Semantics-preserving translations between Linear Concurrent Constraint Programming and Constraint Handling Rules

Thierry Martinez
Contraintes Project–Team, INRIA Paris–Rocquencourt, France

ABSTRACT
The Constraint Simplification Rules (CSR) subset of CHR and the flat subset of LCC, where agent nesting is restricted, are very close syntactically and semantically. The first contribution of this paper is to provide translations between CSR and flat-LCC. The second contribution is a transformation from the full LCC language to flat-LCC which preserves semantics. This transformation is similar to \(\lambda \)-lifting in functional languages. In conjunction with the equivalence between CHR and CSR with respect to original operational semantics, these results lead to semantics-preserving translations from full LCC to CHR and conversely. Immediate consequences of this work include new proofs for CHR linear logic and phase semantics, relying on corresponding results for LCC, plus an encoding of the \(\lambda \)-calculus in CHR.

1. INTRODUCTION
Constraint Handling Rules (CHR)[1] is a rule-based declarative programming language. Programs are sets of transformation rules on constraint stores. Some constraints are built-ins and can only be accumulated into the store. Other constraints are user-defined and can be added or deleted. Although initial motivations were the definition of constraint solvers and propagators, nowadays applications include typing[2, 3], software testing[4], scheduling[5] and so on.

Foundations of the class CC of Concurrent Constraint programming languages [6] rely on a model of concurrent computation, where agents communicate through a shared constraint store, with a synchronization mechanism based on constraint entailment. In classical constraint settings, the store evolves monotonically, similarly to the built-in constraint store of CHR. The LCC languages[7, 8] introduce linear constraint systems, based on Girard’s intuitionistic linear logic (ILL)[9]. A remarkable kind of linear constraints are linear tokens[8], which can be freely added or consumed, comparably to CHR constraints. Linear logic leads to a natural semantics for classical CC languages as well[8]. More recently, a precise declarative semantics for CHR has been described in linear logic[10].

CHR and LCC have been developed independently and with distinct concerns. This paper formalizes connections between CHR with original operational semantics and LCC. Two translations from CHR to LCC and back are proposed, both preserving the semantics. Strong bisimilarity results are formulated. As direct corollary, we obtain a natural encoding of the \(\lambda \)-calculus in CHR. While existence of low-level translations is guaranteed by Turing-completeness via a compilation process, there are more fine-grained criteria to compare expressiveness[11]. In particular, translations presented here are natural and (relatively) agnostic with respect to the constraint theory.

Section 2 presents CHR and LCC in full generality and recalls some already published and well-known results. Section 3 focuses on distinguished subsets Constraint Simplification Rules (CSR) and flat-LCC, provides translations between these two subsets. Linear logic semantics[10] and phase semantics[12] of CHR are recovered as corollary. Section 4 introduces the ask-lifting transformation from full LCC to flat-LCC. Section 5 presents the encoding of the call-by-value \(\lambda \)-calculus in CHR.

Related work
The translation from full LCC to CHR relies on ask-lifting. This is a transformation comparable to the \(\lambda \)-lifting[14] for functional languages: the common idea is the materialization of the environment in data structures, i.e. values in functional languages or tokens in LCC. The adaptations of functional concepts in LCC languages have been initiated with the embedding of closures and modules[13].

Flattening nested programming structures was suggested in[15] for connecting the Celf system[16] to CHR but no formal transformation seems to have been published.

Encoding for RAM machines into CHR[29] showed that CHR was expressive enough to embed imperative style programming. The encoding of \(\lambda \)-calculus and closures shows that CHR can as well host programs written in a functional style. The CHR linear-logic semantics[10] is close to the previous work on the LCC semantics[8]: the present paper formally describes the intuitions behind this transposition.

*A preliminary version of this work was presented at the CHR’09 workshop (informal proceedings).
2. SYNTAX & SEMANTICS OF CHR & LCC

Let \(\mathcal{V} \) be a set of variables, and \(\Sigma \) a signature for constant, function and predicate symbols. The set of free variables of a formula \(e \) is denoted \(\text{fv}(e) \), a sequence of variables is denoted by \(x \). \(e[t/x] \) denotes the formula \(e \) in which free occurrences of variables \(x \) are substituted by terms \(t \) (with the usual renaming of bound variables to avoid variable clashes).

For a set \(S \), \(S' \) denotes the set of finite sequences of elements of \(S \) and \(\mathcal{M}(S) \) denotes the set of finite multi-sets of elements of \(S \). More formally, \((S';\cdots;\cdot;\cdot)\) denotes the free monoid and \((\mathcal{M}(S);\cdots;\cdot)\) the free commutative monoid over \(S \). Therefore, if \(a,b \in \mathcal{M}(S) \) are two multisets, \((a,b)\) denotes the multiset sum. For relations \(R \) and \(R' \), \(a \cdot R \cdot R' c \) if there exists \(b \) such that \(a \cdot R b \cdot R' c \). For a relation \(\rightarrow \), \(\rightarrow * \) is the reflexive and transitive closure of \(\rightarrow \).

2.1 Syntax and Semantics of CHR

The CHR operational semantics are usually described as small-steps transition rules. The original operational semantics was presented as a rewriting system of sets [1], fully captured by the logical semantics expressed in classical logic. Most implementations today suppose that the constraint store is a multi-sets and the original operational semantics has been adapted for multi-sets and proved sound and complete with respect to linear-logic semantics [10].

In parallel, CHR implementations give more fine-grained control to the programmer and some operational semantics capturing this control have been described [25]. However, correct and complete correspondence with logical semantics are only known for original operational semantics (whether they are expressed on sets or multi-sets). LCC having been developed with correspondence with linear logic in mind, the original operational semantics is the natural choice to establish the comparison between the two languages.

Let \(P_b \) and \(P_c \) be two disjoint subsets of predicate symbols in \(\Sigma \). Predicates built from \(\Sigma \) with predicate symbols in \(P_b \) are atomic built-in constraints, their set is denoted \(\mathcal{B}_b \). Built-in constraints are conjunctions of atomic built-in constraints, their set is denoted \(\mathcal{B} \). Predicates built from \(\Sigma \) with predicate symbols in \(P_c \) are atomic CHR constraints, their set is denoted \(\mathcal{B}_c \). CHR constraints are (finite) multi-sets of atomic CHR constraints, their set is denoted \(\mathcal{U} \). A goal is a multi-set of built-in constraints and CHR constraints.

Definition 1. A **CHR program** is a set of rules, each rule being denoted \(\langle H,H' \Rightarrow G \mid B \rangle \) where

- heads \(H \) and \(H' \) are CHR constraints such that the multiset sum \((H,H') \neq \emptyset \),
- the guard \(G \) is a built-in constraint,
- and the body \(B \) is a goal.

The definition 1 gives the general form of CHR rule. If \(H \) and \(H' \) are both non empty, the rule is a simplification rule. If \(H \) is empty, the rule is a simplification rule and is usually denoted \(\langle H' \Rightarrow G \mid B \rangle \). If \(H' \) is empty, the rule is a propagation rule and is usually denoted \(\langle H \Rightarrow G \mid B \rangle \).

Example 1. The CHR program below is adapted from [17] and describes the dining philosophers protocol [18], where \(N \) philosophers are sitting around a table and alternate thinking and eating. \(N \) forks are dispatched between them. Each philosopher is in competition with her neighbors to take her two adjacent forks and eat.

\[
\begin{align*}
\text{diner}(N) & \Leftrightarrow \text{recepilo}(0, \text{N}). \\
\text{recepilo}(I, \text{N}) & \Leftrightarrow J \text{ is } (I + 1) \mod N, \text{philo}(I, J), \text{fork}(I), \\
\text{nextphilo}(I, J) & \Leftrightarrow I < N - 1 | J \text{ is } I + 1, \text{recepilo}(J, N), \\
\text{philo}(I, J) \setminus \text{fork}(I), \text{fork}(J) & \Leftrightarrow \text{eat}(I, J). \\
\text{eat}(I, J) & \Leftrightarrow \text{fork}(I), \text{fork}(J).
\end{align*}
\]

Built-in constraints are supposed to include the equality \(= \).

Let \(CT \) be a constraint theory over built-in constraints: \(CT \) is supposed to be a non-empty, consistent and decidable first-order theory. For two multi-sets \(H = (H_1, \ldots, H_m) \) and \(H' = (H'_1, \ldots, H'_n) \), \(H \equiv H' \) denotes the formula \(H_1 = H'_1 \land \cdots \land H_m = H'_n \) if \(m = n \) and false if \(m \neq n \) [19].

A state is a tuple denoted \(\langle g;b;c \rangle \) where \(g \) is a goal, \(b \) is a built-in constraint, \(c \) is a CHR constraint and \(V \) is a set of variables. The relation \(\equiv_C \) over states is the smallest equivalence relation such that:

- \(\langle g;b;c \rangle \equiv_C \langle g;b';c \rangle \) for \(CT \models b \leftrightarrow b' \);
- \(\langle g;b;c \rangle \equiv_C \langle g;b';c' \rangle \) for all variables \(x \) and \(y \) such that \(x \notin V \) and \(y \notin V \cup \text{fv}(g,b,c) \).

Let \(P \) be the set of pairs of CHR programs and states.

The following semantics for CHR is adapted from [1]. CHR is described as a guarded rewriting system of multi-sets.

Definition 2. A CHR program \(P \) is executed along a transition relation \(\rightarrow_P \) over states:

Firing Rule

\[\langle H \setminus H' \Rightarrow G \mid B \rangle \text{ is a fresh variant of a rule in } P \text{ with variables } x \]
\[CT \models \forall x (H \equiv h \land H' \equiv h' \land G) \]
\[\langle g;b;h,h',c \rangle V \rightarrow_P \langle B;g;h \equiv h \land H \equiv h' \land G \land b;h,c \rangle V \]

Solving Rules

\[B \in B \]
\[CT \models B \land b \leftrightarrow b' \]
\[\langle B;g;b;c \rangle V \rightarrow_P \langle g;b';c \rangle V \]

\[C \in U \]
\[\langle C;g;b,c \rangle V \rightarrow_P \langle g;b,c \rangle V \]

Let \(q \) be an initial goal, the query. From the initial state \(s_0 = \langle q; \top \rangle \), with \(V = \text{fv}(q) \), a derivation is a sequence \(s_0 \rightarrow s_1 \rightarrow \cdots \rightarrow s_n \). Such a state \(s_n \) is an accessible state.
The original operational semantics is correct and complete with respect to the following linear logic semantics [10].

Definition 3. The linear semantics of a rule \(r = (H\setminus H' \Leftarrow G \setminus B) \) is
\[
\text{true} = (\forall (G' \otimes H' \otimes H'' \rightarrow \exists \exists (H'\setminus B')))
\]
with \(x = \text{fv}(B) \setminus \{v(H, H', G) \} \) and \(x \) built-in constraints, CHR constraints, goals and states are translated as follows.

Constraint
\[
B = (B_1 \land \cdots \land B_n) \quad B' = (B_1 \otimes \cdots \otimes !B_n)
\]
CHR constraint
\[
C = (C_1, \ldots, C_n) \quad C' = (C_1 \otimes \cdots \otimes C_n)
\]
Goal
\[
G = (G_1, \ldots, G_n) \quad G' = (G_1 \otimes \cdots \otimes G_n)
\]
State
\[
x = \text{fv}(G, B, C) \setminus \{V\}
\]

Let \(CT^t \) be the Girard translation of \(CT \) [9].

Theorem 1 (Soundness & Completeness [10]). For all CHR program \(P \) and query \(q \),

- (Sound) If \(q \) is an accessible state from \(q \) in \(P \), then \(P^t, CT^t \models (q' \rightarrow q) \).
- (Complete) For every formula \(c \) such that \(P^t, CT^t \models \forall (q' \rightarrow c) \), there is an accessible state \(q \) in \(P \) such that \(P^t, CT^t \models (q' \rightarrow c) \).

2.2 Syntax and Semantics of LCC

The LCC language is defined over an arbitrary linear constraint system. The mapping from classical constraint theory to linear constraint system is formalized in section 3.

Definition 4. A linear constraint system is a pair \(\langle C, \vdash_C \rangle \), where:

- \(C \) is a set of formulas (the linear constraints) built with multiplicative conjunction \(\otimes \), its neutral \(1 \), hiding \(\exists \), exponential \(! \), and constant \(T \); and closed by renaming, multiplicative conjunction and hiding;
- \(\vdash_C \) is a binary relation over \(C \), which defines the non-logical axioms;
- \(\vdash_c \) is the least subset of \(C \times C \) containing \(\vdash_C \) and closed by the rules of intuitionistic multiplicative exponential linear logic for \(1, T, \otimes, ! \), and \(\exists \).

Definition 5. The syntax for building LCC agents follows the grammar: \(A : = \forall V^t(C \rightarrow A) \mid \forall V'(C \Rightarrow A) \mid \exists V.A \mid C \mid A.A \) where \(\forall \) stands for parallel composition, \(\exists \) for variable hiding, \(\rightarrow \) for (transient) ask and \(\Rightarrow \) for persistent ask. When there are no universally quantified variables, the notation \(c \rightarrow a \) is preferred to \(\forall c \rightarrow a \).

Agent \(\forall x(c \rightarrow a) \) suspends until \(c \) is entailed then wakes up and does \(a \). Transient asks wake up at most one time. Persistent asks are introduced [13] to replace declarations. The agent \(\forall x(c \Rightarrow a) \) can wake up as many times as \(c \) is entailed. This makes sense as entailment consumes resources.

Example 2. Here is the LCC version for dining philosophers [8, 20]. Compared to the CHR version, the following code is reentrant: the variable \(K \) identifies tokens and let several diners to be run in parallel (a banquet [20]) and separation results from the LCC module theory prove that tables cannot steal cutlery from each other [13].

\[
\forall N(\text{diner}(N) \Rightarrow \\
\exists K(\forall V(\text{recphilo}(K, I) \Rightarrow \\
\text{fork}(K, I) \Rightarrow \\
\exists J(J \text{ is (} I + 1 \text{) mod } N \Rightarrow \\
\text{fork}(K, I) \otimes \text{fork}(K, J) \Rightarrow \\
\text{eat}(K, I) \Rightarrow \\
\text{eat}(K, I) \rightarrow \\
\text{fork}(K, I) \otimes \text{fork}(K, J) \Rightarrow \\
(I < N - 1 \rightarrow \text{recphilo}(K, J) \Rightarrow \\
\text{recphilo}(K, 0))))))
\]

This example makes use of non-trivial scopes: variables \(N, K, I, J \) are in turn introduced and shared by subsequent asks. The philosopher between forks \(I \) and \(J \) is an agent in LCC, whereas she is materialized in example 1 by the CHR constraint \(\phi(I, J) \) in order to carry the environment \(\{I, J\} \).

A configuration is a triple \(\langle X; c; \Gamma \rangle \) where \(c \) is a constraint (the store), \(\Gamma \) is a multi-set of agents and \(X \) is a set of variables (the hidden variables). The relation \(\equiv \) over configurations is the smallest equivalence relation such that:

- \(\langle X; c; a \otimes b, \Gamma \rangle \equiv \langle X; c; a, \Gamma \rangle \) for all agents \(a \) and \(b \);
- \(\langle X; c; \Gamma \rangle \equiv \langle X; c; \Gamma \rangle \);
- \(\langle X; c; \Gamma \rangle \equiv \langle X; c'; \Gamma \rangle \) for \(c \vdash_C c' \) and \(c' \vdash_C c \);
- \(\langle X; c; \Gamma \rangle \equiv \langle X; c; \Gamma \rangle[y/x] \) for \(x \in X \) and \(y \notin \text{fv}(X, c, \Gamma) \)

Let \(K \) be the set of configurations.

Definition 6. The transition relation \(\rightarrow_l \) is the least relation on configurations satisfying the following rules:

<table>
<thead>
<tr>
<th>Firing Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transient Ask</td>
</tr>
<tr>
<td>(c \vdash_C \exists y.\exists z.\forall y'[t/x]) \quad y \in \text{fv}(X, c, \Gamma) = \emptyset \quad d \text{ and } t \text{ are the most general choices}</td>
</tr>
<tr>
<td>((X; c; \forall y.\exists z.\forall y'[t/x]) \rightarrow_l (X \cup Y; d; a[t/x], \exists y.\forall y'[t/x], \forall z.\forall y'[t/x]))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Persistent Ask</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c \vdash_C \exists y.\exists z.\forall y'[t/x]) \quad y \in \text{fv}(X, c, \Gamma) = \emptyset \quad d \text{ and } t \text{ are the most general choices}</td>
</tr>
<tr>
<td>((X; c; \forall y.\exists z.\forall y'[t/x]) \rightarrow_l (X \cup Y; d; a[t/x], \forall z.\forall y'[t/x]))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solving Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hiding</td>
</tr>
<tr>
<td>(y \notin X \cup \text{fv}(c, \Gamma))</td>
</tr>
<tr>
<td>((X; c; \exists x.a, \Gamma) \rightarrow_l (X \cup {y}; c \otimes d; a[y/x], \Gamma))</td>
</tr>
</tbody>
</table>

| Equivalence |
| \(k_0 \equiv_l k_0 \text{ and } k_0' \equiv_l k_1 \) |
| \(k_0 \rightarrow_l k_1 \) |
An agent a is associated with initial configuration $(\emptyset; \top; a)$. Accessible observables from a configuration κ are the configurations κ' such that $\kappa \xrightarrow{L} \kappa'$.

The side-conditions that d and t are the most general choices guarantee that transitions do not weaken the store as entailment may lead to forget some constraints (for example, $x \geq 2 \land y \geq 1$). It can be formalized as $\forall d' t' ((c \vdash_c \exists Y (d' \otimes e[t'/x])) \land (d' \xrightarrow{c} d) \Rightarrow (d \xrightarrow{c} d') \land (e[t/x] \vdash_c e[t'/x]))$.

Definition 7. The translation $(\cdot)^\dagger$ of LCC agents into their linear logic semantics is defined inductively as follows:

$$(\forall x(c \rightarrow a))^\dagger = \forall x(c \rightarrow a^\dagger)$$

$$(\forall x(c \Rightarrow a))^\dagger = !\forall x(c \rightarrow a^\dagger)$$

$$(\exists x.a)^\dagger = \exists x(a^\dagger)$$

If Γ is a multi-set of agents (a_1, \ldots, a_n), we define $\Gamma^\dagger = \{a_1^\dagger \otimes \cdots \otimes a_n^\dagger\}$. Configurations are translated to $(X; c; \Gamma)^\dagger = (\exists X(e \otimes e)^\dagger)$.

Theorem 2 (Soundness & Completeness [8, 13, 20]).

For all agents a:

- (Sound) If κ is an accessible observable from $(\emptyset; \top; a)$, then $a^\dagger \vdash_c \kappa^\dagger$.
- (Complete) If c is such that $a^\dagger \vdash_c c$, then there is an accessible observable $(X; d; \Gamma)$ from $(\emptyset; \top; a)$ with $\exists X(d) \vdash_c c$ and agents in Γ are persistent asks.

2.3 Circumscribing non-determinism in CHR and LCC operational semantics

Whereas non-determinism in firing rules seems to be inherent to the computation model (and is tackled in CHR by the committed-choice strategy and by the refined semantics), the non-determinism in sequenced solving rules can be completely eliminated. This is a classical result for constraint logic programming [21]. We formalize such a result for CHR and LCC since the precise bisimulation results presented in next sections rely on it.

Let \xrightarrow{p}_f and \xrightarrow{p}_f be the restrictions of \xrightarrow{p} to solving and firing rules respectively. Let $\xrightarrow{\kappa L}$ and $\xrightarrow{\kappa L}$ be the similar restrictions for \xrightarrow{L}.

We define \xrightarrow{p}_f such that $s \xrightarrow{p}_f s'$ if and only if $s \xrightarrow{p}_f s' \not\rightarrow_\kappa$. Similarly, $\xrightarrow{\kappa L}$ is such that $\kappa \xrightarrow{\kappa L} \kappa'$ if and only if $\kappa \xrightarrow{\kappa L} \kappa' \not\rightarrow_\kappa$.

The first lemma shows that solving rules terminate and are confluent modulo \equiv.

Lemma 1. For every CHR program P, for all state s, there exists s' such that $s \xrightarrow{p}_f s'$ and for all s', s'', if $s \xrightarrow{p}_f s'$ and $s \xrightarrow{p}_f s''$, then $s' \equiv_c s''$.

For every configuration κ, there exists κ' such that $\kappa \xrightarrow{\kappa L} \kappa'$ and for all κ', κ'', if $\kappa \xrightarrow{\kappa L} \kappa'$ and $\kappa \xrightarrow{\kappa L} \kappa''$ then $\kappa' \equiv_c \kappa''$.

Proof. Trivial. □

Thus, observed configurations can be restricted to be final for \xrightarrow{p} (or, equivalently, normalized by $\xrightarrow{\kappa}$) without losing derivations. The following lemma is a specialization of the “Andorra” principle [22] to the rule selection strategy:

Lemma 2 (Full solving before firing). For every CHR program P,

$$(\xrightarrow{p}_f \cdot \Rightarrow_p) = \left((\Rightarrow^p \cdot \xrightarrow{\kappa L}) \cdot \Rightarrow_p\right)$$

and, similarly,

$$(\xrightarrow{p}_{\kappa L} \cdot \Rightarrow_{\kappa L}^p) = \left((\Rightarrow^p \cdot \xrightarrow{\kappa L})^\dagger \cdot \Rightarrow_{\kappa L}^p\right)$$

Proof. Trivial. □

The last lemma shows that solving rules preserve state equivalence. Therefore, the next sections, reasoning up to state equivalence, can focus on the action of firing rules.

Lemma 3. For every CHR program P, if $s \xrightarrow{p} s'$, then $s \equiv_c s'$.

Similarly, if $\kappa \xrightarrow{\kappa L} \kappa'$, then $\kappa \equiv_c \kappa'$.

Proof. Trivial. □

Therefore, next sections focus on \Rightarrow-transitions where $\Rightarrow_p = (\Rightarrow^p \cdot \xrightarrow{\kappa L})$ and $\Rightarrow_{\kappa L} = (\Rightarrow^p \cdot \xrightarrow{\kappa L})^\dagger$: a \Rightarrow_p-accessible state from s is a state s' such that $s \Rightarrow_p s'$ and a $\Rightarrow_{\kappa L}$-accessible observable from κ is a configuration κ' such that $\kappa \xrightarrow{\kappa L} \kappa'$. It is worth noticing that a firing occurs at each \Rightarrow-transition.

3. TRANSLATIONS BETWEEN THE SUB-LANGUAGES CSR AND FLAT-LCC

From now on, we consider the linear constraint system (C, \vdash_C) induced by the constraint theory CT and with atomic CHR constraints as linear tokens. More precisely, C is the least set of formulas which contains \top and $1B$ for all $B \in B_0$ and C for all $C \in U_0$, closed by renaming, multiplicative conjunction and existential quantification. We suppose that $c \vdash_C d$ if and only if $CT^\dagger \models \forall(c \rightarrow d)$. The result is a particular form of linear constraint system where non-logical axioms follow from the translation of a classical theory.

Bisimulation is the most popular method for comparing concurrent processes [23], characterizing a notion of strong equivalence between processes. A transition system is a tuple (S, \rightarrow) with S a set of states and \rightarrow a binary relation over S. We define the CHR transition system as (P, \rightarrow_C) where $(P, s) \rightarrow_C (P', s')$ when $P' = P^p$ and $s \Rightarrow_p s'$, and the LCC transition system as (K, \rightarrow_L).
3.1 From CSR to flat-LCC
Resulting configurations of LCC Firing Rules enjoy a new store where guards have been consumed. This behavior corresponds to simplification rules in CHR and we propose in this subsection a translation of the CSR fragment of CHR with simplification rules only[19] to LCC.

Definition 8. A CHR program P is a CSR program when all rules of P are simplifications (i.e. rules are of the form $\langle H \Rightarrow G \mid B \rangle$).

As far as original operational semantics and linear-logic semantics are concerned, expressiveness of CHR and CSR is identical. For a rule $r = \langle H \mid B \Rightarrow G \mid B \rangle$, let $r^*=\langle H \mid H' \Rightarrow G' \mid B \rangle$ and for $P = \{r_1, \ldots , r_n\}$, let $P^* = \{r_1^*, \ldots , r_n^*\}$.

Example 3. The traditional leq program [24].

\[
\begin{align*}
\text{leq}(X, X) & \equiv \text{true}, \\
\text{leq}(X, Y) & \equiv \text{number}(X), \text{number}(Y) \mid X \leq Y. \\
\text{leq}(X, Y), \text{leq}(Y, Z) & \Rightarrow \text{leq}(X, Z). \\
\text{leq}(X, Y) \setminus \text{leq}(X, Y) & \equiv \text{true}.
\end{align*}
\]

The translation leq* is as follows.

\[
\begin{align*}
\text{leq}(X, X) & \equiv \text{true}, \\
\text{leq}(X, Y) & \equiv \text{number}(X), \text{number}(Y) \mid X \leq Y. \\
\text{leq}(X, Y), \text{leq}(Y, Z) & \Rightarrow \text{leq}(X, Z). \\
\text{leq}(X, Y) \setminus \text{leq}(X, Y) & \equiv \text{true}.
\end{align*}
\]

The following proposition shows that as far as the original CHR semantics is concerned, CHR and CSR are equivalent.

Proposition 1. For all CHR program P, we have $\vdash_p = \vdash_{P^*}$ and $P^* \equiv (P^*)^!$.

There is probably no natural encoding of the refined semantics for propagation [25] in LCC, at least without ad-hoc support hard-wired in the constraint system.

Let $r = \langle H' \mid B \Rightarrow G \mid B \rangle$ be a simplification rule. $G^! \otimes H'^!$ and $B^!$ are in \mathcal{C}, thus the following agent is well-formed: $r^* = \langle \forall y (G^! \otimes H'^! \Rightarrow \exists x. B^!) \rangle$, where $x = \text{fv}(B) \setminus \text{fv}(H', G)$ and $y = \text{fv}(H', G)$. For every CSR program $P = \{r_1, \ldots, r_n\}$, the translation of P in LCC is: $P^* = \langle r_1^* \| \ldots \| r_n^* \rangle$. States $\langle g; b; c \rangle$ are translated in \mathcal{C} as well: $\langle g; b; c \rangle^{r^*} = g^1 \otimes b^1 \otimes c^1$. We are ready to define the translation from CSR to LCC.

Definition 9. A CSR program P and a query q are translated to the agent $a(P, q) = \langle P^* \| q^1 \rangle$.

Example 4. The leq* program (example 3) is translated to the agent leq*:

\[
\begin{align*}
\text{leq}^* & = \forall X (\text{leq}(X, X) \Rightarrow 1) \| \\
& \forall XY (\text{number}(X) \otimes \text{number}(Y) \otimes \text{leq}(X, Y) \Rightarrow X \leq Y) \| \\
& \forall XY (\text{leq}(X, Y) \otimes \text{leq}(Y, X) \Rightarrow X = Y) \| \\
& \forall XYZ (\text{leq}(X, Y) \otimes \text{leq}(Y, Z) \Rightarrow \text{leq}(X, Z)) \| \\
& \forall XYZ (\text{leq}(X, Y) \otimes \text{leq}(X, Y) \Rightarrow \text{leq}(X, Y))
\end{align*}
\]

Since there is no possible confusion between linear tokens and classical constraints, then, by abuse of notations, we omit the \downarrow operator on H_0 constraints.

Theorem 3 (Bisimilarity). Let $\sim \subseteq P \times K$ be the relation where $(P, s) \sim \kappa$ if and only if $\kappa \equiv_{L} (X; s^{\sim}; P^{\sim})$ with $X = \text{fv}(s) \setminus V$. Then, \sim is a bisimulation.

Corollary 1 (Semantics preservation). For CSR program P, query q:

- if κ is a \Rightarrow_{L}-accessible observable of $a(P, q)$, then $\equiv_{L} (X; c; P^{\sim})$ and there is $a \Rightarrow_{p}$-accessible state s from q with $\exists x (s^{\sim}) \vdash_{C} \exists X(c), x = \text{fv}(s) \setminus \text{fv}(q);$;
- if s is a \Rightarrow_{p}-accessible state from q, then there is a \Rightarrow_{L}-accessible observable $(X; c; P^{\sim})$ from $a(P, q)$ such that $\exists x (s^{\sim}) \vdash_{C} \exists X(c)$, where $x = \text{fv}(s) \setminus \text{fv}(q)$.

3.2 From flat-LCC to CSR
The translation of CSR into LCC generates agents of the particular form $p \parallel q$, where the sub-agent p is the translation of a CSR program and is therefore a parallel composition of persistent asks without any nested asks, and the sub-agent q is a translation of a query and is therefore reduced to a constraint. Moreover, every ask guard consumes at least a linear token (since CHR heads are non-empty) and asks are closed term (i.e. without free variables). Such agents are characterized by the following definition:

Definition 10. Flat-LCC agents are restricted to the grammar: $A^! := A^* \parallel C$ where $A^* := \forall V^* (C \Rightarrow C) \| A^! \| A^!$ with the following side condition for every ask $\forall x (g(x) \Rightarrow c)$: $g \not\in_C g \otimes g$ (consumption) and $\text{fv}(g(c)) \subseteq x$.

This subsection is dedicated to establishing the reverse translation, from $A^!$ to CSR. It is worth noticing first that, like a CSR program, an $A^!$-agent essentially transforms constraint stores without introducing new suspensions.

Lemma 4 (Configurations form). Non-initial \Rightarrow_{L}-accessible configurations from an $A^!$-agent a are \equiv_{L}-equivalent to configurations of the form $\langle _ _ ; a^2 \rangle$.

The translation from flat-LCC to CSR should handle the LCC existential variables which have no counter part in CSR and the splitting between built-in constraints and CHR constraints. Fresh variables should be introduced to translate constraints such as $\text{leq}(X, Y) \otimes \exists X (b(X, Y))$ into $\langle a(X, Y), b(K, Y) \rangle$.
where K is a new local variable. The function f^C translates every constraint in C to a tuple $(X; B; C)$ where B is a built-in constraint, C a CHR constraint and X a set of variables local to B and C:

$$
\begin{align*}
&f^C(\top) = (\emptyset; \text{true}; \emptyset) \\
&f^C(\bot) = (\emptyset; \text{false}; \emptyset) \\
&f^C(B) = (\emptyset; B; \emptyset) \quad \text{for all } B \in B_0 \\
&f^C(C) = (\emptyset; \text{true}; C) \quad \text{for all } C \in C_0 \\
&f^C(c \odot d) = (\sigma_x(X_d) \cup \sigma_{\delta}(X_d); \sigma_x(B_d) \land \sigma_{\delta}(B_d); \\
&\quad \quad \quad \quad \quad \quad \quad \sigma_x(C_d) \cup \sigma_{\delta}(C_d)) \quad \text{where } f^x(c) = (X_c; B_c; C_c) \\
&\quad \quad \quad \quad \quad \quad \quad \text{and } f^\delta(d) = (X_d; B_d; C_d) \\
&\quad \quad \quad \quad \quad \quad \quad \text{with } \sigma_x \text{ and } \sigma_{\delta} \text{ renaming of } X_c \text{ and } X_d \text{ respectively such that} \\
&\quad \quad \quad \quad \quad \quad \quad \sigma_x(X_d) \land \sigma_{\delta}(B_d) \land \sigma_{\delta}(C_d) = \emptyset \quad \text{and} \\
&\quad \quad \quad \quad \quad \quad \quad \sigma_x(X_d) \land \sigma_{\delta}(B_d) = \emptyset \\
&f^C(\exists x(c)) = (X_c \cup \{x\}; B_c; C_c) \quad \text{where } f^x(c) = (X_c; B_c; C_c)
\end{align*}
$$

A^ℓ-agents are translated to CSR programs through the function f^ℓ. Translation of asks should take care of clashes with similar renaming as for \odot in f^C:

$$
\begin{align*}
&f^\ell(\forall x(g \Rightarrow c)) = \left\{ \sigma_x(C_g) \Rightarrow \sigma_x(B_g) \mid \sigma_x(B_g), \sigma_x(C_g) \right\} \\
&\quad \text{where } f^x(g) = (X_g; B_g; C_g) \\
&\quad \quad \text{and } f^\delta(c) = (X_c; B_c; C_c) \\
&\quad \quad \quad \text{with } \sigma_x \text{ and } \sigma_{\delta} \text{ renaming of } X_g \text{ and } X_c \text{ respectively such that} \\
&\quad \quad \quad \quad \quad \quad \sigma_x(X_g) \land \sigma_{\delta}(B_g) = \emptyset \quad \text{and} \\
&\quad \quad \quad \quad \quad \quad \sigma_x(X_c) \land \sigma_{\delta}(B_c) = \emptyset \\
&f^\ell(a \parallel b) = f^\ell(a) \cup f^\ell(b) \\
&f^\ell(1) = \emptyset
\end{align*}
$$

For every ask $\forall x(g \Rightarrow c)$, $f^\ell(\forall x(g \Rightarrow c))$ is a well-formed CHR rule. In particular, the side condition on g ensures that $\sigma_x(C_g) \neq \emptyset$.

$f^\ell_c : c \mapsto \langle \emptyset; b; c \rangle_c$: maps constraints to states with $\langle \emptyset; b; c \rangle = f^\ell(c)$.

Note that all variables in CSR queries are global. The query should hide existentially quantified variables in the top-level constraint c_0 of the agent. We suppose a fresh symbol (start/\text{n}) $\in B_0$ where $n = \#fv(c_0)$.

Let $v = fv(c_0)$. The CHR constraint $\text{start}(v)$ has the same free variables as the agent to be translated and is therefore suitable to be the translated query in the translation from flat-LCC to CSR.

Definition 11. A flat-LCC agent $(a^\ell \parallel c_0)$ is translated to the CHR program $P(a^\ell|c_0) = f^\ell(a^\ell)\cup\{\text{start}(v) \Rightarrow B_0; C_0\}$ and the query $q(a) = \langle \emptyset; B_0; C_0 \rangle = f^C(c_0)$ and $v = fv(c_0)$.

Theorem 4. (Bisimilarity). Let $\sim \subseteq K \times P$ be the relation where $\kappa \sim (P, s)$ if and only if there exists a flat-LCC agent $(a^\ell \parallel c_0)$ where $\kappa \sim_1 (X_c; c_0; a^\ell)$ and $P = P(a)$ and $s \equiv c f^\ell(c)$, with $V = fv(c_0)$. Then, \sim is a bisimulation.

Corollary 2. (Semantics preservation). For every flat-LCC agent $a = \langle a^\ell \parallel c_0 \rangle$, let $s_0 = \langle q(a) \rangle; \emptyset; s_0 \mapsto V = fv(c_0)$, then:

- for all \Rightarrow_1-accessible configuration $(X; c; a^\ell)$ from a, there exists a \Rightarrow_1-accessible state s from s_0 such that $\exists x(s^-) \Rightarrow_1 X(x)$;
- for all \Rightarrow_2-accessible state s from s_0, if $s \neq s_0$, there exists a \Rightarrow_2-accessible configuration $(X; c; a^\ell)$ from a, such that $\exists x(s^-) \Rightarrow_2 X(x)$;

where, in both cases, $x = fv(a) \setminus V$.

4. **ASK-LIFTING: ENCODING LCC INTO CSR**

The main result of this section is a translation from LCC to flat-LCC which preserves the semantics. Consequently, thanks to corollary 2, we can deduce a semantics-preserving translation from LCC to CSR. This section begins with a preliminary step introducing an intermediary language LCC^ℓ where asks are labeled with linear tokens: these tokens do not change the operational semantics and there is a trivial labeling to transform LCC programs to LCC^ℓ programs. These linear tokens are introduced in order to follow asks through the transitions of the operational semantics, which is used to prove the semantics preservation.

4.1 Preliminary step: labeling LCC-agents

Labeled LCC agents A^ℓ differ from agents A by labels inserted on each ask. In the following definition, labels are arbitrary linear tokens.

Definition 12. The syntax of LCC^ℓ agents is given by the following grammar:

$$
A^\ell ::= \forall x'(Y \overset{\ell}{\rightarrow} A') \mid \forall x'(Y \overset{\ell}{\rightarrow} A')\mid \\
\forall x. A' \mid C \mid A^\ell \parallel A^\ell
$$

The transition relation \rightarrow_1 is lifted to the transition \rightarrow_{LCC^ℓ} for LCC^ℓ.

LITERAL ASK (with labeling)

$\forall x'(Y \overset{\ell}{\rightarrow} A') \mid \forall x'(Y \overset{\ell}{\rightarrow} A')\mid \\
\forall x. A'$

Persistant ASK (with labeling)

$\forall x \forall Y (d \odot e \mid t[x]) \mid \forall x \forall Y (d \odot e \mid t[x])\mid \\
\forall x \forall Y (\forall x (d \odot e \mid t[x]) \mid (d \odot \Gamma) \Rightarrow d \odot d')$

Agents A are translated to a particular family of labeled agents denoted A^ℓ with the labeling transformation, which ensures the following conditions: each label carries a distinct symbol taken from a set P of fresh predicate symbols and the arguments enumerate exactly the free variables of the
A labeling is simple to obtain as soon as \(\mathcal{P} \) is large enough to label each ask of \(a \).

Example 5. The dining philosophers (example 2) can be labeled as follows:

\[
\forall N(diner(N) \models K)(\text{recphilo}(K, I) \parallel p_2(K, N) \parallel \text{fork}(K, I) \parallel \exists J(J \equiv (I + 1) \mod N) \parallel (\text{fork}(K, I) \otimes \text{fork}(K, J) \parallel \text{eat}(K, I) \parallel \text{eat}(K, J) \parallel (I < N - 1 \Rightarrow p_3(I, J, K) \parallel \text{recphilo}(K, J, N) \parallel \text{recphilo}(K, 0))))
\]

4.2 The ask-lifting transformation

The ask-lifting transformation is defined with two helper functions. \((a)^\mathcal{C}\) transforms the ask \(a \) to constraints where asks become linear tokens. \((a)^\mathcal{Y}\) puts in parallel every ask occurring in \(a \) and the representing token is added to the guard. A persistent ask restores the token, a transient ask consumes it.

The function \((\cdot)^\mathcal{C}: A^f \rightarrow \mathcal{C}\) is defined inductively as follows:

\[
\langle \forall x (c \xrightarrow{f(t)} a) \rangle^\mathcal{C} = f(t) \quad \langle \forall x (c = f(t)) \rangle^\mathcal{C} = f(t) \\
\langle \exists x (a) \rangle^\mathcal{C} = \exists x (a)^\mathcal{C} \quad \langle a \parallel b \rangle^\mathcal{C} = (a)^\mathcal{C} \otimes (b)^\mathcal{C} \\
\langle c \rangle^\mathcal{C} = c
\]

The function \((\cdot)^\mathcal{Y}: A^g \rightarrow A^y\) is defined inductively as follows:

\[
\langle \forall x (c \xrightarrow{f(u)} a) \rangle^\mathcal{Y} = \forall x \langle f(u) \otimes c \xrightarrow{f(u)} \langle a \rangle^\mathcal{C} \parallel \langle a \rangle^\mathcal{Y} \rangle \\
\langle \forall x (c = f(u)) \rangle^\mathcal{Y} = \forall x \langle f(u) \otimes c = f(u) \parallel \langle a \rangle^\mathcal{C} \parallel \langle a \rangle^\mathcal{Y} \rangle \\
\langle \exists x (a) \rangle^\mathcal{Y} = \langle a \parallel b \rangle^\mathcal{Y} = \langle a \parallel b \rangle^\mathcal{Y} = \langle c \rangle^\mathcal{Y} = 1
\]

The function \((\cdot)^\mathcal{Y}\) is well-defined: every ask satisfies the side-condition for \(A^y \).

Definition 13. The agent ask-lifting function \([_]^\mathcal{L} : A \rightarrow A^l\) transforms the agent \(a \) to the agent \([a]_l = (a)^*\parallel (a)^\mathcal{C}\) where \(a \) is translated to \(a^l \) by the labeling defined in sub-section 4.1 with symbol predicates from a subset \(\mathcal{P}_c \) of whose predicates do not appear in \(a \). \([_]^\mathcal{L}\) is well-defined as soon as the set \(\mathcal{P} \) is large enough to label agent \(a \).

Theorem 5. (Bisimilarity). Let \(a \) be a labeled LCC agent. Let \(\kappa \equiv \kappa' \) be the relation such that \(\kappa \sim \kappa' \) if and only if \(\kappa \equiv [X; \kappa'] \) is \(\Rightarrow \)-accessible from \(a \) and \(\kappa' \equiv L(X; c; \Gamma) \Rightarrow (X; c' \equiv (\Gamma)^c; (a)^\mathcal{C}) \). Then, \(\sim \) is a bisimilarity.

Corollary 3. (Semantics preservation). For every LCC agent \(a \):

- For all \(\Rightarrow_l \)-accessible configuration \((X; c; \Gamma)\) from \(a \), there is a \(\Rightarrow_l \)-accessible configuration \((X; c'; (a)^\mathcal{Y})\) from \([a]_l\) such that \(\exists X(c \equiv (\Gamma)^c) \Rightarrow \exists X(c' \equiv (\Gamma)^c) \).
- For all \(\Rightarrow_l \)-accessible configuration \((X; c; (a)^\mathcal{Y})\) from \([a]_l\), there exists a \(\Rightarrow_l \)-accessible configuration \((X; c; \Gamma)\) from \(a\) and \(\exists X(c \equiv (\Gamma)^c) \Rightarrow_c \exists X(c' \equiv (\Gamma)^c) \).

Example 6. The labeled diner (example 5) can be lifted as follows:

\[
\forall N(diner(N) = (p_1 \parallel diner(N)) \Rightarrow (p_1 \parallel [p_2(K, N) \parallel \text{recphilo}(K, 0)] \parallel \text{fork}(K, I) \parallel \exists J(J \equiv (I + 1) \mod N) \parallel (\text{fork}(K, I) \otimes \text{fork}(K, J) \parallel (I < N - 1 \Rightarrow p_3(I, J, K) \parallel \text{recphilo}(K, J, N) \parallel \text{recphilo}(K, 0))))
\]

5. ENCODING THE \(\lambda \)-CALCULUS IN CHR

The following transformation from pure \(\lambda \)-terms to LCC is proved correct and complete with respect to the call-by-value semantics of the \(\lambda \)-calculus[13]. Every function, aka \(\lambda \)-value, is represented by a variable \(K \). The constraint \(\text{apply}(K, X, V) \) represents that \(V \) should code the result of the application of the function (coded by) \(K \) to the \(\lambda \)-term (coded by) \(X \). Therefore, the transformation of a \(\lambda \)-abstraction \(\lambda x.e \) coded by \(K \) should be a persistent ask which transforms, for all \(X \) and \(V \), the constraint \(\text{apply}(K, X, V) \) to the equality constraint between \(V \) and the evaluation of \(e[t/x] \), where \(t \) is the \(\lambda \)-term coded by \(X \). Equality constraint is put at the level of \(\lambda \)-variables. The constraint \(\text{value}(K) \) indicates that the \(\lambda \)-term \(K \) has been reduced to a value so as to encode the particular call-by-value strategy[26].

Definition 14. For every \(\lambda \)-term \(e \), \([e]_l \) is a function from variables to LCC agents. \([e]_l \) is described inductively on the structure of \(e \):

- \([X[K]](K) = (X = K \parallel \text{value}(K))\)
- \([\lambda X.e][K] = \forall X \langle \text{apply}(K, X, V) \parallel \text{value}(X) \Rightarrow \langle [e][V] \parallel \text{value}(X) \rangle \rangle\)
- \([f e][K] = \exists X Y (\text{apply}(X, Y, K) \parallel [f e][X] \parallel [e][Y])\)

Each ask introduced by this transformation corresponds to a \(\lambda \)-abstraction and this property is preserved by ask-lifting. Therefore, the CSR program obtained by translation has one rule for each \(\lambda \)-abstraction.

We explicitly below the direct transformation from \(\lambda \)-terms to CSR. We suppose that the labeling has been prepared directly in \(\lambda \)-terms: \(\lambda \)-abstractions are of the form \(\lambda X.e \) where \(i \) is a unique index.
Definition 15. For every \(\lambda \)-term \(e \), \([e]\) is a function from variables to pairs of \(\text{CHR} \) programs and queries, each component being denoted \([e]^p\) and \([e]^q\). \([e]\) is described inductively on the structure of \(e \) as follows:

- \([X](K) = (\emptyset; (X = K, value(K)))\)
- \([X,e](K) = ([e]^p(V) \cup \{r \}; p_i(K, v))\) where \(v = fv(\lambda X.e) \) and \(X \) and \(V \) are fresh variables and \(r = (p_i(K, v), value(X), apply(K, X, V)) \iff p_i(K, v), value(X), [e]^q(V)\)
- \([f \ e](K) = ([f]^p(X) \cup [f]^q(Y); ([f]^p(X), [e]^q(Y), apply(X, Y, K))\) where \(X \) and \(Y \) fresh variables

The \(p_i(v) \) \(\text{CHR} \) constraints are supposed to be fresh. Then, the \(\text{CSR} \) program associated to \(e \) is \(P[e] = [e]^p(R) \cup \{ (\text{start}(R, v) \iff [e]^q(R)) \} \) and the query is \(q[e] = \text{start}(R, v) \) with \(v = fv(e) \).

It is immediate that the program and the goal produced by the transformation above correspond syntactically to the composition of the three transformations: \(\lambda \)-terms to \(\text{LCC} \) (14) to flat-\(\text{LCC} \) (13) to \(\text{CSR} \) (11). Therefore, the transformation preserves the semantics as composition of semantics preserving transformations.

In the case of a \(\text{CHR} \) encoding, the rule associated to each \(\lambda \)-abstraction can be denoted as a simpagation: \(\langle p_i(K, v), value(X), \rangle = [e]^q(V)\).

Example 7. The \(\lambda \)-term \(\lambda_1X.\lambda_2Y.X \) \(A \) \(B \) is transformed to the rules:

\[
\begin{align*}
\text{start}(R,A,B) \iff \\
p1(F1), \text{apply}(F1,A0,F2), \text{apply}(F2,B0,R), \\
\text{A}\iff A0, \text{value}(A0), \text{B}\iff B0, \text{value}(B0), \\
p1(F1), \text{value}(X) \ \& \ \text{apply}(F1,X,F2) \iff p2(F2,X), \text{p2}(F2,X), \text{value}(Y) \ \& \ \text{apply}(F2,Y,R) \iff X = R, \text{value}(R),
\end{align*}
\]

and the following goal, where the variable \(R \) codes the result:

\[
| ?- \text{start}(R, A, B), \text{p1}(_), \text{value}(_ X) \text{value}(_), \text{value}(_ X) \text{p2}(_, _ X) \text{R} = A
\]

6. CONCLUSION

We have defined compositional translations from \(\text{CHR} \) to \(\text{LCC} \) and from labeled \(\text{LCC} \) to \(\text{CHR} \) and proved that semantics are preserved with strong bisimilarity. Both \(\text{CHR} \) and \(\text{LCC} \) languages are based on the same model of concurrent computation, where agents communicate through a shared constraint store, with a synchronization mechanism based on constraint entailment. This is a generalization of the previous links between \(\text{CHR} \) and linear logic. As the work for modules in \(\text{LCC} \) suggests[13], variables and \(\text{CHR} \) constraints are expressive enough to embed a form of closures, and thus lead to a simple encoding for the \(\lambda \)-calculus.

Whereas the state during a \(\text{CHR} \) derivation is entirely determined by the contents of constraint stores, an \(\text{LCC} \) configuration contains suspended agents as well. The ask-lifting transformation reveals that suspensions can be reified as linear tokens, which in turns become \(\text{CHR} \) constraints: tokens acting as transient asks are consumed whereas tokens acting as persistent asks are propagated.

Behaviors of programs or agents obtained by translation are precisely related to their antecedents by (strong) bisimulation. To our knowledge, only weak bisimulation results[27] were formulated in the literature for \(\text{CHR} \). To achieve strong bisimulation in our case, we have managed to circumscribe collateralely the non-determinism in the original operational semantics of \(\text{CHR} \) and in the operational semantics of \(\text{LCC} \).

Future work

Suggested transformations are straightforward enough to be implemented. However, the most point is to understand the relevance of \(\text{CHR} \) refined semantics for the translated \(\text{LCC} \) agents: the question of control in \(\text{LCC} \) is still open.

Interpreting operational semantics (indifferently \(\text{CHR} \) or \(\text{LCC} \)) as a proof search method in linear logic reveals a parallel between the elimination of solving non-determinism and focalization theory[28] which remains to explore.

Transition systems considered here are non-labeled: this was sufficient for semantics preservation and there are good intuitions about the pair of involved firing rules at each step. Formulating these intuitions by labeling with rule names seems feasible but with low interest. However, labels usually serve to follow messages that an agent either sends or receives. A challenge would be to label \(\Rightarrow \)-transitions by constraints whereas each single transition consumes some while adding others.

The closure encoding may suggest a new programming style, complementary to the imperative RAM-based style recently described[29]. Optimization of the \(\text{CHR} \) constraints which reify closures could be explored.

Acknowledgments.

I would like to thank François Fages, Rémy Haemmerlé, Julien Martin and Sylvain Soliman for all the useful discussions and comments since the very beginning of this work.

7. REFERENCES

