
Casper documentation

May 26, 2013

1 Introduction
Casper is a modeling language for constraint programming with declarative search strategy speci-
fication, in the line of the Rules2CP language [5]. The Casper compiler transforms Casper models
into GNU or Sicstus Prolog programs with FD constraints [3, 2] or Java programs using either
the Choco constraint solver [9] or the MiniSAT solver. Search strategies are specified by, on the
first hand, unordered decision trees expressed with Boolean expressions, and, on the other hand,
an ordering criterion on Boolean trees. This specification is transformed into a conjunction of
reified constraints and a labeling ordering on the associated Boolean variables. Section 2 specifies
the user-level language, consisting in a typed functional kernel for expressing Boolean expressions
on arithmetic constraints. Section 3 defines the transformation from Boolean expressions into
reified constraints and labeling ordering and illustrates this transformation for some usual search
strategies. Section 4 gives the most relevant parts of the compilation chain from the Casper
language to the targeted solvers.

2 User-level language

2.1 Example: n-queens in Casper
The following program models the n-queens problem in Casper.

let n := parameter(’n’) in
let queens := [{row: i, column: _} | i in 0 .. n - 1] in
let not_attack(q, q’) := (

q.column != q’.column /\
q.column + q.row != q’.column + q’.row /\
q.column - q.row != q’.column - q’.row) in

solve({
constraints:

(forall q in queens, 0 <= q.column < n) /\
(forall q in queens,

forall q’ in queens,
q.row != q’.row => not_attack(q, q’)),

search:
forall q in queens,

q.column <- inf(q.column) .. sup(q.column)})

This example shows the two distinctive traits of Casper with respect to other constraint
modelling languages such as Zinc [10] or Essence [6]. The first trait is that the parametricity of

1

G = | 〈variable〉 | 〈integer〉 | 〈string〉 | _ | (G) variables and constants
| G ./ G ./ ∈ {+, -, *, /} general arithmetic expressions and constraints
| G ./ G ./ ∈ {=, !=, <, <=, >, >=}
| inf(G) | sup(G) indexicals
| not(G) Boolean operators
| G ./ G ./ ∈ {/\, \/, =>}
| [G, . . ., G] list constructor
| [G | 〈variable〉 in G] list comprehension
| G..G integer range list
| G[G] indexed access
| forall 〈variable〉 in G, G quantifiers over the elements of a list
| exists 〈variable〉 in G, G
| sum 〈variable〉 in G, G
| product 〈variable〉 in G, G
| {〈field〉:G, . . ., 〈field〉:G} record constructor
| G.〈field〉 record projection
| let 〈variable〉 := G in G local definition of values
| let 〈variable〉(〈variable〉, . . ., 〈variable〉) := G in G local definition of functions
| 〈variable〉(〈variable〉, . . ., 〈variable〉) function application
| 〈variable〉 <- G finite-domain labeling
| once(G) extra-logical cut
| solve(G) solve directive
| parameter(〈name〉) access to model parameters
| import(〈filename〉) basic module system

Table 1: Casper grammar

the model (the variable n taken as a parameter) is preserved in the generated intermediary code
and is handled by the targetted back-end. The second trait is that the model specifies the search
strategy: the example shows a simple enumerating labeling from lower-bound to upper-bound
for each variable.

2.2 Casper grammar
The grammar of Casper expressions is given in table 1. A simple type-system over these expres-
sions is defined in section 2.3. A Casper file may contain any Casper expression and a Casper
program is a file that contain an expression of type goal. The program can refer to values defined
in other files with the import directive import(’〈filename〉’).

An expression of type goal is constructed with the solve directive that takes a record in
argument: solve({ constraints: c, search: s }). This record specifies the two compo-
nents that define a constraint solving problem: the constraints c and the search strategy s. The
expressions c and s are both of type var(bool), the type of (possibly uninstantiated) Boolean
expressions. In the constraints expression c, Boolean connectives are interpreted as constraints.
In the search strategy s, Boolean conjunction /\ is interpreted as a sequence and Boolean dis-

2

junction \/ is interpreted as a choice-point (and Boolean implication is not allowed).
The construction x <- list is used in different contexts: basically, x <- [e1, . . ., en] is

interpreted as x = e1 \/ . . . \/ x = en. Consequently, in constraint expressions, x <- l ..
u gives the domain {l, . . . , u} to the variable x. In the search strategy, indexicals for a finite-
domain variable x can be accessed with inf(x) and sup(x): we use them in conjunction with
the x <- list expression in order to express basic enumeration strategies (e.g., x <- inf(x)
.. sup(x) for a labeling from the lower bound to the upper bound). The Casper small-step
semantics is defined in section 2.4 and the expressiveness of the search strategy language is
discussed in section 3.

The import directive import(’〈filename〉’) used in conjunction with files defining record ex-
pressions provides Casper with a simple module system. This module system is illustrated by
the small standard library that is distributed with Casper: e.g., import(’optimization.csp’)
returns a record containing functions for standard optimization procedures that transform ex-
pressions of type goal that solves CSP satisfiability into expression of type goal that im-
plement optimizers (typically, import(’optimization.csp’).branch_and_bound). Similarly,
import(’packing.csp’) returns a record defining functions for building constraints for packing
problems such as import(’packing.csp’).non_overlap.

2.3 Type system
Casper types have the following forms.

• The basic types of Casper are int, bool, string and goal: bool is a subtype of int for
the values 0 and 1.

• The type constructor var(τ) denotes the type of finite-domain variables, where τ is either
int or bool. var(bool) is a subtype of var(int), bool is a subtype of var(bool) and
int is a subtype of var(int). goal is a subtype of var(bool).

• The type constructor [τ] denotes the type of lists whose elements are of type τ : all lists
in Casper are homogeneous. If σ is a subtype of τ , then [σ] is a subtype of [τ].

• The type constructor {〈field1〉: τ1, ..., 〈fieldn〉: τn} denotes the type of records that
contain the pair-wise distinct fields 〈field1〉, . . . 〈fieldn〉 such that the value of 〈fieldi〉 has
the type τi. A record type σ is a subtype of a record type of τ if all the fields in τ occur
in σ and if 〈fieldi〉 has type τi in τ , then 〈fieldi〉 has type σi in σ and σi is a subtype of τi.

• The type constructor (τ1,...,τn)->τ denotes the type of functions with n arguments of
types τ1, . . . , τn respectively and whose produce a value of type τ .

The typing rules are given in table 2. It is worth noticing that the type system is monomor-
phic: for each value (function argument or let-binding), if there is no constraint that forces
another type, the type var(int) is chosen by default. Moreover, let-binding allows the defini-
tion of recursive values.

Lists of finite-domain variables are allowed (with the type [var(int)] or [var(bool)]).
However, the length of the lists is always fixed. In particular, the construction l..u is only
allowed when l and u have the type int (and not var(int)).

2.4 Semantics
The semantics of Casper follows a call-by-value evaluation strategy. All the constructions of
fully instantied values (i.e., all the types except var(int) and var(bool)) follow the usual

3

b ∈ {0, 1}
Γ ` b : bool

n ≥ 2

Γ ` n : int Γ ` 〈string〉 : string Γ ` _ : var(int) Γ, x : τ ` x : τ

Γ ` e : σ σ subtype of τ
Γ ` e : τ

Γ ` e1 : int Γ ` e2 : int ./ ∈ {+, -, *, /}
Γ ` e1 ./ e2 : int

Γ ` e1 : var(int) Γ ` e2 : var(int) ./ ∈ {+, -, *, /}
Γ ` e1 ./ e2 : var(int)

Γ ` e1 : int Γ ` e2 : int ./ ∈ {=, !=, <, <=, >, >=}
Γ ` e1 ./ e2 : bool

Γ ` e1 : var(int) Γ ` e2 : var(int) ./ ∈ {=, !=, <, <=, >, >=}
Γ ` e1 ./ e2 : var(bool)

Γ ` e : var(bool)

Γ ` inf(e) : bool

Γ ` e : var(int)

Γ ` inf(e) : int

Γ ` e : var(bool)

Γ ` sup(e) : bool

Γ ` e : var(int)

Γ ` sup(e) : int

Γ ` e : bool

Γ ` not(e) : bool

Γ ` e : var(bool)

Γ ` not(e) : var(bool)

Γ ` e1 : bool Γ ` e2 : bool ./ ∈ {/\, \/, =>}
Γ ` e1 ./ e2 : bool

Γ ` e1 : var(bool) Γ ` e2 : var(bool) ./ ∈ {/\, \/, =>}
Γ ` e1 ./ e2 : var(bool)

Γ ` e1 : τ . . . Γ ` en : τ

Γ ` [e1, . . ., en] : [τ]

Γ ` e2 : σ Γ, x : σ ` e2 : τ

Γ ` [e1 | x in e2] : [τ]

Γ ` l : int Γ ` u : int

Γ ` l..u : [int]

Γ ` l : [τ] Γ ` i : int

Γ ` l[i] : τ

Γ ` e1 : [τ] Γ, x : τ ` e2 : bool

Γ ` forall x in e1, e2 : bool

Γ ` e1 : [τ] Γ, x : τ ` e2 : var(bool)

Γ ` forall x in e1, e2 : var(bool)

Γ ` e1 : [τ] Γ, x : τ ` e2 : bool

Γ ` exists x in e1, e2 : bool

Γ ` e1 : [τ] Γ, x : τ ` e2 : var(bool)

Γ ` exists x in e1, e2 : var(bool)

Γ ` e1 : [τ] Γ, x : τ ` e2 : int

Γ ` sum x in e1, e2 : int

Γ ` e1 : [τ] Γ, x : τ ` e2 : var(int)

Γ ` sum x in e1, e2 : var(int)

Γ ` e1 : [τ] Γ, x : τ ` e2 : int

Γ ` product x in e1, e2 : int

Γ ` e1 : [τ] Γ, x : τ ` e2 : var(int)

Γ ` product x in e1, e2 : var(int)

Γ ` e1 : τ1 . . . Γ ` en : τn

Γ ` {l1:e1,. . .,ln:en} : {l1:τ1,. . .,ln:τn}

Γ ` e : {l:τ}

Γ ` e.l:τ
Γ, x : σ ` e1 : σ Γ, x : σ ` e2 : τ

Γ ` let x := e1 in e2 : τ

Γ, x1 : σ1, . . . , xn : σn, f : (σ1,. . .,σn)->σ ` e1 : σ Γ, f : (σ1,. . .,σn)->σ ` e2 : τ

Γ ` let f(x1,. . .,xn) := e1 in e2 : τ

Γ ` f : (σ1,. . .,σn)->σ Γ ` e1 : σ1 . . . en : σn

Γ ` f(e1,. . .,en) : σ

Γ ` x : var(int) Γ ` l : [int]

Γ ` x <- l : var(bool)

Γ ` e : {constraints:var(bool),search:var(bool)}

Γ ` solve(e) : goal

Table 2: Typing rules

4

functional semantics. Partially instantiated expressions of type var(int) and var(bool) are
handled as abstract terms represented as expression trees. There are two back-end specific
constructions. The first construction is the handling of parameters: for the implemented back-
end, the parameters are commonly read from the command-line or, if the command-line does not
specify them, then they are asked interactively in the terminal. The second construction is the
handling of solve(e), which expects that e evaluates into a record with two fields: constraints
and search. Both fields should be Boolean expressions of type var(bool). The expression in
the field constraints is added in the constraint store of the underlying constraint solver. The
expression in the field search is read as a ∧/∨ decision-tree of elementary constraints. This tree is
evaluated depth-first and from left to right: /\ denotes conjunctions and \/ denotes disjunctions.
Common search strategies that are expressible in this framework are given in section 3.

3 Search strategies
Besides the basic enumeration labeling expressible by conjunctions of x <- l and indexicals,
most search strategies are expressible in terms of ∧/∨ decision-trees.

The following function gives the definition of dichotomic (or bissection) search, where the size
of the domain of a variable is reduced by two, recursively.

let dichotomy(x) :=
inf(x) = sup(x) \/
inf(x) < sup(x) /\ (

let m := (inf(x) + sup(x)) / 2 in
(x <= m \/ x > m) /\ dichotomy(x)) in ...

It is easy to notice that sup(x) - inf(x) strictly decreases at each recursive call: a (rudimen-
tary) arithmetic analysis detects such specific cases and rejects recursions for which a simple
terminaison argument cannot be found.

The following function gives the definition of interval splitting, where the size of the domain
of a variable is reduced by a fixed factor.

let interval_splitting(x, k) :=
let s := (sup(x) - inf(x)) / k in
exists i in 0 .. k,

(x >= i * s /\ x < i * (s + 1)) in ...

These definitions are provided in the module enumeration.csp which contains a record, the
fields of which contain these functions.

Having goal as a subtype of constraints var(bool) allows decision-trees to express opti-
mization procedures by iterating solver phases. However, there is a need to introduce mutable
variables persistent over search points to remember values found in previous search phases: this
is done by adding the ref() construction creating a new mutable variable and a binary := goal
for assignment.

The following functions are provided in the module optimization.csp. Branch-and-bound
is the iteration of a goal for finding a better solution with respect to an objective variable, or
proving the optimality, i.e., that there is no better solution.

let branch_and_bound(goal, x) :=
let best := ref(inf(x)) in
solve(goal) /\ best := inf(x)
\/ x < best /\ branch_and_bound(goal, x) in ...

5

The termination is guaranteed since sup(x) strictly decreases (since inf(x) ≤ sup(x)). It is
worth noticing that if solve(goal) fails, then we have best = inf(x) and x < best immediately
fails too. Another optimization strategy is on the contrary to try to assign the objective variable
to its lowest value first, and then augments the value until a solution is found.

let minimize_increasing(goal, x):
let minimize :=

let store = ref(inf(x)) in
(

x = inf(x) /\
post_constraint

)
\/
objective > store /\ minimize in ...

4 Compilation targeting constraint solvers or SAT solvers
There are three implemented back-end for Casper: Prolog with finite-domain variables (with
GNU-Prolog [3] and Sicstus [2] variants), Java with the Choco solver [9] and Java with Min-
iSAT [4].

Besides the arithmetic constraints included in the syntax, solver-specific constraints can be
used such as the geost global constraint [1] in Sicstus or Choco for modelling placement problems
(packing.csp module).

Lists are implemented as lists in Prolog and as arrays in Java.
In Java, records are compiled into interfaces, with methods for functional fields and getters

for other fields. For example, the interface for a Queen, section 2.1, is the following.

interface Queen {
public IntegerVariable getColumn();
public IntegerVariable getRow();

}

The MiniSAT back-end handles only models whose all variables are var(bool) (i.e., models
that do not contain var(int)). The following Boolean example enumerates all the siphons [8] in
an SBML model [7].

let filename := parameter(’filename’) in
let graph := import(’sbml.csp’).load(filename) in
let siphon := [_ | i in 0 .. length(graph.places) - 1] in
let enumeration := import(enumeration.csp’) in
(forall i in 0 .. length(graph.places) - 1,

0 <= siphon[i] <= 1) /\
(forall i in 0 .. length(graph.places) - 1,

siphon[i] =>
(forall j in graph.places[i].predecessors,

forall k in graph.transitions[j].predecessors, siphon[k])) /\
enumeration.enumerate(

solver({ search: (forall i in 0 .. length(graph.places) - 1, siphon[i] <- 0 .. 1)}))

Compilation to MiniSAT is implemented as a two-step compilation, transforming first the model
in a Casper model in conjunctive normal form.

6

References
[1] N. Beldiceanu, M. Carlsson, E. Poder, R. Sadek, and C. Truchet. A generic geo-

metrical constraint kernel in space and time for handling polymorphic k-dimensional
objects. In C. Bessière, editor, Proc. CP’2007, volume 4741 of LNCS, pages 180–
194. Springer-Verlag, 2007. Also available as SICS Technical Report T2007:08,
http://www.sics.se/libindex.html.

[2] M. Carlsson et al. SICStus Prolog User’s Manual. Swedish Institute of Computer Science,
release 4 edition, 2007. ISBN 91-630-3648-7.

[3] Daniel Diaz. GNU Prolog user’s manual, 1999–2003.

[4] Niklas Eén and Niklas Sörensson. MiniSAT web page.
http://minisat.se/.

[5] François Fages and Julien Martin. From rules to constraint programs with the Rules2CP
modelling language. In Recent Advances in Constraints, Revised Selected Papers of the
13th Annual ERCIM International Workshop on Constraint Solving and Constraint Logic
Programming, CSCLP’08, volume 5655 of Lecture Notes in Artificial Intelligence, pages
66–83. Springer-Verlag, 2009.

[6] Alan M. Frisch, Warwick Harvey, Chris Jefferson, Bernadette Martinez-Hernandez, and Ian
Miguel. Essence: A constraint language for specifying combinatorial problems. Constraints,
13:268–306, 2008.

[7] Michael Hucka et al. The systems biology markup language (SBML): A medium for rep-
resentation and exchange of biochemical network models. Bioinformatics, 19(4):524–531,
2003.

[8] M. Kinuyama and T. Murata. Generating siphons and traps by petri net representation
of logic equations. In Proceedings of 2th Conference of the Net Theory SIG-IECE, pages
93–100, 1986.

[9] Choco Team. CHOCO web page.
http://www.emn.fr/x-info/choco-solver/doku.php.

[10] The Zinc team. MiniZinc web page.
http://www.minizinc.org/.

7

