
DESIGN AND IMPLEMENTATION OF A CONCURRENT LOGIC
PROGRAMMING LANGUAGE WITH LINEAR LOGIC CONSTRAINTS

THIERRY MARTINEZ

EPI Contraintes, INRIA Paris-Rocquencourt, BP105, 78153 Le Chesnay Cedex, France

1. Introduction
Prolog is originally rooted in logic with the elegant mapping: “programs = formulas,

execution = proof search”. Constraint logic programming extends Prolog to program in
a richer structure than mere Herbrand terms. The underlying constraint solving engine
requires either to be built-in or to add coroutines mechanisms that are not in the scope
of logical reading. Implementations add other non-logical features, like assert/retract, and
mutable variables, to mimic imperative programming style.

The concurrent constraint programming language enjoys logical semantics and is expres-
sive enough to describe constraint propagators [Sar93]. Agents tell constraints as messages
and are synchronised by asking whether the messages entail some constraints. The exe-
cution pursues once the guard is entailed. The suspension is therefore a transient state,
captured by using linear-logic implication ([Fag01]. Furthermore, reading constraints as
resources in linear logic allows semantics to capture the non-monotonous traits of imperative
programming like mutability. LCC enjoys the mapping “programs = linear-logic formulas,
execution = logical deduction”: observables are the logical consequences of a program, by
opposition to the logical resolution in the Prolog settings.

My thesis aims at designing a practical language as close as possible to the linear con-
current constraint (LCC) theory. The main contribution is a new operational semantics
which behaves as an angelic scheduler with a tractable algorithmic complexity. This opera-
tional semantics is sound and complete with respect to the logical semantics and allows the
construction of a rich language over a very simple kernel.

The second section presents the kernel, the third describes the operational semantics
and the last section describes the state of the implementation work and its perspectives.

2. Kernel syntax and logical semantics
The four rules of the syntax are given below with their reading in linear logic. We recall

that the ! modality introduces unlimited resources.
[[forall x1 . . . xn(x.p(x1, . . . ,xn)⇒ a)]] = !∀x1 . . . xn(p(x, x1, . . . , xn) ([[a]]) (ask)
[[exists x(a)]] = ∃x([[a]]) (hiding)
[[x.p(x1, . . . ,xn)]] = p(x, x1, . . . , xn) (tell)
[[a a′]] = [[a]]⊗ [[a′]] (parallel composition)

c© T. Martinez
Confidential — submitted to ICLP

1

2 T. MARTINEZ

This syntax is a subset of the syntax of modular LCC agents [Hae07]: constraints are
restricted to be single linear tokens (i.e., linear-logic predicates without any non-logical
axiom) and all asks are persistent (interpreted with the ! modality). The variable which
precedes the dot in linear tokens is called the module variable. It is worth noticing that
the kernel restricts all the arguments of the constraints guarding asks to be universally
quantified. On the opposite, the module variable is never universally quantified.

I proved that modular LCC is as expressive as CHR as far as logical semantics and
original operational semantics are concerned [Mar10]. However, CHR implementations trade
completeness for committed-choice. Several refinements for controlling the scheduler in
CHR have been proposed, taking into account the order of the rules in the program [Duc03],
priority annotations [Kon07] or probabilities [Frü02]. None of these refinements are captured
by logical semantics. The next section proposes a tractable operational semantics which is
correct and complete with respect to the linear-logic reading and such that this kernel is as
expressive as the whole modular LCC language.

3. Angelic operational semantics
The observable of interest is the set of all the constraints which are logical consequences

of the program. This observable raises naturally in the correctness theorem of the traditional
operational semantics [Fag01]. Operationally, it is the set of entailed constraints, leading to
observable side-effects.

I propose the concept of derivation nets which generalises Palamidessi’s SOS seman-
tics [Bes97] for reducing scheduling non-determinism: derivations are represented as a po-
tentially infinite multihypergraph where vertices are agents and edges are derivation steps.
The derivations of the traditional LCC operational semantics correspond to interpretation
as Petri-net. Strategies for reducing non-determinism are expressible as vertex sharing.
There exist sharings, like the sharing of all ask instances, which allow each edge to be
checked in polynomial time. Other tractable sharings should be investigated.

The angelic semantics contrasts with the usual committed-choice execution model. Con-
current languages differ by the expressive power of their guards: single channel matching
for π-calculus, multiple-head matching for Join-calculus, multiple-head Prolog checking for
CHR. Our CHRat [Fag08] proposition for generalising guards relies on extra-logical CHR
propagations for consuming heads only once the entailment is checked. The angelic seman-
tics overcomes this difficulty and allows the kernel to be restricted to the simplest form
of guards while providing the most general expressive power: the two linear-logic formulas
∀~x(c ⊗ c′ (a) and ∀~x(c ((c′ (a)) have the same constraints for consequences since
the non-consumption of c′ cannot be observed, and computation can be triggered after the
consumption of c to check that c′ is entailed.

Since the kernel forces asks to universally quantify over all the arguments appearing
in guards, LCC agents of the form x.p(v) ⇒ A (for any variables x and v and sub-agent
A) should be translated in the kernel syntax. A natural translation is forall v′(x.p(v′)⇒
exists k(eq.check(v, v′, k) (k.true() ⇒ A))) where the token eq.check(v, v′, k) refers to an
agent implementing value comparison (that we suppose defined in the standard library).
Since there is no observable side-effects between the consumption of x.p(v′) and the execu-
tion of A, angelic semantics ensures that consumptions of x.p(v′) for v 6= v′ are not observed.
Therefore the proposed translation preserves the semantics. However, trying to consume all

A CONCURRENT LOGIC PROGRAMMING LANGUAGE WITH LINEAR LOGIC CONSTRAINTS 3

the tokens x.p(v′) is inefficient compared to usual argument indexing mechanisms present
in CHR implementations for example.

An illustration of the expressive power of angelism is that the indexing of linear tokens
with respect to their arguments is user-implementable, as soon as tokens are indexed with
respect to their module variable (which is a weaker hypothesis for the implementation since
the module variable is distinguished and is never universally quantified). Suppose an agent
M implementing maps (e.g. with hash-tables, AVL or other custom structures) associating
a fresh variable xv to each value v: for a map m, the agent M is supposed to react to
the tokens m.get(v, x) by unifying x with xv. Indexing tokens x.p(v) with respect to v in
the map m is performed by the agent forall v(x.p(v)⇒ exists xv(m.get(v, xv) xv.p())).
Then, agents of the form exists xv(m.get(v, xv) (xv.p() ⇒ A)) have the same logical
consequences as x.p(v) ⇒ A: consuming xv.p() supposes that x.p(v) has been consumed,
while x.p(v) can still be consumed by other asks, preventing xv.p() to appear in the store.

4. The SiLCC project and perspectives
The implementation aims to build a compiler for the kernel and to reconstruct the

full LCC language on top of it. A prototype has been implemented with a library for full
LCC over Herbrand domain 1. Transient asks (without the ! modality) are encoded with
token consumption and complex guards are decomposed to elementary asks. E.g., the ask
forall x(m.p(x) m.q(x)→ a) is compiled to the following kernel agent:

exists t(t.transient()
forall x(m.p(x)⇒

forall y(m.q(y)⇒
exists k(eq.check(x, y, k)

(k.true()⇒ t.transient()⇒ a)))))
where the token t.transient() translates the non-persistency of the original ask. More evolved
syntactic sugars have been implemented for sequentiality, conditionals, pattern-matching on
Herbrand terms and records, etc., so that usual programming idioms can be expressed easily
on top of the mono-paradigm simple kernel.

LCC can express sequentiality and non-monotonous traits for imperative programming,
closures and modules. Asks allow LCC agents to wait for some logical consequence, therefore
LCC enjoys a reflexive mechanism allowing LCC agents to observe (the consequences of)
their own accessible stores, since these stores are proved to be equal to the set of logical
consequences by the correctness and completeness theorem of the operational semantics.
However, the canonical encoding of constraint propagators as LCC agents have terminal
stores for observable of interest: terminal stores cannot be reflectively observed by any
agent, for the mere fact that they are terminal. We should investigate more involved
encoding of constraint propagators such that relevant observables would be the accessible
stores. Moreover, constraint programming involves search tree exploration: how to express
search is still open. Our work on formalising search strategies as pattern-matching [Mar09]
initiates a better understanding of the distinction between search trees and search heuristics
in the settings of a modeling language. We still have to investigate how to encode trees and
heuristics in LCC, possibly with similar control mechanism encoding as for sequentiality.

1The compiler together with a reasonable documentation and examples are available for download:
http://contraintes.inria.fr/˜tmartine/silcc

http://contraintes.inria.fr/~tmartine/silcc

4 T. MARTINEZ

References
[Bes97] E. Best, F.S. de Boer, and C. Palamidessi. Partial order and SOS semantics for linear constraint

programs. In Proceedings of Coordination, Lecture Notes in Computer Science, vol. 1282, pp. 256–
273. Springer-Verlag, 1997.

[Duc03] Gregory J. Duck, Peter J. Stuckey, Mar̀ıa Garc̀ıa de la Banda, and Christian Holzbaur. Extending
arbitrary solvers with constraint handling rules. In Proceedings of PPDP’03, International Confer-
ence on Principles and Practice of Declarative Programming, Uppsala, Sweden, pp. 79–90. ACM
Press, 2003.

[Fag01] François Fages, Paul Ruet, and Sylvain Soliman. Linear concurrent constraint programming: oper-
ational and phase semantics. Information and Computation, 165(1):14–41, 2001. doi:10.1006/inco.
2000.3002.

[Fag08] François Fages, Cleyton Mario de Oliveira Rodrigues, and Thierry Martinez. Modular CHR with
ask and tell. In Thom Frühwirth and Tom Schrijvers (eds.), Proceedings of the fifth Constraint
Handling Rules Workshop CHR’08. 2008.

[Frü02] Thom Frühwirth, Alessandra Di Pierro, and Herbert Wiklicky. Probabilistic constraint handling
rules. vol. 76, pp. 115–130. 2002. doi:DOI:10.1016/S1571-0661(04)80789-8. WFLP 2002, 11th
International Workshop on Functional and (Constraint) Logic Programming, Selected Papers.
URL http://www.sciencedirect.com/science/article/B75H1-4DDWJY1-D5/2/
e67689c20997ca4b788b56814e3a0cc1

[Hae07] Rémy Haemmerlé, François Fages, and Sylvain Soliman. Closures and modules within linear
logic concurrent constraint programming. In V. Arvind and Sanjiva Prasad (eds.), Proceedings
of FSTTCS 2007, IARCS Annual Conference on Foundations of Software Technology and Theoret-
ical Computer Science, Lecture Notes in Computer Science, vol. 4855, pp. 544–556. Springer-Verlag,
2007. doi:10.1007/978-3-540-77050-3 45.

[Kon07] Leslie De Koninck, Tom Schrijvers, and Bart Demoen. User-definable rule priorities for CHR. In
Proceedings of PPDP’07, International Conference on Principles and Practice of Declarative Pro-
gramming, Wroclaw, Poland, pp. 25–36. ACM Press, 2007.

[Mar09] Julien Martin, Thierry Martinez, and François Fages. On the specification of search tree heuristics
by pattern-matching in a rule-based modelling language. In Proceedings of the Eighth International
Workshop on Constraint Modelling and Reformulation, associated to CP’09, pp. 73–86. 2009.
URL http://www-users.cs.york.ac.uk/˜frisch/ModRef/09/proceedings.pdf

[Mar10] Thierry Martinez. Semantics-preserving translations between linear concurrent constraint program-
ming and constraint handling rules. In Proceedings of PPDP’10, International Conference on Prin-
ciples and Practice of Declarative Programming, Edinburgh, UK (to appear). 2010.

[Sar93] Vijay A. Saraswat. Concurrent constraint programming. ACM Doctoral Dissertation Awards. MIT
Press, 1993.

If accepted for publication by ICLP, this work will be licensed under the Creative Commons Non-Commercial No
Derivatives License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/.

http://www.sciencedirect.com/science/article/B75H1-4DDWJY1-D5/2/e67689c20997ca4b788b56814e3a0cc1
http://www.sciencedirect.com/science/article/B75H1-4DDWJY1-D5/2/e67689c20997ca4b788b56814e3a0cc1
http://www-users.cs.york.ac.uk/~frisch/ModRef/09/proceedings.pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/

	1. Introduction
	2. Kernel syntax and logical semantics
	3. Angelic operational semantics
	4. The SiLCC project and perspectives
	References

