
Angelic CHR

Thierry Martinez

EPI Contraintes, INRIA Paris-Rocquencourt,
BP105, 78153 Le Chesnay Cedex, France.

thierry.martinez@inria.fr

Abstract. Implementations of CHR follow a committed-choice forward-
chaining execution model: the non-determinism of the abstract semantics
is partly refined with extra-logical syntactic convention on the program
order and possibly notations for weighted semantics (with priorities or
probabilities), and partly left unspecified in the underlying compiler.
This paper proposes an alternative execution model which explores all
the possible choices, by opposition to the committed-choice strategy. This
execution model is angelic in the sense that if there exists a successful
execution strategy (with respect to a given observable), then this strat-
egy will be found. Formally, the set of computed goals is complete with
respect to the set of the logical consequences of the interpretation of the
initial goal in linear logic. In practice, this paper introduces a new data
representation for sets of goals, the derivation nets. Sharing strategies
between computation paths can be defined for derivation nets to make
execution algorithmically tracktable in some cases where a naive explo-
ration would be exponential. Control for refined execution is recovered
with the introduction of user constraints to encode sequencing, fully cap-
tured in the linear-logic interpretation. As a consequence of angelic ex-
ecution, CHR rules become decomposable while preserving accessibility
properties. This decomposability makes natural the definition in angelic
CHR of meta-interpreters to change the execution strategy. More gen-
erally, arbitrary computation can be interleaved during head matching,
for custom user constraint indexation and deep guard definition.

1 Introduction

Since the introduction of Prolog, logic programming has been living with the
dichotomy: “programs = logic + control”. As every logic-based language, the
declarativity of Constraint Handling Rules [1,2] relies on the logical interpreta-
tion of the programs. However, this interpretation hides syntactic conventions,
like the order of the rules, distinguished abbreviations such as propagation rules,
and annotations which control the effective execution of the program. These
control features are formally described in a hierarchy of semantics, from the ab-
stract semantics ωva [1] to more fine-grained semantics, describing the handling
of propagations (the theoretical semantics ωt), of the rule ordering (the refined
semantics ωr [3]), or of annotations like priorities [4] or probabilities [5].

CHR enjoys two logical interpretation: the first to have been introduced his-
torically interprets rules and goals as first-order classical logic formulae; more re-
cently [6], an interpretation as first-order linear logic [7] formulae has been given.
The latter provides a finer reading of the dynamics of the rules and will be the
logical interpretation considered in this paper.

All these semantics are correct with respect to the linear-logic interpretation:
if a configuration is reachable through any of these operational semantics, then
this configuration is indeed a linear-logic consequence of the initial goal. How-
ever, only the abstract semantics enjoys completeness: the purpose of all other
semantics is to provide syntactic construction to force the execution to choose
some particular branches. The downside is that these scheduling choices escape
the declarative framework provided by logic. The programmer should ensure
that the scheduler can only make the good choice, either by writing a confluent
program or by relying on extra-logical traits (order of the rules, priorities, etc.)
to drive the scheduler.

Focusing on completeness entails the exploration of all the logical conse-
quences of the interpretation of the initial goal in linear logic. For this purpose,
we propose angelic scheduling as an alternative execution model for CHR. Ob-
servationaly, the scheduler always makes the good choice: more precisely, if a
successful (i.e., non-blocking) choice exists, it will be explored. Accessible con-
figurations exactly match the set of logical consequences of the linear inter-
pretation of the initial goal: the operational behavior is fully described by the
linear-logic interpretation, including the control. More formally, linear logic is
the most faithful logic for CHR [6], since it captures the non-monotonous evo-
lution of configurations. Control structures like sequencing and branching have
natural encoding in this logic and their usage for CHR have already been showed
through the log-linear encoding of RAM machines [8].

In angelic settings, the atomicity of head consumption is not essential, in op-
position to the committed-choice case. Since absence of user constraints cannot
be observed, partial head consumptions just lead to silent unsuccessful compu-
tation branches. This property allows the interleaving of arbitrary computations
between multiple head consumptions. Meta-interpreters for CHR rules can there-
fore be written by sequencing the consumption of the successive parts of the head.
Specific representations can be chosen for some heads to enable user-defined in-
dexation strategy. To reduce the combinatorial explosion among computation
branches, the formalism of derivation nets is introduced: this formalism provides
a graphical representation for sets of computation paths. Non-determinism dur-
ing the execution of a CHR program can be intrinsic to the rule dynamics, and all
choices should be explored, but the abstract operational semantics suffers from a
large part of scheduling non-determinism between independent paths of the com-
putation that should be quotiented for a tractable execution. The derivation nets
are a convenient representation to define sharing strategies between computation
paths to eliminate scheduling non-determinism. Two decidable sharing strate-
gies are explored in this paper. The first strategy shows that optimal sharing is
decidable but is computationaly expensive. The second one is polynomial in the

worst case and induces essentially a constant overhead in practice while being
optimal relatively to a conservative interpretation of user constraint identity.

In the following section, angelic semantics is formally defined through deriva-
tion nets, and sharing strategies are presented. In Section 3, the specificity of
angelic programming is formally explored through the decomposition property of
head consumption and control mechanisms. In Section 4, concrete usage of ange-
lism are given for meta-interpreter implementation, custom indexing definition
and deep guards in CHR.

Note that this application of angelic semantics to CHR is only a preliminary
work. A prototype implementation of angelic semantics along the lines presented
here has been developped for the LCC language1 (Linear-logic Concurrent Con-
straint), and despite showing good asymptotical behavior, large implementation
work still has to be done to optimize execution time and memory usage. Despite
divergences in the syntax, we have shown that LCC and CHR are equivalent
for the abstract semantics considered here [9]. Therefore, the implemented pro-
totype can already be used to execute the examples given in this article, modulo
their trivial encoding in LCC.

Angelic semantics have been identified as the natural semantics for Concur-
rent Constraint (CC) programming languages [10] since the very beginning of
the introduction of this language family: in this forward-chaining framework,
the set of accessible computations is more natural to link with a logical interpre-
tation than a particular computation path. However, the CC language and its
angelic semantics is considered in [10] as an abstract language to reason about
concurrency-related questions that can be captured in this formalism: there is
no consideration about implementation. Moreover whenever CC languages have
only a monotonous interpretation in classical logic, LCC and CHR handle non-
monotonous traits with consumptions.

2 Angelic Semantics

In this section, derivation nets are first introduced for Constraint Simplifica-
tion Rules, the fragment of CHR without propagation. Sharing strategies are
introduced to algorithmically build derivation nets that reduce scheduling non-
determinism. Derivation nets are then generalized to the full CHR language
through the separation of CHR store between linear and persistent constraints,
in the sense of the ω! semantics [11].

An (oriented) multigraph is a pair (V ; i) where V is a set of vertices and
i : V × V → N is an incidence function giving the weight of the edge between
each pair of vertices (with the convention that identifies the absence of edge with
an edge of weight 0). Equivalenty, i is a multiset of binary edges in V × V . For
each vertex v, the multiset of prevertices •v, vertices that lead to v, is defined
by the characteristic function u 7→ i(u, v) and the multiset of postvertices v•,
vertices that come from v, is defined by the characteristic function u 7→ i(v, u).

1 http://contraintes.inria.fr/~tmartine/silcc

http://contraintes.inria.fr/~tmartine/silcc

A multigraph is bipartite if V is the disjoint union of two sets V1] V2 such that
i(v, v′) = 0 for all v, v′ ∈ Vi for i = 1 or 2. An (oriented) multihypergraph is a
tuple (V,E, i) such that (V] E, i) is a bipartite multigraph: V is the set of the
vertices of the multihypergraph and E are the hyperarcs. For each hyperarc e ∈ E,
•e is the set of input vertices of e and e• is the set of output vertices of e. A labeled
multihypergraph is a tuple (V,E, i, `) such that (V,E, i) is a multihypergraph and
` : V]E → A is a mapping from vertices and hyperarcs to an alphabet of labels
A.

2.1 Derivation nets for Constraint Simplification Rules (CSR)

Given a language for built-in constraints Lb equipped with a constraint theory
T and a language for user-defined constraints Lu, a CSR program is a set of
constraint simplification rules.

Definition 1. A constraint simplification rule has the form

n@H ⇔ G|Bb, Bu

where n is the name of the rule, the head H is a multi-set of user-defined con-
straints, the guard G is a built-in constraint, and the body is a conjunction of
a built-in constraint Bb and a multi-set of user-defined constraints Bu.

Consider the following rules describing the calculus of a two-dimensional
scalar product with a concurrent product.

Example 1 (Concurrent two-dimensional scalar product).

init @ scalar(X1, Y1, X2, Y2, P) ⇔
product(X1, X2, X), product(Y1, Y2, Y), sum(X, Y, P) .

product @ product(A, B, C) ⇔
V is A * B, value(C, V).

sum @ sum(A, B, C), value(A, VA), value(B, VB) ⇔
V is VA + VB, value(C, V) .

There are essentially two possible derivations in the abstract semantics from a
query scalar(X1, Y1, X2, Y2, P), revealing scheduling non-determinism, de-
pending upon which of the two products is evaluated first: product(X1, X2, X)

or product(Y1, Y2, Y).
We introduce derivation nets to describe sharing strategies which quotient

these scheduling choices.

Definition 2. A derivation net for a CSR program P is a labeled multi-hypergraph
(V,E, i, `), where the vertices V are labeled with built-in or user-defined con-
straints and the hyperarcs E are labeled with rule names (` : V]E → Lb]Lu]
N), such that for each hyperarc e ∈ E, there exists a rule 〈n@H ⇔ G|Bb, Bu〉 ∈
P and a renaming ρ for fresh variables occurring in the rule with

– `(e) = n,
– `(•e) = Hρ]G′,
– `(e•) = Bbρ]Buρ]G′.

with G′ a logical consequence of G under the hypotheses of the theory T .

The following derivation net shows the quotiented derivation path for the
scalar product.

scalar(X1, Y1, X2, Y2, P)

init

product(X1, X2, X) sum(X, Y, P) product(Y1, Y2, Y)

product product

value(X, X1 * X2) value(Y, Y1 * Y2)

sum

value(X, X1 * X2 + Y1 * Y2)

Fig. 1. Derivation net for the query scalar(X1, Y1, X2, Y2, P) with the
scalar product program (Example 1)

Derivation nets can be equipped with a Petri-net semantics: vertices can be
viewed as places marked with tokens that give their number of occurrences in
the constraint store. Hyperarcs give the transitions between the places. Com-
pared to the interpretation of CHR programs in Petri-nets [12] that interprets
programs themselves as (a colored extension of) Petri-nets independently from
the execution, the nets considered here give interpretations for partial executions
of programs and grow as long as the execution continues.

Definition 3. A marking is a multiset of vertices. Derivations are given by
a binary relation →d between markings such that m →d m′ if there exists a
hyperarc e such that •e ⊆ m (i.e., for all v, •e(v) 6 m(v)) and for all v,
m′(v) = m(v)− •e(v) + e•(v).

Markings are multisets of user constraints and built-in constraints: as such,
they can be identified to CHR configurations.

Theorem 1 (Correction). If there exists a derivation m →d m
′, then there

exists a transition in the abstract semantics from the configuration m to the
configuration m′.

Moreover, a derivation net can always be extended with a new hyperarc
for any possible transition, leading to new vertices according to the goal of the
associated rule. By iterating this construction, it is possible to define a potentially
infinite derivation net representing all the possible transitions.

Theorem 2 (Completeness). For any initial configuration m, there exists a
(possibly infinite) derivation net such that if m′ is a configuration accessible
from m in the abstract semantics, then m′ is a marking accessible from m by
derivation.

Angelic execution consists therefore in the iterative construction of such a
complete derivation net, keeping only the hyperarcs which are involved in a
reachable marking from the initial configuration. Since the exploration is poten-
tially infinite, the exploration should be done in breadth first to give an equal
chance of execution to every computation path.

2.2 Sharing strategies

Derivation nets do not structurally force any sharing to reduce scheduling non-
determinism. This is typically the case for simpagation rules: a simpagation rule
is of the form n@H1\H2 ⇔ B where H1 is a persistent head. Such a rule has the
same logical interpretation as n@H1, H2 ⇔ H1, B. Two firings of simpagation
rules with a common persistent head can lead to two computation paths whether
which rule is fired before the other.

H1

n H2 H2′ n′

H1 B B′ H1

n′ n

H1 B′ B H1

Fig. 2. Derivation net without sharing for the query H1, H2, H2’ with two
simpagation rules n @ H_1 H_2 ⇔ B and n’ @ H_1 H_2’ ⇔ B’

This non-determinism can be reduced considering the derivation net where
each simpagation rule is a hyperarc such that the vertex of the persistent head
is the same both for input and output.

The iterative construction of such a derivation net can be done by sharing
all equal user constraints to the same vertex: interpreting the derivation net as a
Petri net, testing the reachability of a hyperarc reduces to testing the reachability
in a Petri net, which is decidable [13] but computationaly expensive [14].

H2 H2′

n H1 n′

B B′

Fig. 3. Derivation net with sharing for the query H1, H2, H2’ with two simp-
agation rules n @ H_1 H_2 ⇔ B and n’ @ H_1 H_2’ ⇔ B’

Proposition 1. The complete derivation net where all hyperarcs are reachable
and all equal user constraints are shared to the same vertex can be iteratively
constructed by solving an EXPSPACE-complete problem for each new hyperarc.

However, in the context of derivation nets where all cycles are trivial, that
is to say that every cycle consist in only one hyperarc having some vertices
both as input and output, then there exists a log-linear algorithm to decide the
reachability. The case of trivial cycles is particularily important as those cycles
appear naturally when considering simpagation rules.

– Preparation: at each new vertex creation v0, computes a table t(v0) which
associates each ancestor vertice v (outside trivial cycles) to its potential
immediate successor hyperarc e (there is at most one!): t(v0) : v 7→ e With
balanced binary trees, logarithmic time cost for each vertex.

– To check if a binary hyperarc e0 between v0 and v1 introduces a conflict:
1. choose one of the predecessor vertex, say v0, (preferably the one with

least ancestors)
2. let t← t(v1) + (v1 7→ e0)
3. begin with v ← v0,
4. for each predecessor vertex v′ of each predecessor hyperarc e of v,
5. if t(v′) is defined, succeeds if t(v′) = e or v′ in trivial cycle, else fails,
6. if not, let t← t+ (v′ 7→ e) and recursively go to 4 for v 7→ v′.

In worst case, logarithmic cost (table search) for each ancestor.
In practice, either hyperarcs between neighbours (t(v0) is often defined) or

hyperarcs between a vertex and a top-level ask (with few ancestors).
This algorithm gives a polynomial construction for completing the derivation

net at each execution step.

2.3 Derivation nets in presence of Propagation Rules

As far as the abstract semantics is concerned, propagation rules n@H ⇒ G|Bb, Bu

are shortcuts for n@H ⇔ G|H,Bb, Bu: the head is restored after firing the rule.
This non-consumption leads to trivially infinite computation paths that can be
avoided with the ω! semantics [11]. In terms of derivation nets, distinguishing
the set of vertices between linear and persistent constraints make construction

rules of derivation nets being refined to prevent this trivial non-termination. The
strict output vertices of a hyperarc are marked as persistent if and only if all the
input vertices are persistent or if it is a propagation (that is to say, if all input
vertices are in a trivial cycle).

3 Angelic Programming

3.1 Head Decomposability

In the abstract semantics, a CHR rule can only observe the presence of a user
constraint, not the absence: firing is monotonic relatively to the store. As a
consequence, if observations are restricted to the side effects of the firing of some
rules, silent partial consumption of the head of these rules cannot be observed.
Such an observable is motivated by the fact that the body of fired rules is the
place where side effects can happen. In particular, multiple headed rules can
be rewritten in 2-headed rules by the introduction of fresh intermediary user
constraints (carrying the context variables if any).

The rule

a, b, c, d ⇔ print("side effect")

and the set of rules

a ⇔ f1

f1, b ⇔ f2

f2, c ⇔ f3

f3, d ⇔ print ("side effect")

are equivalent provided that f1, f2, f3 are fresh user constraints that do not
appear elsewhere neither in the program nor in the initial goal.

This equivalence does not hold in general with a committed-choice scheduler
since premature consumptions of a and b can prevent other rules to be fired even
if c and d never appear. On the contrary, premature consumptions in angelic
settings will only lead to blocking computation branches that will not prevent
other branches to be explored. This property can benefit to the implementation:
only 2-headed rules have to be considered. More precisely, all CHR rules can be
translated to rules with two heads where one of them is an intermediary user
constraint.

Such a translation makes trivial cycles of simpagations become non-trivial:
the algorithm presented above can nevertheless be adapted in this case, since
all hyperarcs involved in the cycle only introduce intermediary user constraints.
Therefore, a hyperarc cannot be unreachable due to the consumption of such
constraints by another rules.

3.2 Controlling the Angelism

User constraints can be introduced to explicitely sequence the execution of rules.
The following program produces as side-effect a unspecified permutation of a, b,
c when launched with the goal start.

start ⇔ a, b, c.

a ⇔ print("a").

b ⇔ print("b").

c ⇔ print("c").

The order can be fixed by the introduction of fresh intermediary constraints to
mark the step of the sequence (carrying the context variables if any).

start ⇔ s0, a, b, c.

a, s0 ⇔ s1, print("a").

b, s1 ⇔ s2, print("b").

c, s2 ⇔ print("c").

Operationaly, such an explicit sequencing forces the derivation net to have a lin-
ear path instead of branching hyperarcs. Formally, the sequence is coded declar-
atively in the logic instead of being left to the conventional implementation of
the comma sequence operator.

4 Applications

4.1 Angelism for CHR∨

Angelic execution can be seen as a search among scheduling. Therefore, CHR∨
rules where there can be multiple bodies, leading to a search for a successful one,
can be encoded as multiple rules with the same head.

The rule N @ H ⇔ G | B1 ; ...; Bn. is encoded as the set of n rules
N1 @ H ⇔ G | B1., ..., Nn @ H ⇔ G | Bn. Angelic execution ensures that
consequences of B1, ..., Bn are explored.

4.2 Meta-interpreters

The decomposability of heads allow CHR meta-interpreters to be conveniently
written. Suppose that a rule is coded with a user constraint rule(N @ H ⇔ G | B)

where H is a list of heads and with a proper encoding for the body B where user
constraints are marked with the functor ucstr, then the following rules code a
meta-interpreter.

first_head @ rule(_N @ H ⇔G, B), ucstr(H0) ⇔
copy_term((H, G, B), ([H0 | T0], G0, B0)) |

match(T0, G0, B0).

matching_end @ match([], G, B) ⇔call(G) |

call(B).

matching_cont @ match([H | T], G, B), ucstr(H) ⇔
match(T, G, B).

This meta-interpreter uses the decomposability of rules with match as interme-
diary user constraint.

Example 2. The scalar product example (Example 1) is encoded into the follow-
ing constraints. A derivation net for the meta-interpretation of this program is
given in Fig. 4.

rule(init @ [scalar(X1, Y1, X2, Y2, P)] ⇔true |

ucstr(product(X1, X2, X)),

ucstr(product(Y1, Y2, Y)),

ucstr(sum(X, Y, P))).

rule(product @ [product(A, B, C)] ⇔true |

V is A * B,

ucstr(value(C, V))).

rule(sum @ [sum(A, B, C), value(A, VA), value(B, VB)] ⇔true |

V is VA + VB,

ucstr(value(C, V))).

4.3 User-defined Indexation

Thanks to the dependency book-keeping operated by derivation nets, rules can
reformulate user constraints to another form while keeping the dependency re-
lation between the original user constraint and the reformulation. For instance,
suppose that the underlying implementation only makes indexing on the princi-
pal functor of the user constraint arguments. The following rule decomposes a
nested term in a user constraint into another user constraint with this term as
root argument.

c(f(X)) ⇔ cf(X) .

Then consuming cf(X) in another rule is equivalent to consuming c(f(X)):
therefore, rules having heads matching on c(X) in general and rules having heads
matching on cf(X) in particular can coexist and consume observationnaly the
same user constraints.

4.4 Deep Guards

In a previous paper [15], we proposed a framework to extend the built-in guard
language in CHR with a mechanism allowing to trigger CHR computation dur-
ing guard entailment checking. This framework suffers from the trigerred com-
putation having to satisfy sanity conditions not to pollute the store in case of
non-entailment. Deep guards, that is to say CHR rules whose guards involve
arbitrary CHR computations, can be trivially implemented with angelism. In
the general form, a rule with a deep guard is written as follows.

H ⇔ (G => C) | B.

with the convention that the rule can only be fired if, once H has been consumed,
the CHR goal G entails the CHR store C. Such a rule can be rewritten as follows,
where mark is fresh (carrying the context variables if any).

rule(init @ ...) ucstr(scalar(X1,Y1,X2,Y2,P))

first head

match([],...)

matching end

ucstr(product(X1,X2,X)) ucstr(product(Y1,Y2,Y)) ucstr(sum(X,Y,P))

first head first head first head

match([],...) match([],...) match([value(A,VA),value(B,VB)],...)

matching end matching end

ucstr(value(X,X1 * X2)) ucstr(value(Y,Y1 * Y2))

matching cont

match([value(B,VB)],...)

matching cont

match([],...)

matching end

ucstr(value(P,X1 * X2 + Y1 * Y2))

rule(product @ ...) rule(sum @ ...)

Fig. 4. Meta-interpretation of the query ucstr(scalar(X1,Y1,X2,Y2,P)) with
the meta-interpreted program given in Example 2

H ⇔ G, mark.

mark, C ⇔ B.

This is only correct in the case of an angelic execution since H is consumed
before the execution of G: if this execution does not lead to C, other branches of
execution should be explored.

5 Conclusion

We have described a new execution model for CHR, the angelic semantics, which
computes all the reachable configuration from an initial CHR goal. We intro-
duced a notion of derivation nets for graphical represention of CHR execution
paths. These derivation nets allow the description of sharing strategies which
make the angelic semantics tractable in practice. In these settings, we illustrate
how angelic semantics can result to a fully declarative language, where control
is captured by the logical interpretation. Proposed applications give natural so-
lutions in the angelic execution model to questions which are still open with
committed-choice: the existence of CHR meta-interpreters, the redefinition of
specific user constraint representations, for indexation in particular, and more
generally the interleaving of arbitrary computation between head consumption,
allowing deep guards. The implementation still has to be done in the light of
what has been already implemented for LCC. This work can begin with a sim-
ple meta-interpreter of CHR written in angelic LCC. However, even if we believe
that such an implementation is possible, a lot of work remains to be explored
in terms of compilation techniques to make the performance competitive with
committed-choice implementations. This work is a move forward to more declar-
ativity, for reducing the gap between the logical interpretation and the effective
implementation of the semantics. We hope for more theoretical development
of algorithms taking benefits of the angelic semantics, as well as progress for
implementation efficiency.

References

1. Frühwirth, T.W.: Constraint Handling Rules. Cambridge University Press (2009)
2. Sneyers, J., Weert, P.V., Schrijvers, T., Koninck, L.D.: As time goes by: Constraint

Handling Rules – a survey of CHR research between 1998 and 2007. Theory and
Practice of Logic Programming 2 (January 2010)

3. Duck, G.J., Stuckey, P.J., Banda, M.G.D.L., Holzbaur, C.: The refined operational
semantics of constraint handling rules. In: In 20th International Conference on
Logic Programming (ICLP’04, Springer-Verlag (2004) 90–104

4. De Koninck, L., Schrijvers, T., Demoen, B.: User-definable rule priorities for CHR.
In: Proceedings of PPDP’07, International Conference on Principles and Practice
of Declarative Programming, Wroclaw, Poland, ACM Press (2007) 25–36

5. Sneyers, J., Meert, W., Vennekens, J., Kameya, Y., Sato, T.: CHR(PRISM)-based
probabilistic logic learning. Theory and Practice of Logic Programming 10(4-6)
(2010) 433–447

6. Betz, H., Frühwirth, T.W.: A linear-logic semantics for constraint handling rules.
In: Proceeding of CP 2005, 11th. (2005) 137–151

7. Girard, J.Y.: Linear logic. Theoretical Computer Science 50(1) (1987)
8. Sneyers, J., Schrijvers, T., Demoen, B.: The computational power and complexity

of constraint handling rules. ACM Transactions on Programming Languages and
Systems (TOPLAS) 31(2) (2009) 1–42

9. Martinez, T.: Semantics-preserving translations between linear concurrent con-
straint programming and constraint handling rules. In: Proceedings of PPDP’10,
International Conference on Principles and Practice of Declarative Programming,
Edinburgh, UK, ACM (2010) 57–66

10. Jagadeesan, R., Shanbhogue, V., Saraswat, V.A.: Angelic non-determinism in
concurrent constraint programming. Technical report, Xerox Parc (1991)

11. Betz, H., Raiser, F., Frühwirth, T.: A complete and terminating execution model
for Constraint Handling Rules. Theory and Practice of Logic Programming 10(4-6)
(2010) 597–610

12. Betz, H.: Relating coloured petri nets to constraint handling rules. In: Proceedings
of the forth Constraint Handling Rules Workshop CHR’07. (2007) 33–47

13. Mayr, E.W.: An algorithm for the general petri net reachability problem. In:
Proceedings of the thirteenth annual ACM symposium on Theory of computing.
STOC ’81, New York, NY, USA, ACM (1981) 238–246

14. Lipton, R.J.: The reachability problem requires exponential space. Technical Re-
port 62, New Haven, Connecticut: Yale University, Department of Computer Sci-
ence, Research (January 1976)

15. Fages, F., de Oliveira Rodrigues, C.M., Martinez, T.: Modular CHR with ask
and tell. In Frühwirth, T., Schrijvers, T., eds.: Proceedings of the fifth Constraint
Handling Rules Workshop CHR’08. (2008)

	Angelic CHR
	Thierry Martinez

