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Sudoku

We probably all know the rules of the Sudoku...
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Sudoku

We probably all know the rules of the Sudoku...

» for every line j and every column j,
the case (/,j) should have a value
1< Xijy €9.
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Sudoku

O ~NO OO~ W N+ O

We probably all know the rules of the Sudoku...

Odl gdgoodde
g ogoogde-
Odl ggoodgds
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g gdoood -
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g ggoood-~
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» for every line j and every column j,
the case (/,) should have a value
1< Xijy <9.
» for every line f
and every pair (j, k) of distinct columns,
we should have X(,’J) * X(i,k)-
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for every line i and every column j,

the case (/,) should have a value

1< Xijy <9.

for every line f

and every pair (j, k) of distinct columns,
we should have X(,’J) * X(i,k)-

for every column i

and every pair (j, k) of distinct lines,

we should have X(; iy # Xk iy-
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for every line i and every column j,

the case (/,) should have a value

1< Xijy <9.

for every line f

and every pair (j, k) of distinct columns,
we should have X(,’J) * X(i,k)-

for every column i

and every pair (j, k) of distinct lines,

we should have X(; iy # Xk iy-

for every 3 x 3-block (i,/)

and every distinct cases (m, n) and (m’,n’)
in this block,

we should have

X3x(ij)+(mn) F X3x(i j)+(m,n)-



Sudoku

We probably all know the rules of the Sudoku...
» Vije{0...8}, 1< X5 <9

v

Vijke{0...8},j% k= X * Xk

Logical formulas » Vijke{0...8},)# k= Xgi) # Xik,i)

» Vijmnm'n" €{0...2},(m,n) = (m',n") =

Xax(ijy+(mn) F X3x(ij)+(m',n")



Constraints

» Constraints = atomic formulas, X1 1) # X(1,2)
» Model = conjunction of constraints

/\ constraints = solution

» Constraints formalized as relations:

"Xy # Xa2)" = {(Xij)o<issoci<s | X(1,1) # Xa,2)}

v

The set of solutions is the intersection

({relations} = {set of solutions}

» Explicit representation is intractable
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Domain and propagation
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Domain and propagation
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Domain and propagation
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Domain and propagation
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Domain and propagation
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Domain and propagation
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Memory paradigm shift

RAM model

Addresses/ Values

Variables » Imperative paradigm:
x —— Vx| assigns many, reads many
y » Functional paradigm:
S assigns once, reads many
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Memory paradigm shift

RAM model

Addresses/ Values
Variables
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y
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Constraint memory model
(Partial information)

There exist x, y, z, t...such that
xe{l5,...,15} and
ye{b,...,5015} and
y < x and
zeQn[5,9]
and more...

increasing
knowledge



Propagation power
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Propagation power
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Flow-network algorithm
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Concurrent programming framework

Constraint Model

Variable domains

Dedicated Propagators
acting concurrently

Symbolic Constraints Scheduling Constraints
(Graph theory) (Formal Language theory)

Placement Constraints
(Discrete Geometry theory)



NP-completeness
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Propagation and search

propagation
X1y =7
1 3 5
gpropagation

Xa,2) =7

Andorra Principle
Do the deterministic bits first.



Conjunction and disjunction

» In constraint programming, “and” between constraint

» “or" to express choices: in Sudoku,
Xap =1vXan =2v--vXan =9



Logic programming: logic as a programming language

» Abstracting programming traits: concurrency, non
determinism...

» Every computation is the search for a proof

Programs = Logical formulas
Execution = Proof search



What is a proof for a conjunction?
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AAnB



What is a proof for a disjunction?




The logical implication as synchronization mechanism



Logic operators as programming constructs

» “and”, A: parallel composition

» “or", Vv: non-deterministic choice

» “implies”, =: synchronization between parallel tasks (wait)
» ‘“exists”, 3: introducing local variables

» elementary formulas: constraints, for adding knowledge about
variables

To implement propagators, need to update domains (imperative
features).



The Linear Concurrent Constraint Programming project

» Linear logic (Girard, 87): logic where formulas are resources

» Linear implication A — B is a process which transforms and
consumes A to produce B

» Synchronization mechanism relying on linear implication
updates the knowledge by removing some hypotheses



Linear logic as a concurrent programming language

» Constraints = messages, with partial knowledge

» Logic variables = communication channel

» Existential operator (3) = channel locality

» Universal operator (V) = generic synchronization

(Vx(a(x) —...))
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Semantics of programming languages

Logical formula

execution

proof search

Observable property



Warehouse bin-packing

Box placements in containers:

» variables = box positions

» constraints = weight distribution, gravity. ..

Industrial partnerships with PSA, Fiat...



Optimizing in underground trains timetable

Reduce energy consumption by slight timetable shifting:

» variables = time shift
» constraints = energy limit

Industrial partnership with General Electrics



Analysis of large graphs of reaction networks in Systems

Model analysis for conservation laws, dead-locks, comparisons
between models.

» variables = molecules / vertices
» constraints = graph structure

Industrial partnership with Dassault Systme



Thesis

The design and the implementation of LCC

Design Selection of the right logical fragment of linear logic
for modular programming, re-use of code, imperative
traits...

Implementation The LCC compiler (and a compiler for a modular
extension of Prolog), with efficient algorithms for
proof search

Output Compiler for a new programming language for
concurrent, imperative and constraint programming.
Mono-paradigm: semantics driven by proof theory.



That's all folks!

Thank you!
Let's go for questions.
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