Search by Constraint Propagation

Thierry Martinez Francois Fages Sylvain Soliman

Inria Paris-Rocquencourt, France

Thierry.Martinez@Qinria.fr

PPDP '15, July 14-16, 2015, Siena, Italy

Search Procedures for Constraint Programming

Constraint programming

Constraint model + Search procedure
> relational » hardly declarative
> high level » very dependent to the solver
» MiniZinc > low-level languages

Search procedures are crucial to solve hard combinatorial (typically,
NP-complete) problems.

Rectangle-packing Problem (or Korf's Problem)

Given:

> a set of rectangles » a specific enclosing rectangle

Oo2
ool L

Hil

Question: can all the given squares fit within the boundaries of the
enclosing rectangle without any overlap?

NP-complete (by reduction from bin-packing).

» Joseph Y. T. Leung, Tommy W. Tam, C. S. Wong, Gilbert H. Young,
Francis Y. L. Chin. Packing squares into a square. Journal of Parallel and
Distributed Computing, Vol. 10, No. 3. (November 1990).

Rectangle-packing Problem (or Korf's Problem)

Given:

> a set of rectangles » a specific enclosing rectangle

Question: can all the given squares fit within the boundaries of the
enclosing rectangle without any overlap?

NP-complete (by reduction from bin-packing).

» Joseph Y. T. Leung, Tommy W. Tam, C. S. Wong, Gilbert H. Young,
Francis Y. L. Chin. Packing squares into a square. Journal of Parallel and
Distributed Computing, Vol. 10, No. 3. (November 1990).

A CP Strategy for the Rectangle-Packing Problem

> H. Simonis, B. O'Sullivan. Search Strategies for Rectangle Packing.
Principles and Practice of Constraint Programming, CP 2008.

Variables: (x;, y;) for each rectangle i to pack, ordered by
increasing size.

Strategy:
1. interval splitting on xp, xp—1, ..., X1,
Xt | |
I X X
T T
2. dichotomy on Xy, Xp—1, ..., X1,
Xj.
X X
X 0] J J 0] N

3. interval splitting on yp, Yn—1,..., Y1,
4. dichotomy on v, Vn—1,..., Y1
This strategy was implemented in Sicstus Prolog.

Search Procedures are closely related to modelling choices

(constraints)
H. Simonis and B. O'Sullivan’'s model
for the Rectangle-Packing Problem:

» A 2D-disjoint constraint between rectangles.
() [xi i + wil % [yi,yi + hil = @
i
» A cumulative constraint that ensures that for every abscissa x,
all rectangles can fit in the enclosing height H.

Vx, > hi<H
i ‘ X,'SX<X,'+W,'

» A cumulative constraint that ensures that for every ordinate y,
all rectangles can fit in the enclosing width W.

Yy, Z w; < W
i| yi<y<yithi

The Clp2Zinc Theorem

reified constraints

/\

Constraint model M Constraint model M W M

Tree search procedure t ~ Basic labeling ¢
computationally similar

Reified constraint: X =1 < cis true.

Contributions:
» A high-level language for tree search procedure (ClpZinc),

» The resulting model can be solved by any solver.

Arithmetic constraints for Interval Splitting and Dichotomic Search

Compiling And/Or-Trees into Reified Contraints

Search Transformers via Meta-interpretation

Beyond And-Or Trees

Conclusion

Arithmetic constraint for Interval Splitting

For a fixed step s > 1 and for x € [0, n|.
X ‘

|
J Je
T T

Obtained by domain filtering and constraint propagation of the
Euclidean division equation.

X=8sXqg+r

where r € [0, s[.

Interval Splitting: The Search Tree

x € [0,n]

x€ 0,9 x€[s52- 5

Arithmetic constraint for Dichotomic Search

For x € [0, 2°].
Xj:

|
K|

Obtained by domain filtering and constraint propagation of the
binary decomposition of x.

X = Z Xk2k

0<k<d

with x, € {0, 1}.

Dichotomic Search: The Search Tree

x € 10,29

x € 10,2971 x € (0,297

x€[0,2972 xe 292,297 xe 297,297 42972 xe 297 42972 2

Choice through labeling

The following ClpZinc program (CLP):

var 1..10: x;
- (x <=5 ; x >= 6).

can be reified into the following MiniZinc program (CSP):

var 1..10: x;
var 0..1: X1;
constraint X1 = 0 -> x <= b5;
constraint X1 =1 -> x >= 6;
solve :: seq_search([
int_search([X1], input_order, indomain_min, complete)
1) satisfy;

Choice through labeling, cont'd

...and even better, if we detect that constraints are opposite.
The following ClpZinc program (CLP):

var 1..10: x;

- (x <=5 ; x> 5).

can be reified into the following MiniZinc program (CSP):

var 1..10: x;
var 0..1: X1;
constraint X1 = 0 <-> x <= b5;
solve :: seq_search([
int_search([X1], input_order, indomain_min, complete)
1) satisfy;

Multiple choices

The following ClpZinc program (CLP):

var 1..10: x;
- (x <=3 ;x> 4, x <=7 ; x > 8).

can be reified into the following MiniZinc program (CSP):

var 1..10: x;
var 0..2: X1;

constraint X1 = 0 -> x <= 3;
constraint X1 = 1 -> x >= 4;
constraint X1 =1 -> x <= 7;
constraint X1 = 2 -> x >= 8;
solve :: seq_search([

int_search([X1], input_order, indomain_min, complete)
1) satisfy;

Nested choices
The following ClpZinc program (CLP):

var 1..10: x;
- (x <=3 ; x> 4, (x<=7 ; x> 8)).

can be reified into the following MiniZinc program (CSP):

var 1..10: x;

var O0..1: X2; wvar 0..1: X1;
constraint X1 0 > x <= 3;
constraint X1 1 ->x >= 4;
constraint X1 =1 /\ X2 =0 -> x <= 7;

constraint X1 =1 /\ X2 =1 -> x >= 8;
constraint X1 = 0 -> X2 = 0;
solve :: seq_search([

int_search([X1], input_order, indomain_min, complete),
int_search([X2], input_order, indomain_min, complete)
1) satisfy;

From And-Or Trees to Reified Constraints

» Each or-node is mapped to a variable.
» And-nodes are reflected in the variable-ordering in the labeling.

> We should Take care about variables in other branches in
order to reduce unnecessary labeling choices.

X1
A
x> 4 vV

CLP as modelling language

1. Constraints as predicates

non_overlap([Oy, ..., Op])

2. Sequence
G, G2

3. Choice-points
Gi; G2

4. General form of recursion: predicate definition
(additional conditions to ensure termination)

Zinc as target language

var 0..10: x;

var 0..1: _x1;

var O0..1: _x2;

solve :: seq_search([
int_search([_x1], input_order, interval(O, 1), complete)
int_search([_x2], input_order, interval(0, 1), complete)
D
satisfy;

ClpZinc
A Modeling Language for Constraints and Search.

» Modeling search independently from the underlying constraint
solver through tree search procedures with state variables.

» Extending MiniZinc with Horn clauses with constraints
(Prolog-like search description language).

Available compiler targeting most common solvers:
http://lifeware.inria.fr/~tmartine/clp2zinc

A compiler from CLP(H + X’) to CSP(X).
» H: domain of Herbrand terms,
» X: domain of the underlying constraint system.

Depth-first, left-to-right.
“Angelic” transformation.

http://lifeware.inria.fr/~tmartine/clp2zinc

Dichotomic Search: The Code

dichotomy (X, Min, Max) :-
dichotomy (X, ceil(log(2, Max - Min + 1))).
dichotomy (X, Depth) :-
Depth > O,
Middle = (min(X) + max(X)) div 2,
(X <= Middle ; X > Middle),
dichotomy (X, Depth - 1).
dichotomy (X, 0).
var 0..5: x;
:= dichotomy(x, 0, 5).

Interval Splitting: The Code

interval_splitting(X, Step, Min, Max) :-
Min + Step <= Max, NextX = min(X) + Step,

(

X < NextX

X >= NextX,

interval_splitting(X, Step, Min + Step, Max)
).

interval_splitting(X, Step, Min, Max) :-
Min + Step > Max.

var 0..5: x;

:— interval_splitting(x, 2, 0, 5).

From CLP(H + X) to and/or-trees over X

Translation function with environment [-]s to trees with holes [J;.

[true]s — Os
[false]s — 1
X =v]s — Usagx = v)

S — :
/ AN
c s

where c is a constraint
or a search annotation

Translation for sequences

[A,B)s —

[Bls: [Bls,

all O, of [A]s are filled with [B]s
i.e., [Als[Vi, [B]s,/Ds]

Translation for choices

» if A or B changes the store, i.e.,, 35 # s, Og € [A]s or [B]s:

[A;B]s — v
VAN
[A]s [Bls

» if neither A nor B changes the store:

[[A;B]]5 — / \
V s
VRN
[Als [B]s
| |
s s
T T

the leftmost leaf is [A]s[T/Os| and its sibling [B]s[T /0]

A choice that changes the H store

The following ClpZinc program (CLP):

var 1..10: x;
var 1..10: y;
- (A=x; A=y), A<=5.

can be reified into the following MiniZinc program (CSP):

var 1..10: x;
var 1..10: y;
var 0..1: X1;
constraint X1
constraint X1

0 -> x <= b5;
1 ->y <= 5;
solve :: seq_search([
int_search([X1], input_order, indomain_min, complete)
1) satisfy;

A choice that does not change the H store

The following ClpZinc program (CLP):

var 1..10: x;
var 1..10: y;
- (x=1;y=1), x <=y.

can be reified into the following MiniZinc program (CSP):

var 1..10: x;

var 1..10: y;

var 0..1: X1;
constraint X1 0 > x
constraint X1 1>y
constraint x <= y;

1
-
..

]
—
-

solve :: seq_search([
int_search([X1], input_order, indomain_min, complete)
1) satisfy;

Indexicals

int_search([_x1], input_order, min(x), complete),
int_search([_x2], input_order, max(x), complete)

And-or trees for dichotomic search with indexicals

indexical_min (X1, x)

indexical_max(X2, x)
x <= (X1 + X2) div 2
x > (X1 + X2) div 2
indexical_min (X3, x)
indexical_max(X4, x)
x <= (X3 + X4) div 2
x > (X3 + X4) div 2
indexical_min (X5, x)

xical_max(X6, x)

. x <= (X5 + X6) div 2

Search Transformers via Meta-interpretation

Meta-interpretation
» Limited discrepancy search (LDS)
» Symmetry breaking during search (SBDS)

Symmetry breaking during search in constraint programmingln
Proceedings ECAI'2000, pages 599-603, 1999

sbds (top, _).
sbds(or(A, B), Path) :-
(A = constraint(C, A0),
(C, sbds(A, [C | Pathl)
; cut_symmetry(C, Path), sbds(B, Path))
;A \= constraint(_, _),
(sbds(A, Path) ; sbds(B, Path))).
sbds (constraint(C, T), Path) :- C, sbds(T, [C | Path]).
:- search_tree(labeling_list(queens, 1, n), T),
sbds(T, [1).

Exponential speed-up with LDS

var O0..1: x;
var 0..1: y;
array[0..n] of var 0..1: a;

:- int_search(a, input_order, indomain_min, complete),
lds(((x = 0; x=1), (y =0; y=1)), 0), x I=y.

a: 2" nodes to explore

Beyond And-Or Trees

State variables, persistent through backtracking.

annotation store(var bool: c, string: id,
array[int] of var int: src);
annotation retrieve(string: id,
array[int] of var int: target);

For optimization procedure, e.g. branch-and-bound.

DN

Branch-and-bound

maximize(G, S, Min, Max) :-
domain(I, Min, Max + 1), domain(Best, Min, Max),
domain(Fail, 0, 1),
domain(A, 0, 1), domain(B, 0, 1), domain(C, 0, 1),
(Fail =0 -> A =B /\ B !=C /\ A !=0C),
store("bb_best", [Min, 0]),
labeling(I, Min, Max + 1),
retrieve("bb_best", [Best, Faill),
(Fail = 0, store("bb_best", [Best, 1]1),
S > Best, G, store("bb_best", [S, 0]1),
labeling(A, 0, 1), labeling(B, 0, 1)
; Fail =1, I = Max + 1, S = Best, Q).

minimize(G, S, Min, Max) :-
domain(Dual, Min, Max), Dual = Max - S + Min,
maximize(G, Dual, Min, Max).

Conclusion and perspectives

>

Tree search procedures can be embedded in the constraint
model.

= solver-independent high-level search
specification/modelling.

Constraint Logic Programming programs can be compiled into
Constraint Solving Problems!

= ClpZinc: solver-independent modelling language for
constraints and search.

Constraint solver implementations can focus only on the most
simple labeling search strategy.

Opens the implementation of novel search procedures based
on constraint propagation.

Targetting other kind of solvers: MIP, SAT, local search?

Lazy clause generation?

	Arithmetic constraints for Interval Splitting and Dichotomic Search
	Compiling And/Or-Trees into Reified Contraints
	Search Transformers via Meta-interpretation
	Beyond And-Or Trees
	Conclusion

