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Abstract. In this paper, we introduce a modular version of the Con-
straint Handling Rules language CHR, called CHRat for modular CHR
with ask and tell. Any constraint defined in a CHRat component can
be reused both in rules and guards in another CHRat component to
define new constraint solvers. Unlike previous work on modular CHR,
our approach is completely general as it does not rely on an automatic
derivation of conditions for checking entailment in guards, but on a pro-
gramming discipline for defining both satisfiability (tell) and entailment
(ask) checks by CHRat rules for each constraint. We define the opera-
tional and declarative semantics of CHRat, provide a transformation of
CHRat components to flat CHR programs, and prove the preservation of
the semantics. We then provide examples of the modularization of clas-
sical CHR constraint solvers and of the definition of complex constraint
solvers in a modular fashion.

1 Introduction

The Constraint Handling Rules language CHR was introduced nearly two decades
ago as a declarative language for defining constraint solvers by multiset rewrit-
ing rules with guards assuming some built-in constraints [1]. The CHR program-
ming paradigm resolves implementing a constraint system into the declaration of
guarded rewriting rules, that transform the store into a solved form allowing to
decide the satisfiability. Each transformation is supposed to preserve the satisfi-
ability of the system, and the solved form, reached when no more transformation
can be applied, is unsatisfiable if it contains the constraint “false”, and is oper-
ationnally satisfiable otherwise. One important, but not mandatory, property of
these transformations is confluence which means that the solved form is always
independent of the order of application of the rules, and is in fact a normal form
for the initial constraint store [2].

Since then, CHR has evolved to a general purpose rule-based programming
language [1] with some extensions such as for the handling of disjunctions [3]
or for introducing types [4]. However, one main drawback of CHR as a language
for defining constraint solvers, is the absence of modularity. Once a constraint
system is defined in CHR with some built-in constraints, this constraint system
cannot be reused in another CHR program taking the defined constraints as new
built-in constraints. The reason for this difficulty is that a CHR program defines



a satisfiability check but not the constraint entailment check that is required in
guards.

Previous approaches to this problem have studied conditions under which
one can derive automatically an entailment check from a satisfiability check. In
[5] such conditions are given based on the logical equivalence:

D |= C → c⇔ D |= (C ∧ c)↔ C

In this paper, we propose a different paradigm for modular CHR, called CHR
with ask and tell, and denoted CHRat. This paradigm is inspired by the frame-
work of concurrent constraint programming [6, 7]. The programming discipline
in CHRat for programming modular constraint solvers is to enforce, for each
constraint c, the definition of simplification and propagation rules for the con-
straint tokens ask(c) and entailed(c). Solvers for asks and tells are already re-
quired for the built-in constraint system implementation [8]; the discipline we
propose consists in the internalization of this requirement in the CHR solver
itself. A constraint c is operationally entailed in a constraint store containing
ask(c) when its solved form contains the token entailed(c). Beside the simpa-
gation rule c \ask(c) =⇒ entailed(c) which will be always assumed to provide
a minimalist entailment-solver, arbitrarily complex entailment checks can be
programmed with rules, as opposed to event-driven imperative programming[9].
With this programming discipline, CHRat constraints can be reused both in rules
and guards in other components to define new constraint solvers.

In the next section, we illustrate this approach with a simple example. Then
we define the syntax and declarative semantics of CHRat. Section 4 describes
the transformation of CHRat programs into flat CHR programs and proves its
correctness. Section 5 provides examples of the modularization of classical CHR
constraint solvers and of the definition of complex constraint solvers in a modular
fashion. Finally we conclude with a discussion on the simplicity and expressive-
ness of this approach and its current limitation to non-quantified constraints.

2 Introductory Example

2.1 CHRat Components for leq/2 and min/3

We begin with the pedagogical CHR constraint solver for ordering relations. This
solver defines the CHR constraint leq/2. The first task is to define, as usual, the
satisfiability solver associated to this constraint: this is done by the following
four rules. The first three rules translate the axioms for ordering relations, and
the rule redundant gives set semantics to the constraint leq/2.

File leq solver.cat

component l e q s o l v e r .
export l e q / 2 .
r e f l e x i v e @ l e q (X, X) ⇐⇒ t r u e .
a n t i s y m m e t r i c @ l e q (X, Y) , l e q (Y, X) ⇐⇒ X = Y .
t r a n s i t i v e @ l e q (X, Y) , l e q (Y, Z) =⇒ l e q (X, Z ) .
re dund ant @ l e q (X, Y) \ l e q (X, Y) ⇐⇒ t r u e .



There is a second task for defining a constraint solver in CHRat: the defi-
nition of rules for checking the entailment of leq(X, Y) constraint. These rules
have to rewrite the constraint token ask(leq(X, Y)) into the constraint token
entailed( leq(X, Y)). The rule leq(X,Y) \ ask(leq(X,Y)) ⇐⇒entailed( leq(X,Y)) is al-
ways assumed and provides a minimalist entailment-solver for free. In this simple
example, since checking leq(X, Y) for X 6= Y is directly observable in the store,
there is only a single rule to add for the reflexivity.

r e f l e x i v e A s k @ ask ( l e q (X, X) ) ⇐⇒ en ta i l e d ( l e q (X, X ) ) .

The satisfiability solver and the entailment solver together define a CHRat
component for the CHR-constraint leq(X, Y). Our implementation of CHRat relies
on a simple atom-based component separation mechanism: there is a component
by file; exported CHR-constraints are prefixed with the name of the component;
and the choice for the prefixes of internal CHR-constraints is done so as to avoid
collisions.

Such a component can then be used to define new constraint solvers using
the leq(X, Y) constraint both in rules and guards. For instance, a component for
the minimum constraint min(X,Y,Z), stating that Z is the minimum value among
X and Y, can be defined in CHRat as follows:

File min solver.cat

component m i n s o l v e r .
import l e q /2 from l e q s o l v e r .
export min / 3 .
m i n L e f t @ min (X, Y, Z) ⇐⇒ l e q (X, Y) | Z=X .
minRight @ min (X, Y, Z) ⇐⇒ l e q (Y, X) | Z=Y .
minGen @ min (X, Y, Z) =⇒ l e q (Z , X) , l e q (Z , Y ) .

minAskLef t @ ask ( min (X, Y, X) ) ⇐⇒ l e q (X, Y) |
en t a i l e d ( min (X, Y, X ) ) .

minAskRight @ ask ( min (X, Y, Y) ) ⇐⇒ l e q (Y, X) |
en t a i l e d ( min (X, Y, Y ) ) .

The three first rules describe the satisfiability check for min(X,Y,Z). The rele-
vant rules to be discussed are the minAskLeft and minAskRight: it is worth noticing
that the entailment of min(X,Y,Z) can be stated if, and only if, Z is already known
to be equal to X or Y.

2.2 Transformation to a Flat CHR Program

The guards in CHR rules are restricted to built-in constraints [1]. In order to
translate CHRat programs into CHR programs, we proceed with a program trans-
formation which removes all the user defined constraints from the guard. This
transformation also renames the constraints ask( constraint ) to ask constraint and
entailed( constraint ) to entailed constraint . The resulting CHR program for the
min(X, Y, Z) CHRat solver is the following:



min−auto - a s k @ min (X, Y, Z) \ ask min (X, Y, Z) =⇒ e n t a i l e d m i n (X, Y, Z ) .
m i n L e f t - a s k @ min (X, Y, Z) =⇒ a s k l e q (X, Y ) .
minLeft− f i r e @ e n t a i l e d l e q (X, Y) , min (X, Y, Z)⇐⇒Z=X .
minRight - a s k @ min (X, Y, Z) =⇒ a s k l e q (Y, X ) .
minRight− f i r e @ e n t a i l e d l e q (Y, X) , min (X, Y, Z)⇐⇒Z=Y .
minGen @ min (X, Y, Z) =⇒ l e q (Z , X) , l e q (Z , Y ) .
minAskLef t - a s k @ ask min (X, Y, X) =⇒ a s k l e q (X, Y ) .
minAskLeft− f i r e @ e n t a i l e d l e q (X, Y) , ask min (X, Y, X)⇐⇒

e n t a i l e d m i n (X, Y, X ) .
minAskRight - a s k @ ask min (X, Y, Y) =⇒ a s k l e q (Y, X ) .
minAskRight− f i r e @ e n t a i l e d l e q (Y, X) , ask min (X, Y, Y)⇐⇒

e n t a i l e d m i n (X, Y, Y ) .

It is worth noting that the transformed program can be executed with any
regular CHR implementation [10, 11].

3 Syntax and Semantics of CHRat Components

Let V be a countable set of variables. Let fv (e) denotes the set of free variables
of a formula e.

3.1 Syntax

Definition 1. A built-in constraint system is a pair (C,`C), where:

– C is a set of formulas over the variables V , closed by logical operators and
quantifiers;

– C ⊆ C2 defines the non-logical axioms of the constraint system;
– `C is the least subset of C2 containing C and closed by the logical rules.

Let (C,`C) be a built-in constraint system over a domain D with variables
V , assumed to contain the standard axiom schemas for equality.

Let T be a set of constraint tokens of the form c(x1, . . . , xn) where x1, . . . , xn ∈
D and disjoint from C. We suppose that for any t ∈ T , ask(t) /∈ T and
entailed(t) /∈ T , and we define

Ta =̇
{

ask(t)
∣∣ t ∈ T }

Te =̇
{

entailed(t)
∣∣ t ∈ T }

T , Ta, Te and C are thus pairwise disjoint. Let:

T • =̇ T ] Ta ] Te

where ] denotes disjoint set union.
ask∗(·) and entailed∗(·) are the homomorphic extensions of ask(·) and entailed(·)

respectively to functions from multisets to multisets.

Definition 2. A CHRat rule is of one of the three forms that follow:



Simplification rule-name @ H ⇔ G | B.
Propagation rule-name @ H ⇒ G | B.
Simpagation rule-name @ H \ H ′ ⇔ G | B.

where

– rule-name is an optional name for the rule;
– the heads H and H ′ are non-empty multisets of elements of T ] Ta ] C;
– the guard G is a multiset of elements of T ] C;
– the body B is a multiset of elements of T ] Te ] C.

In guards, the built-in constraints will be distinguished from the user-defined
constraints. For a guard C, we write Cbuilt-in = C ∩ C and CCHR = C ∩ T .

Definition 3. A CHRat program is a tuple ({r1, . . . , rn} , Σ) where r1, . . . , rn
are CHRat rules, and Σ is the signature of T , with the following side condition:
for every rule, all variables which appear in the CHR-constraint part of the guard
CCHR, also appear in the head or in the built-in constraints of the guard.

Remark 1. It is worth noticing that the restriction for guards in CHRat only
concerns the CHR-constraint part. In particular, since a CHR program has no
CHR-constraint in its guards, every CHR program is a valid CHRat program.

In principle, CHRat programs for ask should satisfy some further properties.
Putting an ask(·) token should indeed never lead to a failure, and an ask solver
should restrict its interaction with the store such that, as far as other components
are concerned, only consumption of ask(·) tokens and addition of entailed(·)
tokens can be observed, in particular rules for ask should not add tell constraints
to the store. However, the formal semantics described in the following sections
will not assume these further restrictions.

As usual, and without loss of generality, we will focus on slightly generalized
simpagation rules where one of the heads can be empty. Simplification rules and
propagation rules will then be mapped to simpagation rules, by assuming that
left heads are empty in translations of simplification rules, and that right heads
are empty in translations of propagation rules.

3.2 Operational Semantics

As usual, the operational semantics of CHRat is defined as a transition system
between states, called configurations, defined as for CHR [1] by:

Definition 4. A configuration is a tuple 〈F,E,D〉V where:

– the query F is a multiset of elements from C ] T •;
– the CHRat constraint store E is a multiset of elements from T •;
– the built-in store D is an element of C;
– V ⊂ V is the set of variables of the initial query.

Let C denotes the set of all configurations.



Definition 5. We distinguish some relevant configurations:

– an initial configuration is of the form 〈F, ∅, true〉V where V = fv (F );
– a failed configuration is of the form 〈F,E,D〉V where D `C false;
– a successful configuration is of the form 〈∅, E,D〉V where D 6 `C false.

The set of variables of the initial query is written in the configuration to keep
these variables free when we consider the logical meaning of the configuration:

Definition 6. The logical meaning of a configuration:

〈F,E,D〉V
is:

∃y(F ∧ E ∧D)

where y enumerates fv (F,E,D) \ V.

Definition 7. Let P be a CHRat program. The transition relation 7→ ⊆ C2 is
the least binary relation closed by the following induction rules:

Solve
c ∈ C

〈{c} ] F,E,D〉V 7→ 〈F,E, c ∧D〉V
Introduce

t ∈ T •
〈{t} ] F,E,D〉V 7→ 〈F, {t} ] E,D〉V

Trivial Entailment

t ∈ T
〈F, {ask(t), t} ] E,D〉V 7→ 〈{entailed(t)} ] F, {t} ] E,D〉V

Ask
(H \ H ′ ⇔ Cbuilt-in, CCHR | B.)σ ∈ P D `C Cbuilt-in

〈F,H ]H ′ ] E,D〉V 7→ 〈ask∗(CCHR) ] F,H ]H ′ ] E,D〉V
Fire

(H \ H ′ ⇔ Cbuilt-in, CCHR | B.)σ ∈ P D `C Cbuilt-in

〈F,H ]H ′ ] entailed∗(CCHR) ] E,D〉V 7→ 〈B ] F,H ] E,D〉V
where σ denotes some variable substitution: the support of σ consists of the free
variables appearing in the rule which σ is applied to; in the Ask rule, variables
which do not appear in H, H ′, Cbuilt-in have to be mapped to fresh variables; in
the Fire rule, variables which do not appear in H, H ′, Cbuilt-in, CCHR have to
be mapped to fresh variables.

Whereas a CHR rule is reduced in only one step, CHRat reduces it in two
steps: first, if the heads and builtin guards match, ask solvers are awoken with
ask(·) tokens (Ask rule); then, when all ask solvers have answered positively to
the guard with entailed(·) tokens, the body of the rule is fired (Fire rule). Unlike
deep guards [12], asks are thus checked in CHRat in the same constraint store as
tells.



Definition 8. A computation of a goal G is a sequence S0, S1, . . . of configu-
rations with Si 7→ Si+1, beginning with S0 = 〈G, ∅, true〉V and ending in a final
configuration or diverging. A finite computation is successful if the final con-
figuration is successful. It is failed otherwise. The logical meaning of the final
configuration of a finite computation is called the answer of the computation.

3.3 Declarative Semantics

CHR programs enjoy a logical semantics that is better suited than the opera-
tional semantics to reason about programs and establish program equivalence
for instance. In this section, we show that this logical reading of the rules applies
as well to CHRat programs.

Let C• be the closure of C ] T • by logical operators and quantifiers, and let
`C• be the logical extension of `C to T • with equality and no other non-logical
axiom. More precisely, `C• is the closure of C• by logical rules with:

C• =̇ C ]

{
(c(x1, . . . , xn), c(x′1, . . . , x

′
n)) ∈ (T •)2∣∣ `C x1 = x′1 ∧ · · · ∧ xn = x′n

}

Definition 9. Let:
(·)‡ : CHRat→ C•

be defined for CHRat rules as follows:

(rule @ H \ H ′ ⇔ Cbuilt-in, CCHR | B.)
‡ =̇

∀y(Cbuilt-in → H ∧H ′ → ask∗(CCHR))

∧ ∀y(Cbuilt-in → (H ∧H ′ ∧ entailed∗(CCHR)↔ ∃y′(H ∧B)))

where:

– y enumerates the variables occurring in the head and the guard, and y′ enu-
merates the other variables occurring in the body (without occurring neither
in the head nor in the guard);

– for each multiset of constraints S = {c1, . . . , cn}, S denotes the constraint
c1 ∧ · · · ∧ cn;

The declarative semantics of a program P =̇ ({r1, . . . , rn} , Σ) is:

(P )‡ =̇

 ∧
1≤i≤n

(ri)
‡

∧
 ∧

(f/k)∈Σ

∀x(f(x1, . . . , xk)→
(ask(f(x1, . . . , xk))↔ entailed(f(x1, . . . , xk))))


Remark 2. Let (·)† denote the usual CHR declarative semantics. For all CHR

program P , we have `C• (P )‡ ↔ (P )†: CHR is thus a proper sublanguage of
CHRat and CHRat, both syntactically and semantically.



The fundamental link between the operational and the declarative semantics
is stated by:

Lemma 1. Let P be a CHRat program and S 7→ S′ be a transition. Let C and
C ′ denote the logical reading of S and S′ respectively. We have:

(P )‡ `C• ∀x(C ↔ C ′)

where x enumerates fv(C) ∪ fv(C ′).

Proof. Case analysis over the kind of the transition S 7→ S′:

– immediate for Solve and Introduce; Trivial Entailment derives from
(P )‡ `C• c→ (ask(c)↔ entailed(c)) for all c ∈ T ;

– Ask and Fire derive from the logical translation of the CHRat rule which
they are applied to.

This result is the direct translation for CHRat of Fruhwirth’s soundness and
completeness results for CHR. As such, this lemma entails the soundness and
completeness of the operational semantics with respect to the declarative se-
mantics:

Theorem 1 (Soundness). Let P be a CHRat program and G be a goal. If G
has a computation with answer C then:

(P )‡ `C• ∀x(C ↔ G)

where x enumerates free variables of C and G.

Theorem 2 (Completeness). Let P be a CHRat program and G be a goal with
at least one finite computation. For all conjunctions of constraints C such that
(P )‡ `C• ∀x(C ↔ G), there exists a computation of answer C ′ from G such that:

(P )‡ `C• ∀x(C ↔ C ′)

where x enumerates free variables of C and C ′.

4 Program Transformation of CHRat to CHR

Definition 10. Let J·K : CHRat → CHR be defined for every CHRat rule by J·K
as follows:

Jrule @ H \ H ′ ⇔ Cbuilt-in, CCHR | B.K

=̇

{
rule-ask @ H,H ′ ⇒ Cbuilt-in | ask∗(CCHR).
rule-fire @ H \ H ′, entailed∗(CCHR) ⇔ Cbuilt-in | B.

(1)



Transformations for simplification and propagation rules follow from 1 by im-
mediate specialization. The image of a whole CHRat program (R,Σ) by J·K is the
concatenation of images of the individual rules, with the propagation rules:

f(x1, . . . , xk) ⇒ entailed(f(x1, . . . , xk)).

implicitly added for each constraint declaration (f/k) ∈ Σ, if such a rule was
not already written by the user in R.

To take benefits of first functor symbol indexing, instead of using com-
pound terms ask (...) or entailed (...) in the implementation, we rather prefix
the constraint symbol in the generated CHR code: constraint (x, y, z) becomes
ask constraint (x, y, z) and entailed constraint (x, y, z). We could otherwise rely-
ing upon automatic program transformations to make this optimization [13].

It is worth noticing that the first and the second CHR rules produced for
each CHRat rule respectively follow the right and the left operands of ∧ in the
declarative semantics of this rule. That leads to the following result which states
the soundness of the transformation:

Theorem 3. For all CHRat program P , we have:

`C• (P )‡ ↔ (JP K)†

where (P )‡ is the CHRat declarative semantics of P (see definition 9) and (·)†
denotes the usual CHR declarative semantics (see remark 2)

Proof. Let P = ({r1, . . . , rn} , Σ). According to the definitions:

`C• (P )‡ ↔

 ∧
1≤i≤n

(ri)
‡

 ∧ e and `C• (JP K)† ↔

 ∧
1≤i≤n

(JriK)
†

 ∧ e
where:

e =̇

 ∧
(f/k)∈Σ

∀x(f(x1, . . . , xk)→
(ask(f(x1, . . . , xk))↔ entailed(f(x1, . . . , xk))))


Then it suffices to show that, for all 1 ≤ i ≤ n, `C• (ri)

‡ ↔ (JriK)
†. Let ri be the

simpagation rule:
H \ H ′ ⇔ Cbuilt-in, CCHR | B.

then:

JriK = {(H, entailed∗(CCHR) \ H ′ ⇔ Cbuilt-in | B.) ,
(H,H ′ ⇒ Cbuilt-in | ask∗(CCHR).)}

then we have:

(JriK)
† = ∀x

(
Cbuilt-in → H ∧H ′ → ask∗(CCHR)

)
∧ ∀x

(
Cbuilt-in →

(
H ∧H ′ ∧ entailed∗(CCHR)↔ H ∧ ∃z(B)

))



where x enumerates variables of Cbuilt-in and H, and z enumerates variables of
B. Since P is a CHRat program, variables in ask∗(CCHR) and entailed∗(CCHR)
are in x. Thus `C• (ri)

‡ ↔ (JriK)
†.

5 Examples

5.1 Union-Find Constraint Component

The union-find (or disjoint set union) algorithm [14] has been implemented in
CHR with its best-known algorithmic complexity [15]. This positive result is re-
markable because logic programming paradigm has been known to be ill-suited
to such implementations [16], and because the algorithm given in [15] indeed
benefits from the non-monotonic evolution of the store of the operational se-
mantics.

The union-find algorithm maintains a partition of a universe, such that each
equivalence class has a representative element. Three operations define this data
structure:

– make(X) adds the element X to the universe, initially in an equivalence class
reduced to the singleton {X}.

– find (X) returns the representative of the equivalence class of X.
– union(X,Y) joins the equivalence classes of X and Y (possibly changing the

representative).

Naive Implementation The naive implementation, which [15] begins with,
relies on the classical representation of equivalence classes by rooted trees. Roots
are representative elements, they are marked as such with the CHR-constraint
root(X). Tree branches are marked with A  B, where A is the child and B the
parent node.

File naive union find solver.cat

component n a i v e u n i o n f i n d s o l v e r .
export make /1 , ' / 2 .
make @ make (A) ⇐⇒ r o o t (A ) .

un ion @ un ion (A, B) ⇐⇒ f i n d (A, X) , f i n d (B, Y) , l i n k (X, Y ) .

f indNode @ A  B \ f i n d (A, X) ⇐⇒ f i n d (B, X ) .
f i n d R o o t @ r o o t (A) \ f i n d (A, X) ⇐⇒ X = A .

l i n k E q @ l i n k (A, A) ⇐⇒ t r u e .
l i n k @ l i n k (A, B) , r o o t (A) , r o o t (B) ⇐⇒ B  A, r o o t (A ) .

This implementation supposes that its entry-points make and union are used with
constant arguments only, and that the first argument of find is always a constant.

In CHRat, one needs to add to this implementation the ability to check if two
elements A and B are in the same equivalence class: we denote such a constraint



A ' B, where A and B are supposed to be constants. Telling this constraint just
yields to the union of the two equivalence classes:

t e l l S a m e @ A ' B =⇒ un ion (A, B ) .

A way to provide a naive implementation for ask is to follow tree branches until
possibly finding a common ancestor for A and B.

askEq @ ask (A ' A) ⇐⇒ en t a i l e d (A ' A ) .
a s k L e f t @ A  C \ ask (A ' B) ⇐⇒ C ' B | en t a i l e d (A ' B ) .
a s k R i g h t @ B  C \ ask (A ' B) ⇐⇒ A ' C | en t a i l e d (A ' B ) .

The computation required to check the constraint entailment is done with the
use of recursion in the definition of the guard A = B.

Optimized Implementation The second implementation proposed in [15]
implements both path-compression and union-by-rank optimizations.

File union find solver.cat

component u n i o n f i n d .
export make /1 , ' / 2 .
make @ make (A) ⇐⇒ r o o t (A, 0 ) .

un ion @ un ion (A, B) ⇐⇒ f i n d (A, X) , f i n d (B, Y) , l i n k (X, Y ) .

f indNode @ A  B, f i n d (A, X) ⇐⇒ f i n d (B, X) , A  X .
f i n d R o o t @ r o o t (A, ) \ f i n d (A, X) ⇐⇒ X = A .

l i n k E q @ l i n k (A, A) ⇐⇒ t r u e .
l i n k L e f t @ l i n k (A, B) , r o o t (A, N) , r o o t (B, M) ⇐⇒ N ≥ M |

B  A, N1 i s max (M+1, N) , r o o t (A, N1 ) .
l i n k R i g h t @ l i n k (B, A) , r o o t (A, N) , r o o t (B, M) ⇐⇒ N ≥ M |

B  A, N1 i s max (M+1, N) , r o o t (A, N1 ) .

An optimized check for common equivalence class can rely on find to effi-
ciently get the representatives and then compare them. check(A, B, X, Y) repre-
sents the knowledge that the equivalence class representatives of A and B are the
roots X and Y respectively. When X and Y are known to be equal, entailed(A ' B)

is put to the store (checkEq).

askEq @ ask (A ' B) ⇐⇒
f i n d (A, X) , f i n d (B, Y) , check (A, B, X, Y ) .

checkEq @ r o o t (X) \ check (A, B, X, X) ⇐⇒ en t a i l e d (A ' B ) .

These two rules are not enough to define a complete entailment-solver due to
the non-monotonous nature of the changes applied to the tree structure. Indeed,
roots found for A and B can be invalidated by subsequent calls to union, which
may transform these roots into child nodes. When a former root becomes a child
node, the following two rules put find once again to get the new root.



c h e c k L e f t @ X  C \ check (A, B, X, Y) ⇐⇒
f i n d (A, Z ) , check (A, B, Z , Y ) .

c h e c k R i g h t @ Y  C \ check (A, B, X, Y) ⇐⇒
f i n d (B, Z ) , check (A, B, X, Z ) .

These rules define complete solvers for satisfaction and entailment checking for
the ' constraint.

5.2 Rational Tree Equality Constraint Component

Let us now consider rational terms, i.e. rooted, ordered, unranked, labelled,
possibly infinite trees, with a finite number of structurally distinct sub-trees
[17]. Nodes are supposed to belong to the universe considered by the union-find
solver; two nodes belonging to the same equivalence class are supposed to be
structurally equal. Each node X has a signature F/N, where F is the label of X

and N its arity: the associated constraint is denoted fun(X, F, N). The constraint
arg(X, I , Y), for each I between 1 and N, states that the Ith subtree of X is
(structurally equal to) Y. These constraints have just to be compatible between
elements of the same equivalence class:

File rational tree solver.cat

component r a t i o n a l t r e e s o l v e r .
import ' /2 from u n i o n f i n d s o l v e r .
export fun /3 , a rg /3 , ∼ / 2 .
eqFun @ fun (X0 , F0 , N0) \ fun (X1 , F1 , N1) ⇐⇒ X0 ' X1 |

F0 = F1 , N0 = N1 .
eqArg @ a rg (X0 , N, Y0) \ a r g (X1 , N, Y1) ⇐⇒ X0 ' X1 |

Y0 ' Y1 .

Telling that two trees are structurally equal, denoted X ∼ Y, can be reduced
to the union of the two equivalence classes.

eqProp @ X ∼ Y ⇐⇒ X ' Y .

The computation associated to asking A ∼ B requires a coinductive deriva-
tion of structural comparisons to break infinite loops. That is done here by
memoization. Each time a A ∼ B is asked, a new fresh variable M is introduced:

askEq @ ask (A ∼ B) ⇐⇒ checkTree (M, A, B ) .

This variable marks the checking(M, A, B) tokens, signaling that A can be assumed
to be equal to B since this check is already in progress.

checkTree (M, A, B) ⇐⇒ eqTree (M, A, B) | en t a i l e d (A ∼ B ) .

ask ( eqTree (M, A, B) ) ⇐⇒
c h e c k i n g (M, A, B) , fun (A, FA , NA) , fun (B, FB , NB) ,
checkTreeAux (M, A, B, FA , NA, FB , NB ) .

checkTreeAux firstly checks that signatures of A and B are equal, then compares
arguments.



checkTreeAux (M, A, B, F , N, F , N) ⇐⇒
a sk Ar g s (M, A, B, 1 , N) , c o l l e c t A r g s (M, A, B, 1 , N ) .

askArgs adds every askArg token corresponding to each pair of point-wise sub-
trees of A and B. askArg answers entailedArg if they match. collectArg ensures
every entailedArg token have been put before concluding about the entailment
of eqTree(M, A, B). It is very close to the definition of an ask solver, but the
considered guard deals with a variable number of tokens equals to the arity of
A and B.

a sk Ar g s (M, A, B, I , N) ⇐⇒ I ≤ N |
a r g (A, I , AI ) , a rg (B, I , BI ) ,
askArg (M, A, B, I , AI , BI ) ,
J i s I + 1 , a sk A rg s (M, A, B, J , N ) .

a sk Ar g s (M, A, B, I , N) ⇐⇒ t r u e .
c o l l e c t A r g s (M, A, B, I , N) , e n t a i l e d A r g (M, A, B, I ) ⇐⇒

J i s I + 1 , c o l l e c t A r g s (M, A, B, J , N ) .
c o l l e c t A r g s (M, A, B, I , N) ⇐⇒ I > N |

en t a i l e d ( eqTree (M, A, B ) ) .

askArg firstly checks if the equality is memoized. Otherwise, the eqTree guard is
recursively asked.

c h e c k i n g (M, AI , BI ) \ askArg (M, A, B, I , AI , BI ) ⇐⇒
e n t a i l e d A r g (M, A, B, I ) .

askArg (M, A, B, I , AI , BI ) ⇐⇒ eqTree (M, AI , BI ) |
e n t a i l e d A r g (M, A, B, I ) .

It is worth noticing that some garbage collection tasks are missing in this
example: memoization tokens checking(M,A,B) are never removed from the store,
and disentailment cases are not cleaned up.

6 Conclusion and perspectives

We have shown that by letting the programmer define in CHRat not only satis-
fiability checks but also entailment checks for constraints, CHRat becomes fully
modular, i.e. constraints defined in one component can be reused in rules and
guards in other components without restriction. Furthermore, this programming
discipline is not too demanding for the programmer, as for any constraint c, the
CHRat rule c \ ask(c) ⇐⇒entailed(c) constitutes a default rule for checking en-
tailment by simple store inspection. In the general case, however, CHRat rules
for ask(c) perform arbitrary complex simpagations, which lead either to the con-
straint token entailed(c), or to another store waiting for more information.

The operational and declarative semantics of CHRat have been defined and
the program transformation from CHRat to CHR which is at the basis of our
compiler has been proved to implement the formal semantics of CHRat. It is
worth noticing that the described transformation uniform and compatible with
other orthogonal approaches related to modularity, like methodologies to make
several constraint solvers collaborate [18].



We have also shown that the classical examples of constraint solvers defined
in CHR could easily be modularized in CHRat and reused for building complex
constraint solvers.

As for future work, the CHRat scheme can be improved in several ways.
Variables in a CHRat guard have to appear either in the head or in the built-in
constraint part of the guard. One way to allow existentially quantified variables
guards without this restriction is to explicitly stratify guards as proposed in [9].

On the programming discipline side, ask-solvers should never lead to a failure
and should not interfere with the logical interpretation of exported constraints
present in the CHR store. The union-find example is a typical case where the ask-
solver does change the logical meaning of the store by path-compressions and
meanwhile keeps the interpretation of the exported constraint ' unchanged.
Formalizing sanity conditions for ask-solvers will be a step towards establishing
the link between ask-solvers and logical entailment in the semantics.

The transformation of CHRat programs into regular CHR programs make the
implementation directly benefit from optimized CHR implementations. While the
efficient management of ask and entailed is left to the underlying CHR implemen-
tation, garbage collection, caching and memoization for checking entailment are
left to the CHRat programmer. Good strategies for garbage collection still need
to be investigated as shown in the rational tree solver.

Finally, the issue of separate compilation has not been discussed here but is
a natural subject for future work in this framework.
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