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Intuitionistic Linear Logic
Multiplicatives

Γ,A,B ⊢ C
Γ,A⊗ B ⊢ C

Γ ⊢ A ∆ ⊢ B
Γ,∆ ⊢ A⊗ B

Γ ⊢ A ∆,B ⊢ C
∆,Γ,A ⊸ B ⊢ C

Γ,A ⊢ B
Γ ⊢ A ⊸ B

Additives

Γ,A ⊢ C
Γ,A & B ⊢ C

Γ,B ⊢ C
Γ,A & B ⊢ C

Γ ⊢ A Γ ⊢ B
Γ ⊢ A & B

Γ,A ⊢ C Γ,B ⊢ C
Γ,A⊕ B ⊢ C

Γ ⊢ A
Γ ⊢ A⊕ B

Γ ⊢ B
Γ ⊢ A⊕ B

Constants

Γ ⊢ A
Γ,1 ⊢ A

⊢ 1 ⊥ ⊢ Γ ⊢
Γ ⊢ ⊥

Γ ⊢ ⊤ Γ,0 ⊢ A
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ILL = the Logic of CC agents

Translation:
(A ∥ B)† = A† ⊗ B† (c → A)† =

c ⊸ A† tell(c)† = !c
(A+ B)† = A† & B† (∃xA)† = ∃xA† p(x⃗)† = p(x⃗)

(X; c; Γ)† = ∃X(!c⊗ Γ†)

Axioms: !c ⊢!d for all c ⊢C d p(x⃗) ⊢ A† for all p(x⃗) = A ∈ D

Soundness and Completeness
If (c; Γ) −→CC (d;∆) then c† ⊗ Γ† ⊢ILL(C,D) d† ⊗∆†

If A† ⊢ILL(C,D) c then there exists a success store d such that
(true;A) −→CC (d; ∅) and d ⊢C c
If A† ⊢ILL(C,D) c⊗⊤ then there exists an accessible store d such
that (true;A) −→CC (d; Γ) and d ⊢C c
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CC(FD) in LCC(H)
One can now easily embed in LCC our CC(FD) propagators,
including

indexicals.

fd(X) = tell(min(X,min_integer) ⊗ max(X,max_integer))

’x≥1y+c’(X,Y,C) =
min(X,MinX) ⊗ min(Y,MinY) ⊗ (MinX<MinY+C)
→ (tell(min(X,MinY+C) ⊗ min(Y,MinY))

∥ ’x≥1y+c’(X,Y,C))

’x≥y+c’(X,Y,C) = ’x≥1y+c’(X,Y,C) ∥ ’x≥2y+c’(X,Y,C)

’ask(x≥y)→a’(X,Y,A) =
min(X,MinX) ⊗ max(Y,MaxY) ⊗ (MinX≥MaxY)
→ A ∥ tell(min(X,MinX) ⊗ max(Y,MaxY))

Imperative variables allow a finer control, which is necessary
for certain constraint solvers, e.g. the implementation of a
Simplex solver in LCC [Schachter99these]
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LCC Logical Semantics and more
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Logical Semantics

Simple translation of LCC into ILL:

tell(c)† =

c (A ∥ B)† = A† ⊗ B†

∀y⃗(c → A)† = ∀y⃗ (c ⊸ A†) p(x⃗)† = p(x⃗)
(A+ B)† = A† & B† (∃xA)† = ∃xA†

ILL(C,D) denotes the deduction system obtained by adding to
intuitionistic linear logic the axioms:

c ⊢ d for every c ⊩C d in ⊩C,
p(x⃗) ⊢ A† for every declaration p(x⃗) = A in D.

Same soundness/completeness results as for CC.
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Phase Semantics

A phase space P = ⟨P,×, 1,F⟩ is a structure such that:
1 ⟨P,×, 1⟩ is a commutative monoid.
2 the set of facts F is a subset of P(P) such that: F is closed

by arbitrary intersection, and for all A ⊂ P, for all F ∈ F,

A ⊸ F ≜ {x ∈ P : ∀a ∈ A,a× x ∈ F} is a fact.

We define the following operations:

A & B ≜ A ∩ B

A⊗ B ≜
∩

{F ∈ F : A× B ⊂ F} A⊕ B ≜
∩

{F ∈ F : A ∪ B ⊂ F}

∃xA ≜
∩

{F ∈ F : (
∪
x
A) ⊂ F} ∀xA ≜

∩
{F ∈ F : (

∩
x
A) ⊂ F}

We’ll note ⊤ ≜ P, 0 ≜
∩
{F ∈ F} and 1 ≜

∩
{F ∈ F | 1 ∈ F}.
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Interpretation
Let η be a valuation assigning a fact to each atomic formula
such that: η(⊤) = ⊤, η(1) = 1 and η(0) = 0.
We can now define inductively the interpretation of a sequent:

η(Γ ⊢ A) = η(Γ) ⊸ η(A) η(Γ) = 1 if Γ is empty

η(Γ,∆) = η(Γ)⊗ η(∆) η(A⊗ B) = η(A)⊗ η(B)

η(A & B) = η(A) & η(B) η(A ⊸ B) = η(A) ⊸ η(B)

We then define the notion of validity as follows:
P, η |= (Γ ⊢ A) iff 1 ∈ η(Γ ⊢ A),

thus η(Γ) ⊂ η(A).

Soundness:

Γ ⊢ILL A implies ∀P, ∀η,P, η |= (Γ ⊢ A).

(syntactic proof for completeness)
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Phase Counter-Models

We impose to every valuation η to satisfy the non-logical
axioms of ILLC,D:

η(c) ⊂ η(d) for every c ⊩C d in ⊩C,
η(p) ⊂ η(A†) for every declaration p = A in D.

The contrapositive of the two soundness theorems becomes:

Theorem 1
to prove a safety property of the form

(X; c;A) Y−→ (Y;d;B)

It is enough to show

∃P,∃η, ∃a ∈ η((X; c;A)†) such that a ̸∈ η((Y;d;B)†).

22



Producer Consumer Protocol in LCC

P = dem → (pro ∥ P)
C = pro → (dem ∥ C)
init = demn ∥ Pm ∥ Ck

Deadlock-freeness: init Y−→ demn
′ ∥ Pm′ ∥ Ck′ ∥ prol′, with

either n′ = l′ = 0 or m′ = 0 or k′ = 0

Let us consider the structure (N,×, 1,P(N)), it is obviously a
phase space.

Let us define the following valuation:

η(P) = {2} η(C) = {3} η(dem) = {5} η(pro) = {5}

η(init) = {2m · 3k · 5n}
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Proof

We have to check the correctness of η:
∀p1 ∈ η(P),∃p2 ∈ η(P),dem · p1 = pro · p2,
hence η(P) ⊂ η(body of P).
The same for C, and η(init) = η(body of init).

Instead of exhibiting a counter-example, we prove Ab
absurdum the impossibility of the inclusion

η(init) ⊂ η(demn
′ ∥ Pm′ ∥ Ck′ ∥ prol′)

24



Proof (cont.)

Suppose η(init) ⊂ {5n′ · 2m′ · 3k′ · 5l′}

Since η(init) = {2m · 3k · 5n}
anything else than: n′ + l′ = n and m′ = m and k′ = k is
impossible

now note that if there is a deadlock we have:
n′ + l′ = 0 ̸= n, or m′ = 0 ̸= m, or k′ = 0 ̸= k

η(init) is thus not a subset of the interpretation of any
deadlock and thus init does not reduce into it,

25



Automatization

The search for a phase space can be automatized, if one
accepts some restrictions:

always use the structure (N,×, 1,P(N));

[be careful that integers are invertible]

always look for simple (singleton/doubleton/finite)
interpretations.
[might lead to confusions]
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Declarations as agents

Processes P ::= D.A
Declarations D ::= p(x⃗) = A,D | ϵ
Agents A ::= tell(c) | ∀x⃗(c → A) | A ∥ A | ∃xA | A+ A | p(x⃗)

becomes

Processes A ::= tell(c) | ∀x⃗(c → A) | A ∥ A | ∃xA | ∀x⃗(c ⇒ A)

Operational semantics of persistent asks is the same as that
of asks except that the agent is not consumed.

Local choice

can be encoded through asks:
A+ B = ∃x(tell(choice(x)) ∥ choice(x) → A ∥ choice(x) → B)
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Closures as persistent asks

A closure is simply some code with an environment. The
persistent ask and the hiding mechanism provide just that.

forall iterator
forall([]) ⇒ tell(true) ∥
∀H,T forall([H|T]) ⇒ tell(apply(H)) ∥ tell(forall(T)) ∥
∀x(apply(x) ⇒ Body(x))

This idea provides a simple encoding of declarations, but also
of multi-headed rules as agents

(CHR).

Observables definition leads to separating the constraints in
order to project “process calls” and distinguish declarations
from usual suspensions.

28
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∀x(apply(x) ⇒ Body(x))

This idea provides a simple encoding of declarations, but also
of multi-headed rules as agents (CHR).

Observables definition leads to separating the constraints in
order to project “process calls” and distinguish declarations
from usual suspensions.
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Modules as closures

The closure mechanism provides a natural encoding of
modules as first class citizens of LCC by simply considering
the first argument of predicates as “module name”.

Can be used for CLP too (see [HF06iclp]) with better
properties w.r.t. meta-predicates than usual module systems
(e.g. SICStus)

The scope of module declarations is given by the scope of the
corresponding variable.

There are two problems however with this module system :
unification

⇒ union of clauses;
module name capture with ∀
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Two sides of the same coin

Protect the implementation from the outside context.

Do not allow external calls to a predicate that is not exported
(private).

Protect the outside context from being accessed by the
implementation.

Do not allow unrestricted access to the calling context
(variables) from inside the implementation.
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Code protection

To enforce code protection a simple technique is to restrict
the syntax and the constraint system:

No universal quantification on module variables (MLCC)
No constraints making “all variables equal”

If we enforce the second one by imposing that {x,y} ⊂ fv(c)
whenever c ⊢C x = y⊗⊤, we get :

Theorem 2 (Code protection [HFS07fsttcs])
Let A and B be two MLCC agents. If A has no inner module
and y is used in A and B only in modular tells of the form y : l
with y ̸∈ fv(l), then A is protected in ∃y(y{A} ∥ B).

31



SICStus/SWI modules do not offer any code
protection
:- module(library, [mycall/1]).

p :-
write(’library:p/0␣␣’).

:- meta_predicate(mycall(:)).
mycall(M:G) :-

M:p,
call(M:G).

:- module(using, [test/0]).
:- use_module(library).

p :- write(’using:p/0␣␣’).
q :- write(’using:q/0␣␣’).

test :-
library:p,
mycall(q).

Unlimited qualification.
The meta-predicate declaration even allows for dynamic
qualification.

| ? using:test.
library:p/0 using:p/0 using:q/0
yes
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ECLiPSe modules do not either

:- module(library, [mycall/1]).

p :- write(’library:p/0’).

:- tool(mycall/1, mycall/2).
mycall(G, M) :-

call(p)@M,
call(G)@M.

:- module(using, [test/0]).
:- use_module(library).

p :- write(’using:p/0’).
q :- write(’using:q/0’).

test :-
call(p)@library,
mycall(q).

Only exported predicates accessible through qualification, but
unlimited call@ construct.
The tool declaration allows for dynamic qualification.

| ? using:test.
library:p/0 using:p/0 using:q/0
yes
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EMoP modules
EMoP is the implementation by T. Martinez of [HFS07fsttcs]
http://lifeware.inria.fr/~tmartine/emop/

module ’data.ref.non_backtrackable’ {
new(Initial, Ref) :-
’kernel’:ref_non_backtrackable_new(Initial, X),
module Ref [Ref, X] {

get(V) :-
...
set(V) :-
...

}.
}

CLP with modules (and closures) as first-class objects,
including unification, passing around, environment, etc.

Bonus: functional syntax, modular and redefinable, fully
bootstrapped, compiled to native, …
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CSR ⇔ flat-LCC

CSR is the fragment of CHR with only simplification rules:

(H ⇔ C | B)[x/y] ∈ P T |= Gbuiltin ⊃ ∃x(H = H′ ∧ C)
H′ ∧G −→ G ∧H = H′ ∧ B

Equivalent to full CHR as far as original operational semantics
(and linear logic semantics) are concerned.

[Martinez09chr] shows that CSR can be encoded in LCC:

(H ⇔ C | B)† = ∀y⃗(C† ⊗H† ⇒ ∃x⃗.B†)

where x⃗ = fv(B) \ fv(H′,C) and y⃗ = fv(H′,C)

The encoding is reciprocal for flat-LCC, i.e., LCC with all asks
at top-level.
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LCC ⇔ flat-LCC

Actually LCC itself can be encoded in flat-LCC:

label each (persistent or not) ask with a new token
depending on the free variables it depends on

move all asks to top-level, adding to their guard the
corresponding label

add tells after each ask for all asks under it

Both bisimilarity and semantics preservation hold
[Martinez09chr] (Coq proof)
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PS: Marelle – Logic Programming for devops
Made HN front page in September 2013.
http://quietlyamused.org/blog/2013/11/09/
marelle-for-devops/
“At 99designs […] machines should be disposable. This
requires the entire setup of a new machine to be automated.

At first I amassed shell scripts of complicated install routines,
and whilst these worked they weren’t that composable, say
when you wanted multiple services on the same machine.
Then from Babushka we learned a better way: test if
something you need’s there, install it if it’s not, then test
again to see if you succeeded. This is not hugely different
from using make, just more flexible and more fault-tolerant.

Still, Babushka made me uneasy: all this ceremony and
complex templating, just to describe a few facts and simple
rules?” – Lars Yencken
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