}=$

Translating $\operatorname{CC}(\mathcal{X})$ without ask into $\operatorname{CLP}(\mathcal{X})$

$(\mathrm{CC} \text { agent })^{\dagger}=$ CLP goal
$(\operatorname{tell}(c))^{\dagger}=c$
$(A \| B)^{\dagger}=$

Translating $\operatorname{CC}(\mathcal{X})$ without ask into $\operatorname{CLP}(\mathcal{X})$

$(\mathrm{CC} \text { agent })^{\dagger}=$ CLP goal
$\begin{array}{ll}(\text { tell }(c))^{\dagger} & =c \\ (A \| B)^{\dagger} & =A^{\dagger}, B^{\dagger} \\ (A+B)^{\dagger} & =\end{array}$

Translating $\operatorname{CC}(\mathcal{X})$ without ask into $\operatorname{CLP}(\mathcal{X})$

$(\mathrm{CC} \text { agent })^{\dagger}=$ CLP goal
$\begin{array}{lll}(\text { tell/(c) })^{\dagger} & =c \\ (A \| B)^{\dagger} & =A^{\dagger}, B^{\dagger} \\ (A+B)^{\dagger} & =p(\vec{x}) \text { where } \vec{x}=f v(A) \cup f v(B) \text { and } \\ & & p(\vec{x}) \leftarrow A^{\dagger} \\ & & p(\vec{x}) \leftarrow B^{\dagger} \\ (\exists x A)^{\dagger} & = & \end{array}$

Translating $\operatorname{CC}(\mathcal{X})$ without ask into $\operatorname{CLP}(\mathcal{X})$

$(\mathrm{CC} \text { agent })^{\dagger}=$ CLP goal

$(t e l l(C))^{\dagger}$	= C	
$(A \\| B)^{\dagger}$	$=A^{\dagger}, B^{\dagger}$	
$(A+B)^{\dagger}$	$=p(\vec{x}) \text { where } \vec{x}=f v(A) \cup f v(B) \text { and }$ $p(\vec{x}) \leftarrow A^{\dagger}$	
	$p(\vec{x}) \leftarrow B^{\dagger}$	
$(\exists x A)^{\dagger}$	$=q(\vec{y})$ where $\vec{y}=f v(A) \backslash\{x\}$ and	
	$q(\vec{y}) \leftarrow A^{\dagger}$	
$(p(\vec{X}))^{\dagger}$		

Translating $\operatorname{CC}(\mathcal{X})$ without ask into $\operatorname{CLP}(\mathcal{X})$

$(\mathrm{CC} \text { agent })^{\dagger}=$ CLP goal

$$
\begin{aligned}
& (t e l /(c))^{\dagger}=c \\
& (A \| B)^{\dagger}=A^{\dagger}, B^{\dagger} \\
& (A+B)^{\dagger}=p(\vec{x}) \text { where } \vec{x}=f v(A) \cup f v(B) \text { and } \\
& p(\vec{x}) \leftarrow A^{\dagger} \\
& p(\vec{x}) \leftarrow B^{\dagger} \\
& (\exists x A)^{\dagger} \quad=q(\vec{y}) \text { where } \vec{y}=f v(A) \backslash\{x\} \text { and } \\
& q(\vec{y}) \leftarrow \boldsymbol{A}^{\dagger} \\
& (p(\vec{x}))^{\dagger} \quad=p(\vec{x})
\end{aligned}
$$

The ask operation $c \rightarrow A$ has no CLP equivalent.
It is a new synchronization primitive between agents.

CC Computations

Concurrency $=$ communication (shared variables)

+ synchronization (ask)
Communication channels, i.e., variables, are transmissible by agents (like in π-calculus, unlike CCS, CSP, Occam,...)

Communication is additive (a constraint will never be removed), monotonic accumulation of information in the store (as in CLP, as in Scott's information systems)

Synchronization makes computation both data-driven and goal-directed.

No private communication, all agents sharing a variable will see a constraint posted on that variable.

Not a parallel implementation model.

CC (\mathcal{X}) Configurations

Configuration $(\vec{x} ; c ; \Gamma)$: store c of constraints, multiset Γ of agents, modulo \equiv the smallest congruence s.t.:
\mathcal{X}-equivalence $\frac{c \dashv \vdash_{\mathcal{X} d}}{c \equiv d}$
α-Conversion $\frac{z \notin f v(A)}{\exists y A \equiv \exists z A[z / y]}$
Parallel

$$
(\vec{x} ; c ; A \| B, \Gamma) \equiv(\vec{x} ; C ; A, B, \Gamma)
$$

Hiding

$$
\frac{y \notin f v(c, \Gamma)}{(\vec{x} ; c ; \exists y A, \Gamma) \equiv(\vec{x}, y ; c ; A, \Gamma)} \frac{y \notin f v(c, \Gamma)}{(\vec{x}, y ; c ; \Gamma) \equiv(\vec{x} ; c ; \Gamma)}
$$

CC (\mathcal{X}) Transitions

Interleaving semantics

Procedure call $\frac{(p(\vec{y})=A) \in \mathcal{D}}{(\vec{x} ; c ; p(\vec{y}), \Gamma) \longrightarrow(\vec{x} ; c ; A, \Gamma)}$
Tell

$$
(\vec{x} ; c ; \text { tell }(d), \Gamma) \longrightarrow(\vec{x} ; c \wedge d ; \Gamma)
$$

Ask

Blind choice
$(\vec{x} ; c ; A+B, \Gamma) \longrightarrow(\vec{x} ; c ; A, \Gamma)$
(local/internal) $\quad(\vec{x} ; c ; A+B, \Gamma) \longrightarrow(\vec{x} ; c ; B, \Gamma)$

CC(X) Transitions

Interleaving semantics

Procedure call $\frac{(p(\vec{y})=A) \in \mathcal{D}}{(\vec{x} ; c ; p(\vec{y}), \Gamma) \longrightarrow(\vec{x} ; c ; A, \Gamma)}$
Tell

$$
(\vec{x} ; c ; t e l l(d), \Gamma) \longrightarrow(\vec{x} ; c \wedge d ; \Gamma)
$$

Ask

$$
\frac{c \vdash_{\mathcal{X}} d[\vec{t} / \vec{y}]}{(\vec{x} ; c ; \forall \vec{y}(d \rightarrow A), \Gamma) \longrightarrow(\vec{x} ; c ; A[\vec{t} / \vec{y}], \Gamma)}
$$

Blind choice
$(\vec{x} ; c ; A+B, \Gamma) \longrightarrow(\vec{x} ; c ; A, \Gamma)$
(local/internal)

$\mathrm{CC}(\mathcal{X})$ extra rules

Guarded choice

$$
\frac{c \vdash_{\mathcal{X}} c_{j}}{\left(\vec{x} ; c ; \Sigma_{i} c_{i} \rightarrow A_{i}, \Gamma\right) \longrightarrow\left(\vec{x} ; c ; A_{j}, \Gamma\right)}
$$

(global/external)

AskNot

$$
\frac{c \vdash_{\mathcal{X}} \neg d}{(\vec{x} ; c ; \forall \vec{y}(d \rightarrow A), \Gamma) \longrightarrow(\vec{x} ; c ; \Gamma)}
$$

Sequentiality

$$
\begin{aligned}
& \frac{(\vec{x} ; c ; \Gamma) \longrightarrow\left(\vec{x} ; d ; \Gamma^{\prime}\right)}{(\vec{x} ; c ;(\Gamma ; \Delta), \Phi) \longrightarrow\left(\vec{x} ; d ;\left(\Gamma^{\prime} ; \Delta\right), \Phi\right)} \\
& (\vec{x} ; c ;(\emptyset ; \Gamma), \Delta) \longrightarrow(\vec{x} ; d ; \Gamma, \Delta)
\end{aligned}
$$

Properties of CC Transitions (1)

Theorem 1 (Monotonicity)
If $(\vec{x} ; c ; \Gamma) \longrightarrow(\vec{y} ; d ; \Delta)$ then $(\vec{x} ; c \wedge e ; \Gamma, \Sigma) \longrightarrow(\vec{y} ; d \wedge e ; \Delta, \Sigma)$ for every constraint e and agents Σ.

Proof.

Corollary 2

Strong fairness and weak fairness are equivalent.

Properties of CC Transitions (1)

Theorem 1 (Monotonicity)
If $(\vec{x} ; c ; \Gamma) \longrightarrow(\vec{y} ; d ; \Delta)$ then $(\vec{x} ; c \wedge e ; \Gamma, \Sigma) \longrightarrow(\vec{y} ; d \wedge e ; \Delta, \Sigma)$ for every constraint e and agents Σ.

Proof.

tell and ask are monotonic (monotonic conditions in guards).

Corollary 2

Strong fairness and weak fairness are equivalent.

Properties of CC Transitions (2)

A configuration without + is called deterministic.

Theorem 3 (Confluence)

For any deterministic configuration κ with deterministic declarations, if $\kappa \longrightarrow \kappa_{1}$ and $\kappa \longrightarrow \kappa_{2}$ then $\kappa_{1} \longrightarrow \kappa^{\prime}$ and $\kappa_{2} \longrightarrow \kappa^{\prime}$ for some κ^{\prime}.

Corollary 4

Independence of the scheduling of the execution of parallel agents.

Properties of CC Transitions (3)

Theorem 5 (Extensivity)
If $(\vec{x} ; c ; \Gamma) \longrightarrow(\vec{y} ; d ; \Delta)$ then $\exists \vec{y} d \vdash \mathcal{x} \exists \vec{x} c$.

Proof.

Theorem 6 (Restartability)
If $(\vec{x} ; c ; \Gamma) \longrightarrow^{*}(\vec{y} ; d ; \Delta)$ then $(\vec{x} ; \exists \vec{y} d ; \Gamma) \longrightarrow^{*}(\vec{y} ; d ; \Delta)$.

Proof.

By extensivity and monotonicity.

Properties of CC Transitions (3)

Theorem 5 (Extensivity)
If $(\vec{x} ; c ; \Gamma) \longrightarrow(\vec{y} ; d ; \Delta)$ then $\exists \vec{y} d \vdash \mathcal{x} \exists \vec{x} c$.

Proof.

For any constraint $e, c \wedge e \vdash_{\mathcal{X}} c$.

Theorem 6 (Restartability)
If $(\vec{x} ; c ; \Gamma) \longrightarrow^{*}(\vec{y} ; d ; \Delta)$ then $(\vec{x} ; \exists \vec{y} d ; \Gamma) \longrightarrow^{*}(\vec{y} ; d ; \Delta)$.

Proof.

By extensivity and monotonicity.

CC($\mathcal{X})$ Operational Semanticssss

- observing the set of success stores,
- observing the set of terminal stores (successes and suspensions),
- observing the set of accessible stores,
- observing the set of limit stores?

$$
\mathcal{O}_{\infty}\left(\mathcal{D} . A ; c_{0}\right)=\left\{\sqcup_{?}\left\{\exists \vec{x}_{i} c_{i}\right\}_{i \geq 0} \mid\left(\emptyset ; c_{0} ; A\right) \longrightarrow\left(\overrightarrow{x_{1}} ; c_{1} ; \Gamma_{1}\right) \longrightarrow \ldots\right\}
$$

CC($\mathcal{X})$ Operational Semanticssss

- observing the set of success stores,
$\mathcal{O}_{S S}(\mathcal{D} . A ; c)=\left\{\exists \vec{x} d \in \mathcal{X} \mid(\emptyset ; c ; A) \longrightarrow^{*}(\vec{x} ; d ; \epsilon)\right\}$
- observing the set of terminal stores (successes and suspensions),
- observing the set of accessible stores,
- observing the set of limit stores?

$$
\mathcal{O}_{\infty}\left(\mathcal{D} . A ; C_{0}\right)=\left\{\sqcup_{?}\left\{\exists \vec{x}_{i} c_{i}\right\}_{i \geq 0} \mid\left(\emptyset ; c_{0} ; A\right) \longrightarrow\left(\overrightarrow{x_{1}} ; c_{1} ; \Gamma_{1}\right) \longrightarrow \ldots\right\}
$$

CC($\mathcal{X})$ Operational Semanticssss

- observing the set of success stores,
$\mathcal{O}_{S S}(\mathcal{D} . A ; c)=\left\{\exists \vec{x} d \in \mathcal{X} \mid(\emptyset ; c ; A) \longrightarrow^{*}(\vec{x} ; d ; \epsilon)\right\}$
- observing the set of terminal stores (successes and suspensions),

$$
\mathcal{O}_{t s}(\mathcal{D} . A ; c)=\left\{\exists \vec{x} d \in \mathcal{X} \mid(\emptyset ; c ; A) \longrightarrow^{*}(\vec{x} ; d ; \Gamma) \longrightarrow\right\}
$$

- observing the set of accessible stores,
- observing the set of limit stores?

$$
\mathcal{O}_{\infty}\left(\mathcal{D} . A ; c_{0}\right)=\left\{\sqcup_{?}\left\{\exists \vec{x}_{i} c_{i}\right\}_{i \geq 0} \mid\left(\emptyset ; c_{0} ; A\right) \longrightarrow\left(\overrightarrow{x_{1}} ; c_{1} ; \Gamma_{1}\right) \longrightarrow \ldots\right\}
$$

CC($\mathcal{X})$ Operational Semanticssss

- observing the set of success stores,
$\mathcal{O}_{S S}(\mathcal{D} . A ; c)=\left\{\exists \vec{x} d \in \mathcal{X} \mid(\emptyset ; c ; A) \longrightarrow^{*}(\vec{x} ; d ; \epsilon)\right\}$
- observing the set of terminal stores (successes and suspensions),

$$
\mathcal{O}_{t s}(\mathcal{D} . A ; c)=\left\{\exists \vec{x} d \in \mathcal{X} \mid(\emptyset ; c ; A) \longrightarrow \longrightarrow^{*}(\vec{x} ; d ; \Gamma) \longrightarrow\right\}
$$

- observing the set of accessible stores,

$$
\mathcal{O}_{a s}(\mathcal{D} . A ; c)=\left\{\exists \vec{x} d \in \mathcal{X} \mid(\emptyset ; c ; A) \longrightarrow^{*}(\vec{x} ; d ; \Gamma)\right\}
$$

- observing the set of limit stores?

$$
\mathcal{O}_{\infty}\left(\mathcal{D} . A ; c_{0}\right)=\left\{\sqcup_{?}\left\{\exists \vec{x}_{i} c_{i}\right\}_{i \geq 0} \mid\left(\emptyset ; c_{0} ; A\right) \longrightarrow\left(\overrightarrow{x_{1}} ; c_{1} ; \Gamma_{1}\right) \longrightarrow \ldots\right\}
$$

CC(H) 'append' Program(s)

Undirectional CLP style

CC(H) 'append' Program(s)

Undirectional CLP style

$$
\begin{aligned}
\operatorname{append}(A, B, C) & =\operatorname{tell}(A=[]) \| \operatorname{tell}(C=B) \\
& +\operatorname{tell}(A=[X \mid L])\|\operatorname{tell}(C=[X \mid R])\| \text { append }(L, B, R)
\end{aligned}
$$

CC(H) 'append' Program(s)

Undirectional CLP style

$\operatorname{append}(A, B, C)=\operatorname{tell}(A=[]) \| \operatorname{tell}(C=B)$
$+\operatorname{tell}(A=[X \mid L]) \|$ tell $(C=[X \mid R]) \|$ append (L, B, R)
Directional CC success store style

CC(H) 'append' Program(s)

Undirectional CLP style

$$
\begin{aligned}
\operatorname{append}(A, B, C) & =\operatorname{tell}(A=[]) \| \operatorname{tell}(C=B) \\
& +\operatorname{tell}(A=[X \mid L])\|\operatorname{tell}(C=[X \mid R])\| \text { append }(L, B, R)
\end{aligned}
$$

Directional CC success store style $\operatorname{append}(A, B, C)=(A=[] \rightarrow \operatorname{tell}(C=B))$ $+\forall X, L(A=[X \mid L] \rightarrow$ tell $(C=[X \mid R]) \|$ append $(L, B, R))$

CC(H) 'append' Program(s)

Undirectional CLP style

$$
\begin{aligned}
\operatorname{append}(A, B, C) & =\operatorname{tell}(A=[]) \| \operatorname{tell}(C=B) \\
& +\operatorname{tell}(A=[X \mid L])\|\operatorname{tell}(C=[X \mid R])\| \text { append }(L, B, R)
\end{aligned}
$$

Directional CC success store style
append $(A, B, C)=(A=[] \rightarrow$ tell $(C=B))$

$$
+\forall X, L(A=[X \mid L] \rightarrow \text { tell }(C=[X \mid R]) \| \text { append }(L, B, R))
$$

Directional CC terminal store style

CC(H) 'append' Program(s)

Undirectional CLP style

 $\operatorname{append}(A, B, C)=\operatorname{tell}(A=[]) \| \operatorname{tell}(C=B)$$+\operatorname{tell}(A=[X \mid L]) \|$ tell $(C=[X \mid R]) \|$ append (L, B, R)
Directional CC success store style
$\operatorname{append}(A, B, C)=(A=[] \rightarrow$ tell $(C=B))$

$$
+\forall X, L(A=[X \mid L] \rightarrow \text { tell }(C=[X \mid R]) \| \text { append }(L, B, R))
$$

Directional CC terminal store style $\operatorname{append}(A, B, C)=A=[] \rightarrow$ tell $(C=B)$

$$
\| \forall X, L(A=[X \mid L] \rightarrow \operatorname{tel}(C=[X \mid R]) \| \operatorname{append}(L, B, R))
$$

CC(H) 'merge' Program

Merging streams

$$
\begin{aligned}
& \operatorname{merge}(A, B, C)=(A=[] \rightarrow \text { tell }(C=B)) \\
& \quad+(B=[] \rightarrow \text { tell }(C=A)) \\
& \quad+\forall X, L(A=[X \mid L] \rightarrow \text { tell }(C=[X \mid R]) \| \operatorname{merge}(L, B, R)) \\
& \quad+\forall X, L(B=[X \mid L] \rightarrow \operatorname{tell}(C=[X \mid R]) \| \operatorname{merge}(A, L, R))
\end{aligned}
$$

Good for the observable(s?)
Many-to-one communication: client (C1, ...)
client $(C n, \ldots)$
server $([C 1, \ldots, C n], \ldots)=$

$$
\sum_{i=1}^{n} \forall X, L(C i=[X \mid L] \rightarrow \cdots \| \operatorname{server}([C 1, \ldots, L, \ldots, C n], \ldots)
$$

CC(H) 'merge' Program

Merging streams

$$
\begin{aligned}
& \operatorname{merge}(A, B, C)=(A=[] \rightarrow \text { tell }(C=B)) \\
& \quad+(B=[] \rightarrow \text { tell }(C=A)) \\
& \quad+\forall X, L(A=[X \mid L] \rightarrow \text { tell }(C=[X \mid R]) \| \operatorname{merge}(L, B, R)) \\
& \quad+\forall X, L(B=[X \mid L] \rightarrow \operatorname{tell}(C=[X \mid R]) \| \operatorname{merge}(A, L, R))
\end{aligned}
$$

Good for the $\mathcal{O}_{s s}$ observable
Many-to-one communication: client (C1, ...)
client(Cn,...)
server $([C 1, \ldots, C n], \ldots)=$

$$
\sum_{i=1}^{n} \forall X, L(C i=[X \mid L] \rightarrow \cdots \| \operatorname{server}([C 1, \ldots, L, \ldots, C n], \ldots)
$$

CC(H) 'merge' Program

Merging streams

$$
\begin{aligned}
& \operatorname{merge}(A, B, C)=(A=[] \rightarrow \text { tell }(C=B)) \\
& \quad+(B=[] \rightarrow \text { tell }(C=A)) \\
& \quad+\forall X, L(A=[X \mid L] \rightarrow \text { tell }(C=[X \mid R]) \| \operatorname{merge}(L, B, R)) \\
& \quad+\forall X, L(B=[X \mid L] \rightarrow \operatorname{tell}(C=[X \mid R]) \| \operatorname{merge}(A, L, R))
\end{aligned}
$$

Good for the $\mathcal{O}_{s s}$ observable can we get $\mathcal{O}_{t s}$?
Many-to-one communication: client $(C 1, \ldots)$
client(Cn,...)
server $([C 1, \ldots, C n], \ldots)=$

$$
\sum_{i=1}^{n} \forall X, L(C i=[X \mid L] \rightarrow \cdots \| \operatorname{server}([C 1, \ldots, L, \ldots, C n], \ldots)
$$

$\mathrm{CC}(\mathcal{F D})$ Finite Domain Constraints with indexicals

Approximating ask condition with the Elimination condition
EL: $c \wedge \Gamma \longrightarrow \Gamma$
if

$\mathrm{CC}(\mathcal{F D})$ Finite Domain Constraints with indexicals

Approximating ask condition with the Elimination condition
EL: $c \wedge \Gamma \longrightarrow \Gamma$
if $\mathcal{F D} \vDash \subset \sigma$ for every valuation σ of the variables in c by values of their domain.

Suppose access to min and max indexicals: $\operatorname{ask}(X \geq Y+k)$

$\mathrm{CC}(\mathcal{F D})$ Finite Domain Constraints with indexicals

Approximating ask condition with the Elimination condition
EL: $c \wedge \Gamma \longrightarrow \Gamma$
if $\mathcal{F D} \vDash C \sigma$ for every valuation σ of the variables in c by values of their domain.

Suppose access to min and max indexicals: $\operatorname{ask}(X \geq Y+k) \quad \cong \min (X) \geq \max (Y)+k$ $\operatorname{asknot}(X \geq Y+k)$

$\mathrm{CC}(\mathcal{F D})$ Finite Domain Constraints with indexicals

Approximating ask condition with the Elimination condition
EL: $c \wedge \Gamma \longrightarrow \Gamma$
if $\mathcal{F D} \mid=C \sigma$ for every valuation σ of the variables in c by values of their domain.

Suppose access to min and max indexicals: $\operatorname{ask}(X \geq Y+k) \quad \cong \min (X) \geq \max (Y)+k$
$\operatorname{asknot}(X \geq Y+k) \cong \max (X)<\min (Y)+k$
$\operatorname{ask}(X \neq Y)$

$\mathrm{CC}(\mathcal{F D})$ Finite Domain Constraints with indexicals

Approximating ask condition with the Elimination condition
EL: $c \wedge \Gamma \longrightarrow \Gamma$
if $\mathcal{F D} \mid=C \sigma$ for every valuation σ of the variables in c by values of their domain.

Suppose access to min and max indexicals: $\operatorname{ask}(X \geq Y+k) \quad \cong \min (X) \geq \max (Y)+k$
$\operatorname{asknot}(X \geq Y+k) \cong \max (X)<\min (Y)+k$
$\operatorname{ask}(X \neq Y) \quad \cong \max (X)<\min (Y) \vee \min (X)>\max (Y)$ a better approximation with dom:

$\mathrm{CC}(\mathcal{F D})$ Finite Domain Constraints with indexicals

Approximating ask condition with the Elimination condition
EL: $c \wedge \Gamma \longrightarrow \Gamma$
if $\mathcal{F D} \mid=C \sigma$ for every valuation σ of the variables in c by values of their domain.

Suppose access to min and max indexicals: $\operatorname{ask}(X \geq Y+k) \quad \cong \min (X) \geq \max (Y)+k$
$\operatorname{asknot}(X \geq Y+k) \cong \max (X)<\min (Y)+k$
$\operatorname{ask}(X \neq Y) \quad \cong \max (X)<\min (Y) \vee \min (X)>\max (Y)$
a better approximation with dom:
$\cong(\operatorname{dom}(X) \cap \operatorname{dom}(Y)=\emptyset)$

CC($\mathcal{F D})$ Constraints as "in.."

Basic constraints

$(X \geq Y+k)=$

CC($\mathcal{F D})$ Constraints as "in.."

Basic constraints
$(X \geq Y+k)=\quad X$ in $\min (Y)+k . . \infty \| Y$ in $0 . . \max (X)-k$
Reified constraints
$(B \Leftrightarrow X=A)=$

CC($\mathcal{F D})$ Constraints as "in.."

Basic constraints
$(X \geq Y+k)=\quad X$ in $\min (Y)+k . . \infty \| Y$ in $0 . . \max (X)-k$
Reified constraints
$(B \Leftrightarrow X=A)=B$ in $0 . .1 \|$

CC($\mathcal{F D})$ Constraints as "in.."

Basic constraints
$(X \geq Y+k)=\quad X$ in $\min (Y)+k . . \infty \| Y$ in $0 . . \max (X)-k$
Reified constraints

$$
\begin{aligned}
(B \Leftrightarrow X=A)= & B \text { in } 0 . .1 \| \\
& X=A \rightarrow B=1 \quad \| X \neq A \rightarrow B=0 \\
& B=1 \rightarrow X=A \quad \| B=0 \rightarrow X \neq A
\end{aligned}
$$

Higher-order constraints
$\operatorname{card}(N, L)=$

CC($\mathcal{F D})$ Constraints as "in.."

Basic constraints
$(X \geq Y+k)=\quad X$ in $\min (Y)+k . . \infty \| Y$ in $0 . . \max (X)-k$
Reified constraints

$$
\begin{aligned}
(B \Leftrightarrow X=A)= & B \text { in } 0 . .1 \| \\
& X=A \rightarrow B=1 \quad \| X \neq A \rightarrow B=0 \\
& B=1 \rightarrow X=A \quad \| B=0 \rightarrow X \neq A
\end{aligned}
$$

Higher-order constraints
$\operatorname{card}(N, L)=\quad L=[] \rightarrow N=0 \|$

CC($\mathcal{F D})$ Constraints as "in.."

Basic constraints
$(X \geq Y+k)=\quad X$ in $\min (Y)+k . . \infty \| Y$ in $0 . . \max (X)-k$
Reified constraints

$$
\begin{aligned}
(B \Leftrightarrow X=A)= & B \text { in } 0 . .1 \| \\
& X=A \rightarrow B=1 \quad \| X \neq A \rightarrow B=0 \\
& B=1 \rightarrow X=A \| B=0 \rightarrow X \neq A
\end{aligned}
$$

Higher-order constraints

$$
\begin{aligned}
\operatorname{card}(N, L)= & L=[] \rightarrow N=0 \| \\
& L=[C \mid S] \rightarrow \\
& \exists B, M(B \Leftrightarrow C\|N=B+M\| \operatorname{card}(M, S))
\end{aligned}
$$

Andora Principle

"Always execute deterministic computation first".
Disjunctive scheduling:
deterministic propagation of the disjunctive constraints for which one of the alternatives is dis-entailed:

$$
\operatorname{card}\left(1,\left[x \geq y+d_{y}, y \geq x+d_{x}\right]\right)
$$

before creating choice points:

$$
\left(x \geq y+d_{y}\right)+\left(y \geq x+d_{x}\right)
$$

Constructive Disjunction in $\operatorname{CC}(\mathcal{F D})$ (1)

$$
\vee L \quad \frac{c \vdash_{\mathcal{X}} e d \vdash_{\mathcal{X}} e}{c \vee d \vdash_{\mathcal{X}} e}
$$

Intuitionistic logic tells us we can infer the common information to both branches of a disjunction without creating choice points!

$$
\begin{aligned}
& \max (X, Y, Z)=(X>Y \| Z=X)+(X<=Y \| Z=Y) \\
& \text { or } \\
& \max (X, Y, Z)=X>Y \rightarrow Z=X+X<=Y \rightarrow Z=Y . \\
& \text { or } \\
& \max (X, Y, Z)=X>Y \rightarrow Z=X \| X<=Y \rightarrow Z=Y . \\
& \text { better? (with indexicals) }
\end{aligned}
$$

Constructive Disjunction in $\operatorname{CC}(\mathcal{F D})$ (1)

$$
\vee L \quad \frac{c \vdash_{\mathcal{X}} e d \vdash_{\mathcal{X}} e}{c \vee d \vdash_{\mathcal{X}} e}
$$

Intuitionistic logic tells us we can infer the common information to both branches of a disjunction without creating choice points!

$$
\begin{aligned}
& \max (X, Y, Z)=(X>Y \| Z=X)+(X<=Y \| Z=Y) \\
& \text { or } \\
& \max (X, Y, Z)=X>Y \rightarrow Z=X+X<=Y \rightarrow Z=Y . \\
& \text { or } \\
& \max (X, Y, Z)=X>Y \rightarrow Z=X \| X<=Y \rightarrow Z=Y . \\
& \text { better? (with indexicals) } \\
& \max (X, Y, Z)=Z \text { in } \min (X) . . \infty \| Z \text { in } \min (Y) . . \infty \\
& \quad \| Z \text { in } \operatorname{dom}(X) \cup \operatorname{dom}(Y) \| \cdots
\end{aligned}
$$

Constructive Disjunction in $\operatorname{CC}(\mathcal{F D})$ (2)

Disjunctive precedence constraints
disjunctive(T1, D1, T2, D2) =

$$
(T 1>=T 2+D 2)+(T 2>=T 1+D 1)
$$

Using constructive disjunction

Constructive Disjunction in $\operatorname{CC}(\mathcal{F D})$ (2)

Disjunctive precedence constraints
disjunctive $(T 1, D 1, T 2, D 2)=$

$$
(T 1>=T 2+D 2)+(T 2>=T 1+D 1)
$$

Using constructive disjunction disjunctive $(T 1, D 1, T 2, D 2)=$

$$
\begin{aligned}
& T 1 \text { in }(0 . . \max (T 2)-D 1) \cup(\min (T 2)+D 2 . . \infty) \| \\
& T 2 \text { in }(0 . . \max (T 1)-D 2) \cup(\min (T 1)+D 1 . . \infty)
\end{aligned}
$$

Part X

CC - Denotational Semantics

Part X: CC - Denotational Semantics

(33) Deterministic Case
(34) Constraint Propagation
(35) Non-deterministic Case
(36) Sequentiality

Deterministic CC

Agents:

$$
A::=\operatorname{tell}(c)|c \rightarrow A| A \| A|\exists x A| p(\vec{x})
$$

- No choice operator
- Deterministic ask.

Replace non-deterministic pattern matching

$$
\forall \vec{x}(c \rightarrow A)
$$

by deterministic ask and tell:

Deterministic CC

Agents:

$$
A::=\operatorname{tell}(c)|c \rightarrow A| A \| A|\exists x A| p(\vec{x})
$$

- No choice operator
- Deterministic ask.

Replace non-deterministic pattern matching

$$
\forall \vec{x}(c \rightarrow A)
$$

by deterministic ask and tell:

$$
(\exists \vec{x} c) \rightarrow \exists \vec{x}(\text { tel } l(c) \| A)
$$

Denotational semantics: input/output function

Input: initial store c_{0}
Output: terminal store c or false for infinite computations

Order the lattice of constraints (\mathcal{C}, \leq) by the information ordering:
$\forall c, d \in \mathcal{C} c \leq d$ iff $d \vdash_{\mathcal{X}} c$ iff $\uparrow d \subset \uparrow c$ where $\uparrow c=\{d \in \mathcal{C} \mid c \leq d\}$.
$\llbracket \mathcal{D} . A \rrbracket: \mathcal{C} \rightarrow \mathcal{C}$ is
(1) Extensive: $\forall c c \leq \llbracket \mathcal{D} . A \rrbracket C$
(2) Monotone: $\forall c, d c \leq d \Rightarrow \llbracket \mathcal{D} . A \rrbracket c \leq \llbracket \mathcal{D} . A \rrbracket d$
(3) Idempotent: $\forall C \llbracket \mathcal{D} . A \rrbracket C=\llbracket \mathcal{D} . A \rrbracket(\llbracket \mathcal{D} . A \rrbracket C)$
i.e., $\llbracket \mathcal{D} . A \rrbracket$ is a over (\mathcal{C}, \leq).

Denotational semantics: input/output function

Input: initial store c_{0}
Output: terminal store c or false for infinite computations

Order the lattice of constraints (\mathcal{C}, \leq) by the information ordering:
$\forall c, d \in \mathcal{C} c \leq d$ iff $d \vdash_{\mathcal{X}} c$ iff $\uparrow d \subset \uparrow c$ where $\uparrow c=\{d \in \mathcal{C} \mid c \leq d\}$.
$\llbracket \mathcal{D} . A \rrbracket: \mathcal{C} \rightarrow \mathcal{C}$ is
(1) Extensive: $\forall c c \leq \llbracket \mathcal{D} . A \rrbracket C$
(2) Monotone: $\forall c, d c \leq d \Rightarrow \llbracket \mathcal{D} . A \rrbracket c \leq \llbracket \mathcal{D} . A \rrbracket d$
(3) Idempotent: $\forall C \llbracket \mathcal{D} . A \rrbracket C=\llbracket \mathcal{D} . A \rrbracket(\llbracket \mathcal{D} . A \rrbracket C)$
i.e., $\llbracket \mathcal{D} . A \rrbracket$ is a closure operator $\operatorname{over}(\mathcal{C}, \leq)$.

Closure Operators

Proposition 7

A closure operator f is characterized by the set of its fixpoints Fix (f)

Proof.

Closure Operators

Proposition 7

A closure operator f is characterized by the set of its fixpoints Fix (f)

Proof.

We show that $f=\lambda x \cdot \min (\operatorname{Fix}(f) \cap \uparrow x)$.

Closure Operators

Proposition 7

A closure operator f is characterized by the set of its fixpoints Fix (f)

Proof.

We show that $f=\lambda x \cdot \min (F i x(f) \cap \uparrow x)$.
Let $y=f(x)$. By idempotence and extensivity, $y \in \operatorname{Fix}(f) \cap \uparrow x$ By monotonicity $y=f(x) \leq f\left(y^{\prime}\right)$ for any $y^{\prime} \in \uparrow x$ Hence, if $y^{\prime} \in \operatorname{Fix}(f) \cap \uparrow x$ then $y \leq y^{\prime}$

Semantic Equations

Let $\llbracket \rrbracket: \mathcal{D} \times A \rightarrow \mathcal{P}(\mathcal{C})$ be a closure operator presented by the set of its fixpoints, and defined as the least fixpoint set of:

$$
\begin{aligned}
& \llbracket \mathcal{D} . \operatorname{te} l(c) \rrbracket \\
& \llbracket \mathcal{D} . c \rightarrow A \rrbracket
\end{aligned}
$$

$$
\llbracket \mathcal{D} . A \| B \rrbracket
$$

$$
\llbracket \mathcal{D} . \exists x A \rrbracket
$$

$$
\llbracket \mathcal{D} \cdot p(\vec{x}) \rrbracket \quad \text { if } p(\vec{y})=A \in \mathcal{D}
$$

Theorem 8 ([SRP91popl])

For any deterministic process D.A

$$
\mathcal{O}_{t s}(\mathcal{D} . A ; c)= \begin{cases}\{\min (\llbracket \mathcal{D} . A \rrbracket \cap \uparrow c)\} & \text { if } \llbracket \mathcal{D} . A \rrbracket \neq \emptyset \\ \emptyset & \text { otherwise }\end{cases}
$$

Semantic Equations

Let $\llbracket \rrbracket: \mathcal{D} \times A \rightarrow \mathcal{P}(\mathcal{C})$ be a closure operator presented by the set of its fixpoints, and defined as the least fixpoint set of:

$$
\begin{array}{ll}
\llbracket \mathcal{D} \cdot t e l l(c) \rrbracket \quad=\uparrow c & \\
\llbracket \mathcal{D} \cdot c \rightarrow A \rrbracket & \\
& \\
\llbracket \mathcal{D} \cdot A \| B \rrbracket & \\
\llbracket \mathcal{D} \cdot \exists x A \rrbracket & \\
\llbracket \mathcal{D} \cdot p(\vec{x}) \rrbracket & \text { if } p(\vec{y})=A \in \mathcal{D})
\end{array}
$$

Theorem 8 ([SRP91popl])

For any deterministic process D.A

$$
\mathcal{O}_{t s}(\mathcal{D} . A ; c)= \begin{cases}\{\min (\llbracket \mathcal{D} . A \rrbracket \cap \uparrow c)\} & \text { if } \llbracket \mathcal{D} . A \rrbracket \neq \emptyset \\ \emptyset & \text { otherwise }\end{cases}
$$

Semantic Equations

Let $\llbracket \rrbracket: \mathcal{D} \times A \rightarrow \mathcal{P}(\mathcal{C})$ be a closure operator presented by the set of its fixpoints, and defined as the least fixpoint set of:

$$
\begin{aligned}
& \llbracket \mathcal{D} . \operatorname{te} / l(c) \rrbracket=\uparrow c \quad(\simeq \lambda s . s \wedge c) \\
& \llbracket \mathcal{D} . c \rightarrow A \rrbracket=(\mathcal{C} \backslash \uparrow C) \cup(\uparrow C \cap \llbracket \mathcal{D} . A \rrbracket) \\
& \text { (} \sim \lambda s \text {. if } s \vdash_{\mathcal{C}} c \text { then } \llbracket \mathcal{D} . A \rrbracket s \text { else } s \text {) } \\
& \llbracket \mathcal{D} . A \| B \rrbracket \\
& \llbracket \mathcal{D} . \exists x A \rrbracket \\
& \llbracket \mathcal{D} \cdot p(\vec{x}) \rrbracket \quad \text { if } p(\vec{y})=A \in \mathcal{D}
\end{aligned}
$$

Theorem 8 ([SRP91popl])

For any deterministic process D.A

$$
\mathcal{O}_{t s}(\mathcal{D} . A ; c)= \begin{cases}\{\min (\llbracket \mathcal{D} . A \rrbracket \cap \uparrow c)\} & \text { if } \llbracket \mathcal{D} . A \rrbracket \neq \emptyset \\ \emptyset & \text { otherwise }\end{cases}
$$

Semantic Equations

Let $\llbracket \rrbracket: \mathcal{D} \times A \rightarrow \mathcal{P}(\mathcal{C})$ be a closure operator presented by the set of its fixpoints, and defined as the least fixpoint set of:

$$
\begin{aligned}
& \llbracket \mathcal{D} \cdot \operatorname{tell}(c) \rrbracket \quad=\uparrow c \quad(\simeq \lambda s . s \wedge c) \\
& \llbracket \mathcal{D} . C \rightarrow A \rrbracket=(\mathcal{C} \backslash \uparrow C) \cup(\uparrow C \cap \llbracket \mathcal{D} . A \rrbracket) \\
& \text { (} \simeq \lambda s \text {. if } s \vdash_{\mathcal{C}} c \text { then } \llbracket \mathcal{D} . A \rrbracket s \text { else } s \text {) } \\
& \llbracket \mathcal{D} . A \| B \rrbracket \quad=\llbracket \mathcal{D} . A \rrbracket \cap \llbracket \mathcal{D} . B \rrbracket \quad(\simeq Y(\lambda s . \llbracket \mathcal{D} . A \rrbracket \llbracket \mathcal{D} . B \rrbracket s)) \\
& \llbracket \mathcal{D} . \exists x A \rrbracket \\
& \llbracket \mathcal{D} . p(\vec{X}) \rrbracket \\
& \text { if } p(\vec{y})=A \in \mathcal{D}
\end{aligned}
$$

Theorem 8 ([SRP91popl])

For any deterministic process D.A

$$
\mathcal{O}_{t s}(\mathcal{D} . A ; c)= \begin{cases}\{\min (\llbracket \mathcal{D} . A \rrbracket \cap \uparrow c)\} & \text { if } \llbracket \mathcal{D} . A \rrbracket \neq \emptyset \\ \emptyset & \text { otherwise }\end{cases}
$$

Semantic Equations

Let $\llbracket \rrbracket: \mathcal{D} \times A \rightarrow \mathcal{P}(\mathcal{C})$ be a closure operator presented by the set of its fixpoints, and defined as the least fixpoint set of:

$$
\begin{aligned}
& \llbracket \mathcal{D} \cdot \operatorname{tell}(c) \rrbracket \quad=\uparrow c \quad(\simeq \lambda s . s \wedge c) \\
& \llbracket \mathcal{D} . C \rightarrow A \rrbracket=(\mathcal{C} \backslash \uparrow C) \cup(\uparrow C \cap \llbracket \mathcal{D} . A \rrbracket) \\
& \text { (} \simeq \lambda s \text {. if } s \vdash_{\mathcal{C}} c \text { then } \llbracket \mathcal{D} . A \rrbracket s \text { else } s \text {) } \\
& \llbracket \mathcal{D} . A \| B \rrbracket \quad=\llbracket \mathcal{D} . A \rrbracket \cap \llbracket \mathcal{D} . B \rrbracket \quad(\simeq Y(\lambda s . \llbracket \mathcal{D} . A \llbracket \llbracket \mathcal{D} . B \rrbracket s)) \\
& \llbracket \mathcal{D} . \exists x A \rrbracket \quad=\{d \mid c \in \llbracket \mathcal{D} . A \rrbracket, \exists x c=\exists x d\}(\simeq \lambda s . \exists x \llbracket \mathcal{D} . A \rrbracket \exists x s) \\
& \llbracket \mathcal{D} \cdot p(\vec{x}) \rrbracket \quad \text { if } p(\vec{y})=A \in \mathcal{D}
\end{aligned}
$$

Theorem 8 ([SRP91popl])

For any deterministic process D.A

$$
\mathcal{O}_{t s}(\mathcal{D} \cdot A ; c)= \begin{cases}\{\min (\llbracket \mathcal{D} . A \rrbracket \cap \uparrow c)\} & \text { if } \llbracket \mathcal{D} . A \rrbracket \neq \emptyset \\ \emptyset & \text { otherwise }\end{cases}
$$

Semantic Equations

Let $\llbracket \rrbracket: \mathcal{D} \times A \rightarrow \mathcal{P}(\mathcal{C})$ be a closure operator presented by the set of its fixpoints, and defined as the least fixpoint set of:

$$
\begin{aligned}
& \llbracket \mathcal{D} \cdot \operatorname{tell}(c) \rrbracket \quad=\uparrow c \quad(\simeq \lambda s . s \wedge c) \\
& \llbracket \mathcal{D} . C \rightarrow A \rrbracket=(\mathcal{C} \backslash \uparrow C) \cup(\uparrow C \cap \llbracket \mathcal{D} . A \rrbracket) \\
& \text { (} \simeq \lambda s \text {. if } s \vdash_{\mathcal{C}} c \text { then } \llbracket \mathcal{D} . A \rrbracket s \text { else } s \text {) } \\
& \llbracket \mathcal{D} . A \| B \rrbracket \quad=\llbracket \mathcal{D} . A \rrbracket \cap \llbracket \mathcal{D} . B \rrbracket \quad(\simeq Y(\lambda s . \llbracket \mathcal{D} . A \llbracket \llbracket \mathcal{D} . B \rrbracket s)) \\
& \llbracket \mathcal{D} . \exists x A \rrbracket=\{d \mid c \in \llbracket \mathcal{D} . A \rrbracket, \exists x c=\exists x d\}(\simeq \lambda s . \exists x \llbracket \mathcal{D} . A \rrbracket \exists x s) \\
& \llbracket \mathcal{D} \cdot p(\vec{x}) \rrbracket=\llbracket \mathcal{D} \cdot A[\vec{x} / \vec{y}] \rrbracket \text { if } p(\vec{y})=A \in \mathcal{D} \quad(\simeq \lambda s . \llbracket \mathcal{D} \cdot A[\bar{x} / \bar{y}] \rrbracket s)
\end{aligned}
$$

Theorem 8 ([SRP91popl])

For any deterministic process D.A

$$
\mathcal{O}_{t s}(\mathcal{D} . A ; c)= \begin{cases}\{\min (\llbracket \mathcal{D} . A \rrbracket \cap \uparrow c)\} & \text { if } \llbracket \mathcal{D} . A \rrbracket \neq \emptyset \\ \emptyset & \text { otherwise }\end{cases}
$$

Constraint Propagation and Closure Operators

An environment $E: \mathcal{V} \rightarrow 2^{D}$ associates a domain of possible values to each variable.

Consider the lattice of environments $(\mathcal{E}$, ᄃ), for the information ordering defined by $E \sqsubset E^{\prime}$ if and only if $\forall x \in \mathcal{V}, E(x) \supseteq E^{\prime}(x)$.

The semantics of a constraint propagator c can be defined as a closure operator over \mathcal{E}, noted \bar{c}, i.e., a mapping $\mathcal{E} \rightarrow \mathcal{E}$ satisfying
(1) (extensivity) $E \sqsubset \bar{c}(E)$,
(2) (monotonicity) if $E \sqsubset E^{\prime}$ then $\bar{c}(E) \sqsubset \bar{c}\left(E^{\prime}\right)$
© (idempotence) $\bar{c}(\bar{c}(E))=\bar{c}(E)$.

Example in $\mathrm{CC}(\mathcal{F D})$

Let $b=(x>y)$ and $c=(y>x)$.
Let $E(x)=[1,10], E(y)=[1,10]$ be the initial environment
we have

$$
\begin{aligned}
\bar{b} E(x) & =[2,10] \\
\bar{c} E(x) & =[1,9] \\
(\bar{b} \sqcup \bar{c}) E(x) & =[2,9]
\end{aligned}
$$

The closure operator $\overline{b, c}$ associated to the conjunction of constraints $b \wedge c$ gives the intended semantics:

$$
\overline{b, c} E(x)=Y(\lambda s . \bar{b}(\bar{c}(s))) E(x)=\emptyset
$$

Chaotic Iteration of Monotone Operators

Let $L(\sqsubset, \perp, \top, \sqcup, \sqcap)$ be a complete lattice, and $F: L^{n} \rightarrow L^{n}$ a monotone operator over L^{n} with $n>0$.

The chaotic iteration of F from $D \in L^{n}$ for a fair transfinite choice sequence $<J^{\delta}: \delta \in$ Ord $>$ is the sequence $\left\langle X^{\delta}\right\rangle$:

$$
\begin{aligned}
& X^{0}=D, \\
& X_{i}^{\delta+1}=F_{i}\left(X^{\delta}\right) \text { if } i \in J^{\delta}, X_{i}^{\delta+1}=X_{i}^{\delta} \text { otherwise, } \\
& X_{i}^{\delta}=\bigsqcup_{\alpha<\delta} X_{i}^{\alpha} \text { for any limit ordinal } \delta .
\end{aligned}
$$

Theorem 9 ([CC77popl])

Let $D \in L^{n}$ be a pre fixpoint of F (i.e., $D \sqsubset F(D)$). Any chaotic iteration of F starting from D is increasing and has for limit the least fixpoint of F above D.

Constraint Propagation as Chaotic Iteration

Corollary 10 (Correctness of constraint propagation)

 Let $c=a_{1} \wedge \cdots \wedge a_{n}$, and E be an environment. Then $\bar{c}(E)$ is the limit of any fair iteration of closure operators $\bar{a}_{1}, \ldots, \bar{a}_{n}$ from E.Let $F: L^{n+1} \rightarrow L^{n+1}$ be defined by its projections $F_{i}{ }^{\prime}$ s:

$$
\left\{\begin{array}{l}
E_{1}=\bar{a}_{1}(E)=F_{1}\left(E_{1}, \ldots, E_{n}, E\right) \\
E_{2}=\bar{a}_{2}(E)=F_{2}\left(E_{1}, \ldots, E_{n}, E\right) \\
\ldots \\
E_{n}=\bar{a}_{n}(E)=F_{n}\left(E_{1}, \ldots, E_{n}, E\right) \\
E=E_{1} \cap \cdots \cap E_{n}=F_{n+1}\left(E_{1}, \ldots, E_{n}, E\right)
\end{array}\right.
$$

The functions F_{i} 's are obviously monotonic, any fair iteration of $\bar{a}_{1}, \ldots, \bar{a}_{n}$ is thus a chaotic iteration of F_{1}, \ldots, F_{n+1} therefore its limit is equal to the least fixpoint greater than E, i.e., $\bar{C}(E)$.

Denotational Semantics, Non-deterministic CC

 Problem: the set of terminal stores of a CC process with one step guarded choice (i.e., global choice) is not compositional:$$
\begin{aligned}
A= & \operatorname{ask}(x=a) \rightarrow \text { tell }(y=a) \\
& +\quad \text { ask }(\operatorname{true}) \rightarrow \text { tell(false }) \\
B= & \text { tell }(x=a \wedge y=a)
\end{aligned}
$$

A and B have the same set of terminal stores
but that is not the case for $\exists x B$ and $\exists x A$

Denotational Semantics, Non-deterministic CC

 Problem: the set of terminal stores of a CC process with one step guarded choice (i.e., global choice) is not compositional:$$
\begin{array}{ll}
A= & \operatorname{ask}(x=a) \rightarrow \text { tell }(y=a) \\
& +\quad \text { ask }(\text { true }) \rightarrow \text { tell false }) \\
B= & \text { tell }(x=a \wedge y=a)
\end{array}
$$

A and B have the same set of terminal stores

$$
\uparrow\{x=a \wedge y=a\}
$$

(with global choice $\mathcal{C} \backslash \uparrow(x=a)$ is not a terminal store for A) but that is not the case for $\exists x B$ and $\exists x A$

Denotational Semantics, Non-deterministic CC

 Problem: the set of terminal stores of a CC process with one step guarded choice (i.e., global choice) is not compositional:$$
\begin{array}{ll}
A= & \operatorname{ask}(x=a) \rightarrow \text { tell }(y=a) \\
& +\quad \text { ask }(\text { true }) \rightarrow \text { tell false }) \\
B= & \text { tell }(x=a \wedge y=a)
\end{array}
$$

A and B have the same set of terminal stores

$$
\uparrow\{x=a \wedge y=a\}
$$

(with global choice $\mathcal{C} \backslash \uparrow(x=a)$ is not a terminal store for A) but that is not the case for $\exists x B$ and $\exists x A$
$y=a$ is a terminal store for $\exists x B$ and not for $\exists x A \ldots$

Non-deterministic CC(X) with Local Choice (1)

The set of terminal stores of a CC process with blind choice can be characterized easily by adding the semantic equation: $\llbracket \mathcal{D} . A+B \rrbracket=\llbracket \mathcal{D} . A \rrbracket \cup \llbracket \mathcal{D} . B \rrbracket$
Theorem 11 ([BGP96sas])
$\llbracket \mathcal{D} . A \rrbracket=\bigcup_{c \in \mathcal{C}} \mathcal{O}_{t s}(\mathcal{D} . A ; c)$
but the input-output relation cannot be recovered from $\llbracket \mathcal{D} . A \rrbracket$:

$$
\begin{aligned}
& \llbracket t e l /(\text { true }) \rrbracket= \\
& \llbracket t e l(\text { true })+\text { tell }(c) \rrbracket= \\
& \left.\mathcal{O}_{t s}(\text { tell(true }) ; \text { true }\right)= \\
& \mathcal{O}_{t s}(\text { tell }(\text { true })+\text { tell }(c) ; \text { true })=
\end{aligned}
$$

Idea:

Non-deterministic CC(X) with Local Choice (1)

The set of terminal stores of a CC process with blind choice can be characterized easily by adding the semantic equation: $\llbracket \mathcal{D} . A+B \rrbracket=\llbracket \mathcal{D} . A \rrbracket \cup \llbracket \mathcal{D} . B \rrbracket$
Theorem 11 ([BGP96sas])
$\llbracket \mathcal{D} . A \rrbracket=\bigcup_{c \in \mathcal{C}} \mathcal{O}_{t s}(\mathcal{D} . A ; c)$
but the input-output relation cannot be recovered from $\llbracket \mathcal{D} . A \rrbracket$:

$$
\begin{aligned}
& \llbracket t e l /(\text { true }) \rrbracket=\mathcal{C} \\
& \llbracket t e l(\text { true })+\text { tell }(c) \rrbracket= \\
& \left.\mathcal{O}_{t s}(\text { tell(true }) ; \text { true }\right)= \\
& \mathcal{O}_{t s}(t e l /(\text { true })+\text { tell }(c) ; \text { true })=
\end{aligned}
$$

Idea:

Non-deterministic CC(X) with Local Choice (1)

The set of terminal stores of a CC process with blind choice can be characterized easily by adding the semantic equation: $\llbracket \mathcal{D} . A+B \rrbracket=\llbracket \mathcal{D} . A \rrbracket \cup \llbracket \mathcal{D} . B \rrbracket$
Theorem 11 ([BGP96sas])
$\llbracket \mathcal{D} . A \rrbracket=\bigcup_{c \in \mathcal{C}} \mathcal{O}_{t s}(\mathcal{D} . A ; c)$
but the input-output relation cannot be recovered from $\llbracket \mathcal{D} . A \rrbracket$:

$$
\begin{aligned}
& \llbracket t e l /(\text { true }) \rrbracket=\mathcal{C} \\
& \llbracket t e l(\text { true })+\text { tell }(c) \rrbracket=\mathcal{C} \\
& \left.\mathcal{O}_{t s}(\text { tell(true }) ; \text { true }\right)= \\
& \mathcal{O}_{t s}(t e l /(\text { true })+\text { tell }(c) ; \text { true })=
\end{aligned}
$$

Idea:

Non-deterministic CC(X) with Local Choice (1)

The set of terminal stores of a CC process with blind choice can be characterized easily by adding the semantic equation: $\llbracket \mathcal{D} . A+B \rrbracket=\llbracket \mathcal{D} . A \rrbracket \cup \llbracket \mathcal{D} . B \rrbracket$

Theorem 11 ([BGP96sas])
$\llbracket \mathcal{D} . A \rrbracket=\bigcup_{c \in \mathcal{C}} \mathcal{O}_{t s}(\mathcal{D} . A ; c)$
but the input-output relation cannot be recovered from $\llbracket \mathcal{D} . A \rrbracket$:

$$
\begin{aligned}
& \llbracket t e l l(\text { true }) \rrbracket=\mathcal{C} \\
& \llbracket t e l(\text { true })+\text { tell }(c) \rrbracket=\mathcal{C} \\
& \left.\mathcal{O}_{t s}(\text { tell(true }) ; \text { true }\right)=\{\text { true }\} \\
& \mathcal{O}_{t s}(\text { tell }(\text { true })+\text { tell }(c) ; \text { true })=
\end{aligned}
$$

Idea:

Non-deterministic CC(X) with Local Choice (1)

The set of terminal stores of a CC process with blind choice can be characterized easily by adding the semantic equation: $\llbracket \mathcal{D} . A+B \rrbracket=\llbracket \mathcal{D} . A \rrbracket \cup \llbracket \mathcal{D} . B \rrbracket$

Theorem 11 ([BGP96sas])
$\llbracket \mathcal{D} . A \rrbracket=\bigcup_{c \in \mathcal{C}} \mathcal{O}_{t s}(\mathcal{D} . A ; c)$
but the input-output relation cannot be recovered from $\llbracket \mathcal{D} . A \rrbracket$:

$$
\begin{aligned}
& \llbracket t e l /(\text { true }) \rrbracket=\mathcal{C} \\
& \llbracket \text { tell }(\text { true })+\text { tell }(c) \rrbracket=\mathcal{C} \\
& \mathcal{O}_{t s}(\text { tell }(\text { true }) ; \text { true })=\{\text { true }\} \\
& \mathcal{O}_{t s}(\text { tell }(\text { true })+\text { tell }(c) ; \text { true })=\{\text { true }, c\}
\end{aligned}
$$

Idea:

Non-deterministic CC(X) with Local Choice (1)

The set of terminal stores of a CC process with blind choice can be characterized easily by adding the semantic equation: $\llbracket \mathcal{D} . A+B \rrbracket=\llbracket \mathcal{D} . A \rrbracket \cup \llbracket \mathcal{D} . B \rrbracket$
Theorem 11 ([BGP96sas])
$\llbracket \mathcal{D} . A \rrbracket=\bigcup_{c \in \mathcal{C}} \mathcal{O}_{t s}(\mathcal{D} . A ; c)$
but the input-output relation cannot be recovered from $\llbracket \mathcal{D} . A \rrbracket$:

$$
\begin{aligned}
& \llbracket t e l /(\text { true }) \rrbracket=\mathcal{C} \\
& \llbracket \text { tell }(\text { true })+\text { tell }(c) \rrbracket=\mathcal{C} \\
& \mathcal{O}_{t s}(\text { tell }(\text { true }) ; \text { true })=\{\text { true }\} \\
& \mathcal{O}_{t s}(\text { tell }(\text { true })+\text { tell }(c) ; \text { true })=\{\text { true }, c\}
\end{aligned}
$$

Idea: define $\mathbb{d}: \mathcal{D} \times \boldsymbol{A} \rightarrow \mathcal{P}(\mathcal{P}(\mathcal{C}))$ to distinguish between branches.

Non-deterministic CC(X) with Local Choice (2)

Let $\llbracket \rrbracket: \mathcal{D} \times A \rightarrow \mathcal{P}(\mathcal{P}(\mathcal{C}))$ be the least fixpoint (for \subset) of

$$
\llbracket \mathcal{D} . C \rrbracket=
$$

Non-deterministic CC(\mathcal{X}) with Local Choice (2)

Let $\llbracket \rrbracket: \mathcal{D} \times A \rightarrow \mathcal{P}(\mathcal{P}(\mathcal{C}))$ be the least fixpoint (for \subset) of

$$
\begin{aligned}
\llbracket \mathcal{D} . C \rrbracket & =\{\uparrow C\} \\
\llbracket \mathcal{D} . c \rightarrow A \rrbracket & =
\end{aligned}
$$

Non-deterministic CC(X) with Local Choice (2)

Let $\llbracket \rrbracket: \mathcal{D} \times A \rightarrow \mathcal{P}(\mathcal{P}(\mathcal{C}))$ be the least fixpoint (for \subset) of

$$
\begin{aligned}
\llbracket \mathcal{D} . C \rrbracket & =\{\uparrow c\} \\
\llbracket \mathcal{D} . c \rightarrow A \rrbracket & =\{\mathcal{C} \backslash \uparrow c\} \cup\{\uparrow c \cap X \mid X \in \llbracket \mathcal{D} . A \rrbracket\} \\
\llbracket \mathcal{D} . A \| B \rrbracket & =
\end{aligned}
$$

Non-deterministic CC(X) with Local Choice (2)

Let $\llbracket \rrbracket: \mathcal{D} \times A \rightarrow \mathcal{P}(\mathcal{P}(\mathcal{C}))$ be the least fixpoint (for \subset) of

$$
\begin{aligned}
\llbracket \mathcal{D} . c \rrbracket & =\{\uparrow c\} \\
\llbracket \mathcal{D} . c \rightarrow A \rrbracket & =\{\mathcal{C} \backslash \uparrow C\} \cup\{\uparrow c \cap X \mid X \in \llbracket \mathcal{D} \cdot A \rrbracket\} \\
\llbracket \mathcal{D} \cdot A \| B \rrbracket & =\{X \cap Y \mid X \in \llbracket \mathcal{D} \cdot A \rrbracket, Y \in \llbracket \mathcal{D} \cdot B \rrbracket\} \\
\llbracket \mathcal{D} \cdot A+B \rrbracket & =
\end{aligned}
$$

Non-deterministic CC(X) with Local Choice (2)

Let $\llbracket \rrbracket: \mathcal{D} \times A \rightarrow \mathcal{P}(\mathcal{P}(\mathcal{C}))$ be the least fixpoint (for \subset) of

$$
\begin{aligned}
\llbracket \mathcal{D} . c \rrbracket & =\{\uparrow c\} \\
\llbracket \mathcal{D} . c \rightarrow A \rrbracket & =\{\mathcal{C} \backslash \uparrow c\} \cup\{\uparrow c \cap X \mid X \in \llbracket \mathcal{D} . A \rrbracket\} \\
\llbracket \mathcal{D} \cdot A \| B \rrbracket & =\{X \cap Y \mid X \in \llbracket \mathcal{D} \cdot A \rrbracket, Y \in \llbracket \mathcal{D} \cdot B \rrbracket\} \\
\llbracket \mathcal{D} \cdot A+B \rrbracket & =\llbracket \mathcal{D} \cdot A \rrbracket \cup \llbracket \mathcal{D} \cdot B \rrbracket \\
\llbracket \mathcal{D} \cdot \exists x A \rrbracket & =
\end{aligned}
$$

Non-deterministic CC(\mathcal{X}) with Local Choice (2)

Let $\mathbb{\llbracket}: \mathcal{D} \times A \rightarrow \mathcal{P}(\mathcal{P}(\mathcal{C})$) be the least fixpoint (for \subset) of

$$
\begin{aligned}
\llbracket \mathcal{D} . c \rrbracket & =\{\uparrow c\} \\
\llbracket \mathcal{D} . c \rightarrow A \rrbracket & =\{\mathcal{C} \backslash \uparrow c\} \cup\{\uparrow c \cap X \mid X \in \llbracket \mathcal{D} . A \rrbracket\} \\
\llbracket \mathcal{D} . A \| B \rrbracket & =\{X \cap Y \mid X \in \llbracket \mathcal{D} . A \rrbracket, Y \in \llbracket \mathcal{D} . B \rrbracket\} \\
\llbracket \mathcal{D} . A+B \rrbracket & =\llbracket \mathcal{D} . A \rrbracket \cup \llbracket \mathcal{D} . B \rrbracket \\
\llbracket \mathcal{D} . \exists X A \rrbracket & =\{\{d \mid \exists x c=\exists x d, c \in X\} \mid X \in \llbracket \mathcal{D} . A \rrbracket\} \\
\llbracket \mathcal{D} . p(\vec{X}) \rrbracket & =
\end{aligned}
$$

Non-deterministic CC(X) with Local Choice (2)

Let $\mathbb{\llbracket}: \mathcal{D} \times A \rightarrow \mathcal{P}(\mathcal{P}(\mathcal{C})$) be the least fixpoint (for \subset) of

$$
\begin{aligned}
\llbracket \mathcal{D} . C \rrbracket & =\{\uparrow c\} \\
\llbracket \mathcal{D} . C \rightarrow A \rrbracket & =\{\mathcal{C} \backslash \uparrow c\} \cup\{\uparrow c \cap X \mid X \in \llbracket \mathcal{D} . A \rrbracket\} \\
\llbracket \mathcal{D} . A \| B \rrbracket & =\{X \cap Y \mid X \in \llbracket \mathcal{D} . A \rrbracket, Y \in \llbracket \mathcal{D} . B \rrbracket\} \\
\llbracket \mathcal{D} . A+B \rrbracket & =\llbracket \mathcal{D} . A \rrbracket \cup \llbracket \mathcal{D} . B \rrbracket \\
\llbracket \mathcal{D} . \exists X A \rrbracket & =\{\{d \mid \exists X C=\exists x d, c \in X\} \mid X \in \llbracket \mathcal{D} . A \rrbracket\} \\
\llbracket \mathcal{D} . p(\vec{X}) \rrbracket & =\llbracket \mathcal{D} . A[\vec{x} / \vec{y} \rrbracket \rrbracket
\end{aligned}
$$

Theorem 12 ([FGMP97tcs])

For any process D.A, $\mathcal{O}_{t s}(\mathcal{D} . A ; c)=\{d \mid$ there exists $X \in \llbracket \mathcal{D} . A \rrbracket$ s.t. $d=\min (\uparrow \subset \cap X)\}$.

'merge' Example Revisited

Merging streams
$\operatorname{merge}(A, B, C)=$

$$
\begin{gathered}
(A=[] \rightarrow \operatorname{tell}(C=B)) \| \\
(B=] \rightarrow \operatorname{tell}(C=A)) \| \\
(\forall X, L(A=[X \mid L] \rightarrow \operatorname{tell}(C=[X \mid R]) \| \operatorname{merge}(L, B, R))+ \\
\forall X, L(B=[X \mid L] \rightarrow \operatorname{tell}(C=[X \mid R]) \| \operatorname{merge}(A, L, R)))
\end{gathered}
$$

Do we have the expected terminal stores?

'merge' Example Revisited

Merging streams
$\operatorname{merge}(A, B, C)=$

$$
\begin{gathered}
(A=[] \rightarrow \operatorname{tell}(C=B)) \| \\
(B=[] \rightarrow \operatorname{tell}(C=A)) \| \\
(\forall X, L(A=[X \mid L] \rightarrow \operatorname{tell}(C=[X \mid R]) \| \operatorname{merge}(L, B, R))+ \\
\forall X, L(B=[X \mid L] \rightarrow \operatorname{tell}(C=[X \mid R]) \| \operatorname{merge}(A, L, R)))
\end{gathered}
$$

Do we have the expected terminal stores? No!
for $\operatorname{merge}(X,[1 \mid Y], Z)$ we don't necessarily get 1 in Z, the merging is not greedy...

Sequentiality

Let us define a new operator, •, as follows:

$$
\frac{(X ; c ; A) \longrightarrow(Y ; d ; B)}{(X ; c ; A \bullet C, \Gamma) \longrightarrow(Y ; d ; B \bullet C, \Gamma)} \quad(X ; c ; \emptyset \bullet A) \longrightarrow(X ; c ; A)
$$

We can characterize completely the observables of any $\mathrm{CC}_{\text {seq }}$ program, $\mathcal{D} . A$, by those of a new CC (without •) program, $\mathcal{D}^{\bullet} . A^{\bullet}$, in a new constraint system, \mathcal{C}^{\bullet}.

Idea

Let ok be a new relation symbol of arity one. \mathcal{C}^{\bullet} is the constraint system \mathcal{C} to which ok is added, without any non-logical axiom. The program $\mathcal{D}^{\bullet} . A^{\bullet}$ is defined inductively as follows:

$$
\begin{aligned}
& (p(\vec{y})=A)^{\bullet}=p^{\bullet}(x, \vec{y})=A_{x}^{\bullet} \\
& A^{\bullet}=\exists x A_{x}^{\bullet} \\
& \text { tell }(c)_{x}^{\bullet}=t e l(c \wedge o k(x)) \\
& p(\vec{y})_{\dot{x}}^{\dot{x}}=p^{\bullet}(x, \vec{y}) \\
& (A \| B)_{\dot{x}}^{+}=\exists y, z\left(A_{\dot{y}}^{\bullet}\left\|B_{z}^{+}\right\|(\operatorname{ok}(y) \wedge \operatorname{ok}(z)) \rightarrow o k(x)\right) \\
& (A+B)_{\dot{x}}^{\dot{*}}=A_{x}^{\dot{x}}+B_{\dot{x}}^{\dot{*}} \\
& (\forall \vec{y}(c \rightarrow A))_{\dot{x}}=\forall \vec{z}\left(c[\vec{z} / \vec{y}] \rightarrow A[\vec{z} / \vec{y}]_{x}^{*}\right) \text { with } x \notin \vec{z} \\
& (\exists y A)_{\dot{x}}^{\dot{x}}=\exists z A[z / y]_{x}^{*} \text { with } z \neq x \\
& (A \bullet B)_{\dot{x}}^{\bullet}=
\end{aligned}
$$

Idea

Let ok be a new relation symbol of arity one. \mathcal{C}^{\bullet} is the constraint system \mathcal{C} to which ok is added, without any non-logical axiom. The program $\mathcal{D}^{\bullet} . A^{\bullet}$ is defined inductively as follows:

$$
\begin{aligned}
(p(\vec{y})=A)^{\bullet} & =p^{\bullet}(x, \vec{y})=A_{\dot{x}}^{\bullet} \\
A^{\bullet} & =\exists x A_{x}^{\bullet} \\
t e l l(c)_{x}^{\bullet} & =t e l(c \wedge o k(x)) \\
p(\vec{y})_{\dot{x}}^{\bullet} & =p^{\bullet}(x, \vec{y}) \\
(A \| B)_{x}^{\bullet} & =\exists y, z\left(A_{y}^{\bullet}\left\|B_{z}^{\bullet}\right\|(o k(y) \wedge o k(z)) \rightarrow o k(x)\right) \\
(A+B)_{x}^{\bullet} & =A_{x}^{+}+B_{x}^{\bullet} \\
(\forall \vec{y}(c \rightarrow A))_{x}^{\bullet} & =\forall \vec{z}\left(c[\vec{z} / \vec{y}] \rightarrow A[\vec{z} / \vec{y}]_{x}^{\bullet}\right) \text { with } x \notin \vec{z} \\
(\exists y A)_{x}^{\bullet} & =\exists z A[z / y]_{x}^{+} \text {with } z \neq x \\
(A \bullet B)_{x}^{\bullet} & =\exists y\left(A_{\dot{y}}^{\bullet} \| o k(y) \rightarrow B_{x}^{\bullet}\right)
\end{aligned}
$$

