
On connections between CHR and LCC

Thierry Martinez

Contraintes Project–Team, INRIA Paris–Rocquencourt, France

Abstract. Both CHR and LCC languages are based on the same model
of concurrent computation, where agents communicate through a shared
constraint store, with a synchronization mechanism based on constraint
entailment. The Constraint Simplification Rules (CSR) subset of CHR
and the flat subset of LCC, where agent nesting is restricted, are very
close syntactically and semantically. The first contribution of this paper is
to provide translations between CSR and flat-LCC and back. The second
contribution is a transformation from the full LCC language to flat-LCC
which preserves semantics. This transformation is similar to λ-lifting
in functional languages. In conjunction with the equivalence between
CHR and CSR with respect to naive operational semantics, these results
lead to semantics-preserving translations from full LCC to CHR and
conversely. Immediate consequences of this work include new proofs for
CHR linear logic and phase semantics, relying on corresponding results
for LCC, plus an encoding of the λ-calculus in CHR.

1 Introduction

Constraint Handling Rules (CHR) [1] is a rule-based declarative programming
language. Programs are sets of transformation rules on constraint stores. Some
constraints are built-ins and can only be accumulated into the store. Other
constraints are user-defined and can be added or deleted. Although initial mo-
tivations were the definition of constraint solvers and propagators, nowadays
applications include typing [2,3], software testing [4], scheduling [5] and so on.

Foundations of the class CC of Concurrent Constraint programming lan-
guages [6] are very close to CHR: both are based on a model of concurrent com-
putation, where agents communicate through a shared constraint store, with
a synchronization mechanism based on constraint entailment. In classical con-
straint settings, the store evolves monotonically, similarly to the built-in con-
straint store of CHR. The LCC languages [7,8] introduce linear constraint sys-
tems, based on Girard’s intuitionistic linear logic (ILL) [9]. A remarkable kind of
linear constraints are linear tokens [8], which can be freely added or consumed,
comparably to CHR constraints. Linear logic leads to a natural semantics for
classical CC languages as well [8]. More recently, a precise declarative semantics
for CHR has been described in linear logic [10].

This paper formalizes connections between CHR with naive operational se-
mantics and LCC. Two translations from CHR to LCC and back are proposed,
both preserving the semantics. Strong bisimilarity results are formulated. As



direct corollary, we obtain a natural encoding of the λ-calculus in CHR. While
existence of low-level translations is guaranteed by Turing-completeness via a
compilation process, there are more fine-grained criteria to compare expressive-
ness [11]. In particular, translations presented here are natural and (relatively)
agnostic with respect to the constraint theory.

Section 2 presents CHR and LCC in full generality and recalls some already
published and well-known results. Section 3 focuses on distinguished subsets
Constraint Simplification Rules (CSR) and flat-LCC, provides translations from
flat-LCC to CHR and back. Linear logic semantics [10] and phase semantics [12]
of CHR are recovered as corollary. Section 4 introduces the ask-lifting transfor-
mation from full LCC to flat-LCC.

Related work

The adaptations of functional concepts in LCC languages have been initiated in
Rémy Haemmerlé’s PhD thesis [13] with the embedding of closures and modules,
leading to an encoding of λ-calculus in LCC. This paper pursues the effort of
transposing results in functional languages to concurrent constraint systems.

The translation from full LCC to CHR relies on ask-lifting. This is a trans-
formation comparable to the λ-lifting [14] for functional languages: the common
idea is the materialization of the environment in data structures, i.e. values in
functional languages or tokens in LCC.

Flattening nested programming structures to CHR programs was suggested
in [15] for connecting the Celf system [16] to CHR but, to our knowledge, no
formal description of the transformation has been published.

2 Syntax and Semantics of CHR and LCC

We will denote by V a set of variables, and by Σ a signature for constant, function
and predicate symbols. The set of free variables of a formula e is denoted fv(e), a
sequence of variables is denoted by x. e[t/x] denotes the formula e in which free
occurrences of variables x are substituted by terms t (with the usual renaming
of bound variables to avoid variable clashes).

For a set S, S? denotes the set of finite sequences of elements of S andM(S)
denotes the set of finite multi-sets of elements of S. More formally, (S?; ·; ε)
denotes the free monoid and (M(S); , ; ∅) the free commutative monoid over
the elements of S. For relations R and R′, aR · R′ c if there exists b such that
aR bR′ c. For a relation →, ?→ is the reflexive and transitive closure of →.

2.1 Syntax and Semantics of CHR

Let Pb and Pc be two disjoint subsets of predicate symbols in Σ. Predicates built
from Σ with predicate symbols in Pb are atomic built-in constraints, their set is
denoted B0. Built-in constraints are conjunctions of atomic built-in constraints,
their set is denoted B. Predicates built from Σ with predicate symbols in Pc are
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atomic CHR constraints, their set is denoted U0. CHR constraints are (finite)
multi-sets of atomic CHR constraints, their set is denoted U . A goal is a multi-set
of built-in constraints and CHR constraints.

Definition 1 (Syntax). A CHR program is a set of rules, each rule being
denoted 〈H\H ′ ⇔ G |B〉 where heads H and H ′ are CHR constraints such that
〈H,H ′〉 6= ∅, the guard G is a built-in constraint, and the body B is a goal.

Example 1. The CHR program below, adapted from [17], describes the dining
philosophers protocol [18], where N philosophers are sitting around a table and al-
ternate thinking and eating. N forks are dispatched between them. Each philoso-
pher is in competition with her neighbors to take her two adjacent forks and eat.

diner(N) ⇔ recphilo (0, N).
recphilo(I , N) ⇔

J is (I + 1) mod N, philo(I, J), fork(I ), nextphilo(I , N).
nextphilo(I , N) ⇔ I < N − 1 | J is I + 1, recphilo(J, N).
philo(I , J) \ fork(I ), fork(J) ⇔ eat(I , J).
eat(I , J) ⇔ fork(I ), fork(J).

Built-in constraints are supposed to include the syntactic equality =. There
is a constraint theory CT over the built-in constraints: CT is supposed to be a
non-empty, consistent and decidable first-order theory. For two multi-sets H =
(H1, . . . ,Hm) and H ′ = (H ′1, . . . ,H

′
n), H + H ′ denotes the formula H1 = H ′1 ∧

· · · ∧Hn = H ′n if m = n, and false if m 6= n [19].
A state is a tuple denoted 〈g; b; c〉V where g is a goal, b is a built-in constraint,

c is a CHR constraint and V is a set of variables. The relation ≡C over states is
the smallest equivalence relation such that:

– 〈g; b; c〉V ≡C 〈g; b′; c〉V for CT |= b↔ b′;
– 〈g; b; c〉V ≡C 〈g; b; c〉V [y/x] for variables x /∈ V and y /∈ V ∪ fv(g, b, c).

Let P be the set of pairs of CHR programs and states.

Definition 2 (Naive Operational Semantics [1]). A CHR program P is ex-
ecuted along a transition relation →P over states:
Firing Rule

Apply
〈H\H ′ ⇔ G |B〉 is a fresh variant of a rule in P with variables x

CT |= ∀(b→ ∃x(H + h ∧H ′ + h′ ∧G))
〈g; b;h, h′, c〉 V →P 〈B, g;H + h ∧H ′ + h′ ∧G ∧ b;h, c〉 V

Solving Rules
Solve
B ∈ B CT |= B ∧ b↔ b′

〈B, g; b; c〉 V →P 〈g; b′; c〉 V

Introduce
C ∈ U

〈C, g; b; c〉 V →P 〈g; b;C, c〉 V

Let q be an initial goal, the query. V is defined as fv(q) and, from the initial
state s0 = 〈q;>; ∅〉V , a derivation is a sequence s0→P s1→P · · · →P sn. Such
a state sn is an accessible state.
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Definition 3 (Linear Logic Semantics [10]).
For built-in constraint B = 〈B1 ∧ · · · ∧Bn〉, let B† = 〈!B1 ⊗ · · · ⊗ !Bn〉.
For CHR constraint C = (C1, . . . , Cn), let C† = 〈C1 ⊗ · · · ⊗ Cn〉.
For goal G = (G1, . . . , Gn), let G† = 〈G†1 ⊗ · · · ⊗G†n〉.
For state S = 〈g; b; c〉V , let S† = ∃x(g† ⊗ b† ⊗ c†),

where x = fv(G,B,C) \ V .
The semantics of a rule r = 〈H\H ′ ⇔ G |B〉 is, with x = fv(B) \ fv(H,H ′, G):
r† = 〈!∀(G† ⊗H† ⊗H ′†( ∃x(H† ⊗B†))〉.
The linear logic semantics of a program P = {r1, . . . , rn} is P † = 〈r†1⊗· · ·⊗r†n〉.
Theorem 1 (Soundness & Completeness [10]).
Let CT † be the Girard translation of CT [9], P a CHR program and q a query.
– (Sound) If s is an accessible state from q in P , then P †,CT † |= ∀(q†( s†).
– (Complete) For every formula c such that P †,CT † |= ∀(q†( c), there is an

accessible state s from q in P such that CT † |= ∀(s†( c).

2.2 Syntax and Semantics of LCC

Definition 4 (Linear Constraint System [8]). A linear constraint system is
a pair (C,`C), where:
– C is a set of formulas (the linear constraints) built from variables V and the

signature Σ, with logical operators: multiplicative conjunction ⊗, its neutral
1, existential ∃, exponential ! and constant >; C is assumed to be closed by
renaming, multiplicative conjunction and existential quantification;

– 
C is a binary relation over C, which defines the non-logical axioms.
– `C is the least subset of C? × C containing 
C and closed by the rules of

intuitionistic multiplicative exponential linear logic for 1, >, ⊗, ! and ∃.
Definition 5 (Syntax with Persistent Asks [20]). The syntax for building
LCC agents follows the grammar: A ::= ∀V?(C → A)

∣∣∀V?(C ⇒ A)
∣∣∃V.A∣∣C ∣∣A‖A

where ‖ stands for parallel composition, ∃ for variable hiding, → for (transient)
ask and⇒ for persistent ask. In the particular case where there are no universally
quantified variables in an ask, the notation (c→ a) is preferred to ∀ε(c→ a).

Agent ∀x(c→ a) suspends until c is entailed then wakes up and does a. Transient
asks wake up at most one time. Persistent asks are introduced [20] to replace
declarations by agents. The agent ∀x(c⇒ a) can wake up as many times as c is
entailed. This behavior makes sense as entailment consumes resources.

Example 2. Here is the LCC version for dining philosophers [8,13].

∀N(diner(N)⇒
∃K(∀I( recphilo(K, I)⇒

fork(K, I) ‖
∃J.(J is (I + 1) modN ‖

( fork(K, I)⊗ fork(K,J)⇒
eat(K, I) ‖ (eat(K, I)→ fork(K, I)⊗ fork(K,J)) ‖

(I < N − 1→ recphilo(K,J)) ‖
recphilo(K, 0))))))
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This example makes use of non-trivial scopes: variables N ,K, I and J are in turn
introduced and shared by subsequent asks. The recursive loop 〈recphilo〉 installs
N forks and composes N agents (the philosophers) in parallel. The variable K
identifies tokens and let several diners to be run in parallel (a banquet [13]) while
preventing tables from stealing cutlery from each other. The philosopher between
forks I and J is an agent in LCC, whereas she is materialized in example 1 by
the CHR constraint philo(I , J) in order to carry the environment {I, J}.

A configuration is a triple (X; c;Γ ) where c is a constraint (the store), Γ
is a multi-set of agents and X is a set of variables (the hidden variables). The
relation ≡L over configurations is the smallest equivalence relation such that:

– (X; c; a ‖ b, Γ )≡L (X; c; a, b, Γ ) for all agents a and b;
– (X; c; 1, Γ )≡L (X; c;Γ );
– (X; c;Γ )≡L (X; c′;Γ ) for all constraints c, c′ such that c a`C c′;
– (X; c;Γ )≡L (X; c;Γ )[y/x] for all variables x ∈ X and y 6∈ fv(X, c, Γ )

Let K be the set of configurations.

Definition 6 (Operational Semantics [8,20]). The transition relation →L

is the least relation on configurations satisfying the following rules:
Firing Rules

Transient Ask
c `C ∃Y (d⊗ e[t/x]) Y ∩ fv(X, c, Γ ) = ∅

∀d′((c `C ∃Y (d′ ⊗ e[t/x])) ∧ (d′ `C d)⇒ d a`C d′)
(X; c;∀x(e→ a), Γ )→L (X ∪ Y ; d; a[t/x], Γ )

Persistent Ask
c `C ∃Y (d⊗ e[t/x]) Y ∩ fv(X, c, Γ ) = ∅

∀d′((c `C ∃Y (d′ ⊗ e[t/x])) ∧ (d′ `C d)⇒ d a`C d′)
(X; c;∀x(e⇒ a), Γ )→L (X ∪ Y ; d; a[t/x],∀x(e⇒ a), Γ )

Solving Rules
Hiding

y /∈ X ∪ fv(c, Γ )
(X; c;∃x.a, Γ )→L (X ∪ {y} ; c⊗ d; a[y/x], Γ )

Tell

(X; c; d, Γ )→L (X; c⊗ d;Γ )

Equivalence
κ0 ≡L κ

′
0→L κ

′
1 ≡L κ1

κ0→L κ1

An agent a is associated with the initial configuration (∅;>; a). Accessible ob-
servables from a configuration κ are the configurations κ′ such that κ ?→L κ

′.

Definition 7 (Linear Logic Semantics [8,20]). The translation (·)‡ of LCC
agents into their linear logic semantics is defined inductively as follows:

(∀x(c→ a))‡ = ∀x(c( a‡) (∀x(c⇒ a))‡ = !∀x(c( a‡)

(∃x.a)‡ = ∃x(a‡) c‡ = c (a ‖ b)‡ = a‡ ⊗ b‡
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If Γ is a multi-set of agents (a1, . . . , an), we define Γ ‡ = 〈a‡1 ⊗ · · · ⊗ a‡n〉. Con-
figurations are translated to (X; c;Γ )‡ = 〈∃X(c⊗ Γ ‡)〉.

Theorem 2 (Soundness & Completeness [8,20,13]). For all agents a:

– (Sound) If κ is an accessible observable from (∅;>; a), then a‡ `C κ‡.
– (Complete) If c is such that a‡ `C c, then there is an accessible observable

(X; d;Γ ) from (∅;>; a) with ∃X(d) `C c and agents in Γ are persistent asks.

2.3 Circumscribing non-determinism in CHR and LCC operational
semantics

Whereas non-determinism in firing rules seems to be inherent to the computa-
tion model (and is tackled in CHR by the committed-choice strategy and by the
refined semantics), the non-determinism in sequencing solving rules can be com-
pletely eliminated. This is a classical result for constraint logic programming [21]
and it was proved for LCC in [13]. We formalize such a result for CHR and LCC
since the precise bisimulation results presented in next sections rely on it.

Let→s
P and→f

P be the restrictions of→P to solving and firing rules respec-
tively. Let →s

L and →f
L be the similar restrictions for →L.

We define ⇒s
P such that s⇒s

P s′ if and only if s ?→s
P s′ 6→s

P . Similarly, ⇒s
L is

such that κ⇒s
L κ
′ if and only if κ ?→s

L κ
′ 6→s

L.

Lemma 1 (Solving rules terminate and are confluent modulo ≡).
For every CHR program P , for all state s, there exists s′ such that s⇒s

P s
′ and

for all s′, s′′, if s⇒s
P s′ and s⇒s

P s′′, then s′ ≡C s
′′.

For every configuration κ, there exists κ′ such that κ⇒s
L κ
′ and for all κ′, κ′′, if

κ⇒s
L κ
′ and κ⇒s

L κ
′′ then κ′ ≡L κ

′′.

Thus, observed configurations can be restricted to be final for →s (or, equiva-
lently, normalized by ⇒s) without losing derivations. The following lemma is a
specialization of the “Andorra” principle [22] to the rule selection strategy:

Lemma 2 (Full solving before firing). For every CHR program P ,(
?→P · ⇒s

P

)
=

(
(⇒s

P · →
f
P )? · ⇒s

P

)
and, similarly,

(
?→L · ⇒s

L

)
=

(
(⇒s

L · →
f
L)? · ⇒s

L

)
The lemma 2 is a corollary of the monotonous selection strategy [13]: intuitively,
→s can always be exhausted before applying →f .

Lemma 3 (Solving rules preserve declarative semantics). For every
CHR program P , if s→s

P s′, then s† ≡ s′†. Similarly, if κ→s
L κ
′, then κ‡ ≡ κ′‡.

Therefore, next sections focus on ⇒-transitions where ⇒P = (⇒s
P · →

f
P · ⇒s

P ),
and ⇒L = (⇒s

L · →
f
L · ⇒s

L): a ⇒P -accessible state from s is a state s′ such that
s

?⇒P s′ and a ⇒L-accessible observable from κ is a configuration κ′ such that
κ

?⇒L κ
′. It is worth noticing that a firing occurs at each ⇒-transition.
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3 Translations between sub-languages CSR and flat-LCC

From now on, we consider the linear constraint system (C,`C) induced by the
constraint theory CT and with atomic CHR constraints as linear tokens. More
precisely, C is the least set of formulas which contains > and !B for all B ∈ B0 and
C for all C ∈ U0, closed by renaming, multiplicative conjunction and existential
quantification. We suppose that c 
C d if and only if CT † |= ∀(c ( d). The
result is a particular form of linear constraint system where non-logical axioms
follow from the translation of a classical theory.

Bisimulation is the most popular method for comparing concurrent pro-
cesses [23], characterizing a notion of strong equivalence between processes. A
transition system is a tuple (S,→) with S a set of states and→ a binary relation
over S. We define the CHR transition system as (P,⇒C) where (P, s)⇒C (P ′, s′)
when P = P ′ and s⇒P s′, and the LCC transition system as (K,⇒L).

Definition 8 (Bisimulation). Let (S1,
1−→) and (S2,

2−→) be two transition sys-
tems. A bisimulation is a relation ∼ ⊆ S1 × S2 such that for all s1 ∼ s2:

– for all s′1 such that s1
1−→ s′1, there exists s′2 such that s2

2−→ s′2 and s′1 ∼ s′2;
– for all s′2 such that s2

2−→ s′2, there exists s′1 such that s1
1−→ s′1 and s′1 ∼ s′2.

3.1 From Constraint Simplification Rules (CSR) to flat-LCC

Resulting configurations of LCC Firing Rules enjoy a new store where guards
have been consumed. This behavior corresponds to simplification rules in CHR.

Definition 9 (CSR programs[19]). A CHR program P is a CSR program
when all rules of P are simplifications ( i.e. rules are of the form 〈H ⇔ G |B.〉).

As far as naive operational semantics and linear-logic semantics are concerned,
expressiveness of CHR and CSR is identical. For a rule r = 〈H\H ′ ⇔ G |B〉, let
r× = 〈H,H ′ ⇔ G |H,B.〉 and for P = {r1, . . . , rn}, let P× = {r×1 , . . . , r×n }.

Example 3. Here is leq× translated from a version of the leq program [24]:

leq(X, X) ⇔ true.
leq(X, Y) ⇔ number(X), number(Y) | X 6Y.
leq(X, Y), leq(Y, X) ⇔ X = Y.
leq(X, Y), leq(Y, Z) ⇔ leq(X, Y), leq(Y, Z), leq(X, Z).
leq(X, Y), leq(X, Y) ⇔ leq(X, Y).

Proposition 1 (CHR and CSR equivalence). For every CHR program P ,
we have →P =→P× and P † ≡ (P×)†.

This equivalence only holds for naive CHR semantics. There is probably no
natural encoding of the traditional semantics for propagation [25] in LCC, at
least without ad-hoc support hard-wired in the constraint system.
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Let r = 〈H ′ ⇔ G |B.〉 be a simplification rule. G†⊗H ′† and B† are in C, thus
the following agent is well-formed: r( = 〈∀y(G† ⊗H ′† ⇒ ∃x.B†)〉, where x =
fv(B) \ fv(H ′, G) and y = fv(H ′, G). For every CSR program P = {r1, . . . , rn},
the translation of P in LCC is: P( = 〈r(

1 ‖ . . . ‖ r(
n 〉. States 〈g; b; c〉V are

translated in C as well: 〈g; b; c〉V ( = g† ⊗ b† ⊗ c†.

Example 4. The leq× program (Example 3) is translated to the agent leq(:

leq( = ∀X(leq(X,X)⇒ 1) ‖
∀XY (number(X)⊗ number(Y )⊗ leq(X,Y )⇒ X 6 Y ) ‖
∀XY (leq(X,Y )⊗ leq(Y,X)⇒ X = Y ) ‖
∀XY Z(leq(X,Y )⊗ leq(Y,Z)⇒ leq(X,Y )⊗ leq(Y,Z)⊗ leq(X,Z)) ‖
∀XY (leq(X,Y )⊗ leq(X,Y )⇒ leq(X,Y ))

Since there is no possible confusion between linear tokens and classical con-
straints, then, by abuse of notations, we omit the ! operator on U0 constraints.

Definition 10 (CSR to LCC translation). A CSR program P and a query
q are translated to the agent a(P, q) = 〈P(‖q†〉.

Main Result 1 (Bisimilarity) Let ∼ ⊆ P×K be the relation where (P, s) ∼ κ
if and only if κ≡L (X; s(;P() with X = fv(s) \ V . Then, ∼ is a bisimulation.

Corollary 1 (Semantics preservation). For CSR program P , query q:

– if κ is a ⇒L-accessible observable of a(P, q), then κ ≡ (X; c;P() and there
is a ⇒P -accessible state s from q with ∃x(s()a`C ∃X(c), x = fv(s) \ fv(q);

– if s is a ⇒P -accessible state from q, then there is a ⇒L-accessible observable
(X; c;P() from a(P, q) such that ∃x(s()a`C∃X(c), where x = fv(s)\fv(q).

3.2 From flat-LCC to CSR

The translation of CSR into LCC generates agents of the particular form p ‖ q,
where the sub-agent p is the translation of a CSR program and is therefore a
parallel composition of persistent asks without any nested asks, and the sub-
agent q is a translation of a query and is therefore reduced to a constraint.
Moreover, every ask guard consumes at least a linear token (since CHR heads
are non-empty) and asks are closed term (i.e. without free variables). Such agents
are characterized by the following definition:

Definition 11 (flat-LCC). Flat-LCC agents are restricted to the grammar:
A↑ ::= A∀ ‖ C where A∀ ::= ∀V?(C ⇒ C) | A∀ ‖ A∀ | 1 with the following side
condition for every ask ∀x(g ⇒ c): g 6`C g ⊗ g (consumption) and fv(g, c) ⊆ x.

This subsection is dedicated to establishing the reverse translation, from
A↑ to CSR. It is worth noticing first that, like a CSR program, an A↑-agent
essentially transforms constraint stores without introducing new suspensions:

Lemma 4 (Configurations form). Non-initial ⇒L-accessible configurations
from an A↑-agent a are ≡L-equivalent to configurations of the form (_;_; a∀).
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The translation from flat-LCC to CSR is a bit more intricate than the
other direction on account of, firstly, splitting between built-in constraints and
CHR constraints, and secondly, possible introductions of local variables by ∃.
Fresh variables should be introduced to translate constraints such as a(X,Y )⊗
∃X(b(X,Y )) into 〈a(X,Y ), b(K,Y )〉 where K is a new local variable. The func-
tion fC translates every constraint in C to a tuple (X;B;C) where B is a built-in
constraint, C a CHR constraint and X a set of variables local to B and C:

fC(>) = (∅; true; ∅)
fC(!B) = (∅;B; ∅) for all B ∈ B0

fC(C) = (∅; true;C) for all C ∈ U0

fC(c⊗ d) = (σc(Xc) ∪ σd(Xd);σc(Bc) ∧ σd(Bd);σc(Cc), σd(Cd))
if fC(c) = (Xc;Bc;Cc) and fC(d) = (Xd;Bd;Cd)
with σc and σd renaming of Xc and Xd respectively
such that σc(Xc) ∩ fv(σd(Bd, Cd)) = σd(Xd) ∩ fv(σc(Bc, Cc)) = ∅

fC(∃x(c)) = (Xc ∪ {x};Bc;Cc) if fC(c) = (Xc;Bc;Cc)

A∀-agents are translated to CSR programs through the function f∀. Trans-
lation of asks should take care of clashes with similar renaming as for ⊗ in fC :

f∀(∀x(g ⇒ c)) = {〈σg(Cg)⇔ σg(Bg) | σc(Bc), σc(Cc).〉}
where fC(g) = (Xg;Bg;Cg) and fC(c) = (Xc;Bc;Cc)
and σg and σc renaming of Xg and Xc respectively
with σg(Xg) ∩ fv(σc(Bc, Cc)) = σc(Xc) ∩ fv(σg(Bg, Cg)) = ∅

f∀(a ‖ b) = f∀(a) ∪ f∀(b)
f∀(1) = ∅

For every ask ∀x(g ⇒ c), f∀(∀x(g ⇒ c)) is a well-formed CHR rule. In particular,
the side condition on g ensures that σg(Cg) 6= ∅.

fs
V : c 7→ 〈∅; b; c〉V maps constraints to states with (_; b; c) = fC(c).
Note that all variables in CSR queries are global. The CHR program initial-

ization should hide existentially quantified variables in the top-level constraint
c0 of the agent. We suppose a fresh symbol 〈start/n〉 ∈ U0 where n = #fv(c0).

Definition 12 (Flat-LCC to CSR translation). A flat-LCC agent 〈a∀ ‖ c0〉
is translated to the CHR program P (a∀ ‖ c0) = f∀(a∀) ∪ {start(v) ⇔ B0, C0.}
and the query q(a) = (start(v)) where (_;B0;C0) = fC(c0) and v = fv(c0).

Main Result 2 (Bisimilarity) Let ∼ ⊆ K×P be the relation where κ ∼ (P, s)
if and only if there exists a flat-LCC agent 〈a∀ ‖ c0〉 where κ ≡L (X; c; a∀) and
P = P (a) and s≡C f

s
V (c), with V = fv(c0). Then, ∼ is a bisimulation.

Corollary 2 (Semantics preservation). For every flat-LCC agent a = 〈a∀ ‖
c0〉, let s0 = 〈q(a);>; ∅〉V , V = fv(c0), then:
– for all ⇒L-accessible configuration (X; c; a∀) from a, there exists a ⇒P (a)-

accessible state s from s0 such that ∃x(s() a`C ∃X(c);
– for all⇒P (a)-accessible state s from s0, if s 6= s0, there exists a⇒L-accessible

configuration (X; c; a∀) from a, such that ∃x(s() a`C ∃X(c);

where, in both cases, x = fv(s) \ V .
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3.3 CHR linear-logic and phase semantics revisited

Lemma 5 (Identical Semantics). For every CSR program P and query q,
(P()‡ ≡ P † and we have P †,CT † |= ∀(q†( c) if and only if (P()‡, q† `C c.

Relating theorem 1 and theorem 2 supposes to prove that accessible con-
straints are included in provable constraints (correctness), and conversely (com-
pleteness). Thus, the correctness and completeness result amounts to equality
between sets, which we make explicit here to prove both ways at the same time.

OC(P, q) =
{
(P, s) ∈ P

∣∣ (q;>; ∅) ?→P s
}

OL(a) =
{
κ ∈ K

∣∣ (∅;>; a) ?→L κ
}

O⇒C (P, q) =
{
(P, s) ∈ P

∣∣ (q;>; ∅) ?⇒P s
}
O⇒L (a) =

{
κ ∈ K

∣∣ (∅;>; a) ?⇒L κ
}

LLC(P, q) =
{
c ∈ C

∣∣ P †,CT † |= ∀(q†(c)
}

⇓s
CS =

{
s ∈ P

∣∣ ∃s′ ∈ S⇒s
C s

}
LLL(a) =

{
c ∈ C

∣∣ a‡ `C c} ⇓s
LS =

{
κ ∈ K

∣∣ ∃κ′ ∈ S⇒s
L κ

}

(

S =
{
c ∈ C

∣∣ ∃c′ ∈ S, c′ `C c}
Some results mentioned up to now are summarized in the following table:

For every CSR program P , query q, and flat-LCC agent a,
– Theorem 1:

(

(OC(P, q))† = LLC(P, q);
– Theorem 2:

(

(OL(a))‡ = LLL(a);
– Lemma 2: ⇓s

COC(P, q) = O⇒C (P, q) and ⇓s
LOL(a) = O⇒L (a);

– Lemma 3: (⇓s
COC(P, q))† = (OC(P, q))† and (⇓s

LOL(a))‡ = (OL(a))‡;
– Proposition 1: OC(P, q) = OC(P×, q) and LLC(P, q) = LLC(P×, q);
– Corollary 1: (O⇒C (P×, q))† = (O⇒L (a(P×, q)))‡;
– Lemma 5: LLC(P×, q) = LLL(a(P×, q))

We are now ready to prove theorem 1 again from the other results.
Proof of theorem 1. For every CHR program P and query q:

(
(OC(P, q))†

proposition 1
=

(

(OC(P×, q))† lemma 3=

(

(⇓s
COC(P×, q))†

lemma 2=

(

(O⇒C (P×, q))†
corollary 1

=

(

(O⇒L (a(P×, q)))‡
lemma 2=

(

(⇓s
LOL(a(P×, q)))‡ lemma 3=

(

(OL(a(P×, q)))‡
theorem 2= LLL(a(P×, q)) lemma 5= LLC(P×, q)

proposition 1
= LLC(P, q) �

The following proposition describes a method to prove unreachability prop-
erty in CHR using phase semantics, adapted from similar result in LCC [8].
Proposition 2 (Safety through Phase Semantics [12]). To prove a safety
property of the kind s 6→P s′ for a given CHR program P , it is enough to prove
that for a well-chosen phase space P and valuation η compatible with CT and
P , there exists an element a ∈ η(s†) such that a /∈ η(t†).
Such a valuation η is compatible with `C and (P×)( (note that it is immediate
to see (P×)( as declarations in the sense of the original presentation of LCC [8]).
Let κ and κ′ be the respective images of s and s′ by the transformation. Then
the element a is such that a ∈ η(κ‡) and a /∈ η(κ′‡). Thus κ 6→Lκ

′ comes from the
phase semantics of LCC. Therefore the property s 6→P×s

′ follows from corollary 1,
and is generalizable to P with proposition 1. That proves proposition 2. �
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4 Ask-lifting: encoding LCC into CSR

The main result of this section is a translation from LCC to flat-LCC which
preserves the semantics. Consequently, thanks to corollary 2, we can deduce a
semantics-preserving translation from LCC to CSR. This section begins with
a preliminary step introducing an intermediary language LCC` where asks are
labeled with linear tokens: these tokens do not change the operational semantics
and there is a trivial labeling to transform LCC programs to LCC` programs.
These linear tokens are introduced in order to follow asks through the transitions
of the operational semantics, which is used to prove the semantics preservation.

4.1 Preliminary step: labeling LCC-agents

Labeled LCC agents A` differ from agents A by labels inserted on each ask. In
the following definition, labels are arbitrary linear tokens.
Definition 13 (LCC` agents). The syntax of LCC` agents is given by the
following grammar: A` ::= ∀V?(C U0−→ A`) | ∀V?(C U0=⇒ A`) | ∃V.A` | C |A` ‖A`.
The transition relation →L is lifted to the transition →LCC` for LCC`.

Transient Ask (with labeling)
c `C ∃Y (d⊗ e[t/x]) Y ∩ fv(X, c, Γ ) = ∅

∀d′((c `C ∃Y (d′ ⊗ e[t/x])) ∧ (d′ `C d)⇒ d a` d′)(
X; c;∀x(e l−→ a), Γ

)
→LCC` (X ∪ Y ; d; a[t/x], Γ )

Persistent Ask (with labeling)
c `C ∃Y (d⊗ e[t/x]) Y ∩ fv(X, c, Γ ) = ∅

∀d′((c `C ∃Y (d′ ⊗ e[t/x])) ∧ (d′ `C d)⇒ d a` d′)(
X; c;∀x(e l=⇒ a), Γ

)
→LCC`

(
X ∪ Y ; d; a[t/x],∀x(e l=⇒ a), Γ

)
Agents A are translated to a particular family of labeled agents denoted A`0

with the labeling transformation, which ensures the following conditions: each
label carries a distinct symbol taken from a set P of fresh predicate symbols and
the arguments enumerate exactly the free variables of the ask. Such a labeling
is simple to obtain as soon as P is large enough to label each ask of a.

Example 5. The dining philosophers (example 2) can be labeled as follows:

∀N(diner(N)
p1=⇒

∃K(∀I( recphilo(K, I)
p2(K,N)
=====⇒

fork(K, I) ‖
∃J.(J is (I + 1) modN ‖

( fork(K, I)⊗ fork(K,J)
p3(I,J,K)
======⇒

eat(K, I) ‖ (eat(K, I)
p4(I,J,K)−−−−−−→ fork(K, I)⊗ fork(K,J)) ‖

(I < N − 1
p5(I,J,K,N)−−−−−−−−→ recphilo(K,J)) ‖

recphilo(K, 0))))))

11



4.2 The ask-lifting transformation

The ask-lifting transformation is defined with two helper functions. 〈a〉C trans-
forms the agent a to constraints where asks become linear tokens. 〈a〉∀ puts
in parallel every ask occurring in a and the representing token is added to the
guard. A persistent ask restores the token, a transient ask consumes it.

The function 〈·〉C : A` → C is defined inductively as follows:〈
∀x(c

f(t)−−→ a)
〉C = f(t)

〈
∀x(c

f(t)
==⇒ a)

〉C = f(t)
〈
∃x.a

〉C = ∃x.
〈
a
〉C

〈
a ‖ b

〉C =
〈
a
〉C ⊗ 〈

b
〉C 〈

c
〉C = c

The function 〈·〉∀ : A`0 → A∀ is defined inductively as follows:〈
∀x(c

f(v)−−−→ a)
〉∀ = ∀vx(f(v)⊗ c f(v)

==⇒
〈
a
〉C) ‖ 〈

a
〉∀

〈
∀x(c

f(v)
==⇒ a)

〉∀ = ∀vx(f(v)⊗ c f(v)
==⇒ f(v)⊗

〈
a
〉C) ‖ 〈

a
〉∀

〈
∃x.a

〉∀ =
〈
a
〉∀ 〈

a ‖ b
〉∀ =

〈
a
〉∀ ‖ 〈

b
〉∀ 〈

c
〉∀ = 1

The function 〈·〉∀ is well-defined: every ask satisfies the side-condition for A∀.

Definition 14 (Ask-lifting). The agent ask-lifting function J·K ↪→ : A → A↑

transforms the agent a to the agent JaK ↪→ = 〈a`〉∀ ‖ 〈a`〉C where a is translated
to a` by the labeling defined in 4.1 with symbol predicates from a subset P of Pc

whose predicates do not appear in a. J·K ↪→ is well-defined as soon as the set P is
large enough to label agent a.

Main Result 3 (Bisimilarity) Let a be a labeled LCC agent. Let ∼ ⊆ K×K
be the relation such that κ ∼ κ′ if and only if κ≡L (X; c;Γ ) is ⇒-accessible from
a and κ′ ≡L (X; c⊗ 〈Γ 〉C ; 〈a〉∀). Then, ∼ is a bisimilarity.

Corollary 3 (Semantics preservation). For every LCC agent a:

– for all ⇒L-accessible configuration (X; c;Γ ) from a, there is a ⇒L-accessible
configuration (X; c′; 〈a〉∀) from JaK ↪→ such that ∃X(c⊗ 〈Γ 〉C) a`C ∃X ′(c′);

– for all⇒L-accessible configuration (X; c′; 〈a〉∀) from JaK ↪→, there exists a⇒L-
accessible configuration (X; c;Γ ) from a and ∃X(c⊗ 〈Γ 〉C) a`C ∃X ′(c′).

Example 6. The labeled diner (example 5) can be lifted as follows:

∀N( p1 ⊗ diner(N)⇒ p1 ⊗ p2(K,N)⊗ recphilo(K, 0)) ‖
∀IKN( p2(K,N)⊗ recphilo(K, I)⇒

p2(K,N)⊗ fork(K, I)⊗
∃J(J is (I + 1) modN ⊗ p3(I, J,K)⊗ p5(I, J,K,N))) ‖

∀IJK( p3(I, J,K)⊗ fork(K, I)⊗ fork(K,J)⇒
p3(I, J,K)⊗ eat(K, I)⊗ p4(I, J,K)) ‖

∀IJK( p4(I, J,K)⊗ eat(K, I)⇒ fork(K, I)⊗ fork(K,J)) ‖
∀IJKN( p5(I, J,K,N)⊗ I < N − 1⇒ recphilo(K, J)) ‖ p1
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4.3 Encoding the λ-calculus in CHR

The following transformation from pure λ-terms to LCC is proved correct [13].
Every function, aka λ-value, is represented by a variable K. The constraint
apply(K,X, V ) represents that V should code the result of the application of the
function (coded by)K to the λ-term (coded by)X. Therefore, the transformation
of a λ-abstraction λx.e coded by K should be a persistent ask which transforms,
for allX and V , the constraint apply(K,X, V ) to the equality constraint between
V and the evaluation of e[t/x], where t is the λ-term coded by X. The equality
constraint is put at the level of λ-variables. The constraint value(K) indicates
that the λ-term K has been reduced to a value so as to encode the particular
call-by-value strategy [26].

Definition 15 (Call-by-value λ-calculus in LCC [13]). For every λ-term
e, JeK is a function from variables to LCC agents. JeK is described inductively on
the structure of e:

– JXK(K) = 〈X = K ⊗ value(K)〉
– JλX.eK(K) = ∀XV (apply(K,X, V )⊗ value(X)⇒ JeK(V ) ‖ value(X))
– Jf eK(K) = ∃XY (apply(X,Y,K) ‖ JfK(X) ‖ JeK(Y ))

Each ask introduced by this transformation corresponds to a λ-abstraction and
this property is preserved by ask-lifting. Therefore, the CSR program obtained
by translation has one rule for each λ-abstraction.

We explicit below the direct transformation from λ-terms to CSR. We sup-
pose that the labeling has been prepared directly in λ-terms: λ-abstractions are
of the form λiX.e where i is a unique index.

Definition 16 (Call-by-value λ-calculus in CHR). For every λ-term e, [e]
is a function from variables to pairs CHR programs and queries, each component
being denoted [e]p and [e]g. [e] is described inductively on the structure of e as
follows.

– [X](K) = ( ∅ ; (X = K, value(K)))
– [λXi.e](K) = ( [e]p(V ) ∪ {

〈pi(K,v), value(X), apply(K,X, V )⇔ pi(K,v), value(X), [e]g(V ).〉
} ; pi(K,v))

where v = fv(λX.e) and X and V fresh variables
– [f e](K) = ( [f ]p(X) ∪ [f ]p(Y ) ; ([f ]g(X), [e]g(Y ), apply(X,Y,K)))

where X and Y fresh variables
pi(v) CHR constraints are supposed to be fresh. Then, the CSR program as-
sociated to e is P [e] = [e]p(R) ∪ {〈start(R,v) ⇔ [e]g(R).〉} and the query is
q[e] = start(R,v) with v = fv(e).

It is immediate that the program and the goal produced by the transformation
above correspond syntactically to the composition of the three transformations:
λ-terms to LCC (definition 15) to flat-LCC (definition 14) to CSR (definition 12).
Therefore, the transformation preserves the semantics as composition of seman-
tics preserving transformations.

In the case of a CHR encoding, the rule associated to each λ-abstraction can
be denoted as a simpagation: 〈pi(K,v), value(X)\apply(K,X, V )⇔ [e]g(V ).〉.
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Example 7. The λ-term (λ1X.λ2Y.X) A B is transformed to the rules:

start (R,A,B) ⇔
p1(F1), apply(F1,A0,F2), apply(F2,B0,R),
A=A0, value(A0), B=B0, value(B0).

p1(F1), value(X) \ apply(F1,X,F2) ⇔ p2(F2,X).
p2(F2,X), value(Y) \ apply(F2,Y,R) ⇔ X = R, value(R).

and the following goal, where the variable R codes the result:

| ?− start(R, A, B).
p1(_) value(_X) value(_) value(_X) p2(_, _X)
R = A

5 Conclusion

The translations presented in this paper generalize previous links between CHR
and linear logic. As the work for modules in LCC suggest[20], variables and CHR
constraints are expressive enough to embed a form of closures, and thus leads to
a simple encoding for the λ-calculus.

Whereas the state during a CHR derivation is entirely determined by the
contents of constraint stores, an LCC configuration contains suspended agents
as well. The ask-lifting transformation reveals that suspensions can be reified
to linear tokens, which in turns become CHR constraints: transient asks are
consumed whereas persistent asks are propagated.

Behaviors of programs or agents obtained by translation are precisely re-
lated to their antecedents by (strong) bisimulation. To our knowledge, only weak
bisimulation results [27] were formulated in the literature for CHR before. To
achieve strong bisimulation in our case, we have managed to circumscribe col-
laterally the non-determinism in the naive operational semantics of CHR and in
the operational semantics of LCC.

Future work

Suggested transformations are straightforward enough to be implemented. How-
ever, the moot point is to understand the relevance of CHR refined semantics
for the translated LCC agents: the question of control in LCC is still open.

Interpreting operational semantics (indifferently CHR or LCC) as a proof
search method in linear logic reveals a parallel between the elimination of solving
non-determinism and focalization theory [28] which remains to explore.

Transition systems considered here are non-labeled: this was sufficient for
semantics preservation and there are good intuitions about the pair of involved
firing rules at each step. Formalizing these intuitions by labeling with rule names
seems feasible but with low interest. However, labels usually serve to follow
messages that an agent either sends or receives. A challenge would be to label
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⇒-transitions by constraints whereas each single transition consumes some while
adding others.

The closure encoding may suggest a new programming style, complementary
to the imperative RAM-based style recently described [29]. Optimization of the
CHR constraints which reify closures could be explored.
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