How to write and prove programs
with constraints and linear logic?

Thierry Martinez
Contraintes Project-Team

INRIA Junior Seminar, 18 October 2011

“Contraintes” project-team

Topic Formal semantics for programming languages

Methods Logic and constraints

Applications > Solving/optimization of combinatorial problems

» Systems Biology

“Contraintes” project-team

Topic Formal semantics for pregramming languages
modeling

Methods Logic and constraints

Applications > Solving/optimization of combinatorial problems

» Systems Biology

Sudoku

We probably all know the rules of the Sudoku...

o 100
~Oog
o100

w 00
g
o 00

QAN

=0
o[

o —~ N

o
o
o

o
oot
o

o

o
o

o < o

o
o
o

o
ood
o

o

o
o

O N~ o

Sudoku

We probably all know the rules of the Sudoku...

» for every line j and every column j,
the case (/,j) should have a value
1< Xijy €9.

O ~NO OO W NN+ O
O OODm @m@E@Ee
Ol DD m@E@E~-
Do OODE @m@m@as
O OO0 D@@«
(Y iy i
(0 o i e e e
I o o)
O OO0 m@EE~
OOl OO0 O@@«

Sudoku

O ~NO OO~ W N+ O

We probably all know the rules of the Sudoku...

Odl gdgoodde
g ogoogde-
Odl ggoodgds
OO0 OO0 odde
g gdoood -
Odl ggooode
OOl ggoodgde
g ggoood-~
OO0 OO odde

» for every line j and every column j,
the case (/,) should have a value
1< Xijy <9.
» for every line f
and every pair (j, k) of distinct columns,
we should have X(,’J) * X(i,k)-

Sudoku

O ~NO OO~ W N+ O

We probably all know the rules of the Sudoku...

OO0 odoodde

oo ogoogde-

OOoogoodgds

OO0 000 0d-de

Ooooododds

ol

OO0 odoodgde

oo ogoood-~

OO0 000 odde

>

v

v

for every line i and every column j,

the case (/,) should have a value

1< Xijy <9.

for every line f

and every pair (j, k) of distinct columns,
we should have X(,’J) * X(i,k)-

for every column i

and every pair (j, k) of distinct lines,

we should have X(; iy # Xk iy-

Sudoku

O ~NO OO~ W N+ O

We probably all know the rules of the Sudoku...

OO0 odoodde

oo ogoogde-

OOoogoodgds

000w

odg
N

oo s

000 o
OO0 odoodgde

odg

oo ogoood-~

OO0 000 odde

>

v

v

v

for every line i and every column j,

the case (/,) should have a value

1< Xijy <9.

for every line f

and every pair (j, k) of distinct columns,
we should have X(,’J) * X(i,k)-

for every column i

and every pair (j, k) of distinct lines,

we should have X(; iy # Xk iy-

for every 3 x 3-block (i,/)

and every distinct cases (m, n) and (m’,n’)
in this block,

we should have

X3x(ij)+(mn) F X3x(i j)+(m,n)-

Sudoku

We probably all know the rules of the Sudoku...
» Vije{0...8}, 1< X5 <9

v

Vijke{0...8},j% k= X * Xk

Logical formulas » Vijke{0...8},)# k= Xgi) # Xik,i)

» Vijmnm'n" €{0...2},(m,n) = (m',n") =

Xax(ijy+(mn) F X3x(ij)+(m',n")

Constraints

» Constraints = atomic formulas, X1 1) # X(1,2)
» Model = conjunction of constraints

/\ constraints = solution

» Constraints formalized as relations:

"Xy # Xa2)" = {(Xij)o<issoci<s | X(1,1) # Xa,2)}

v

The set of solutions is the intersection

({relations} = {set of solutions}

» Explicit representation is intractable

Domain and propagation

| Y I
3 50 I Y
OO e e
I O S A I

ol L=]
DIDDDDD@D

x[2]3]
4L
7]
BN
HNE
Cln
NN
EE
o7l

Domain and propagation

Domain:

X213 5

NN
]

-]
o] SO]
O]
el L=]
L] [T el

x—{1][2]3][4][5][6][7][8][9]

|l JLL o] (=] L]
||~ =L L]l]

Lo

Domain and propagation

NS

LB]
DDD@IDDD

Domain:

Domain and propagation

I Y I
3 I S)
HRNER RN
I O I I
IDDD@!DDD
HN NN
o)l L
| =

YDDD

Domain:

Domain and propagation

I Y I
3 I S)
HRNER RN
I O I I
IDDD@!DDD
HN NN
o)l L
| =

YDDD

Domain:

—

Domain and propagation

I Y I
3 I S)

HRNER RN
I O I I
ol L L lell= L]
SN
3 51
| I
et | 1 I VI Y

Domain:

—

| Y I
3 50 I Y
OO e e

I O S A I
ol L=]
N O O =Y

D 3 51

| I I
= [2][~] [ev [[eo] 2 [o] o]

Domain and propagation

Domain and propagation

1 [2)[3][Js][][]
BRI
HENN RN

L]

]

[~]

]
(] L=)]
IREI)

oz]

There exists x € 1,...,9 such that ¢, = 1.

x— 23] [s]le][7][8][9]

Domain and propagation

L [2][3][Js][][][8]lo]
IO FCIE 2]
HENN NN
? e e LI LI

3 @ 97 121

Cr Gy

oo e DO

(| I [D
o)l Il o)l JL LB
oz]

There exists x € 1,...,9 such that ¢, = 1.

x— 1 [2]3] 7)8]9]

Domain and propagation

1 [2]3][][s] 8]
A= 2]
O] DI []
2 b b J L] (]
3 s L e]7][2][1]
C78 Cg Cg 1

s LI []
o] (1] [o]] 3]
Dl O] L]

L] [l L]l

There exists x € 1,...,9 such that ¢, = 1.

x— 1 [2]3]

Domain and propagation

1[2][3/ [Js][][][8]lo]
1 N EE
I O e
? et e LI
3 6o L9)l7][2]1][]
Bk Jo | LI L5
s L IO EE e
o]l It o)l JL LB
Loz L]

There exists x € 1,...,9 such that ¢, = 1.

X —

Domain and propagation

2ol J[= [o] o]/l]
) I I S0 I Y
|| [[=][~]l=] =l]
I O I S | I 0
Lol Vol [[ofl=] [=]l]
Y| I GO Y
L[l e[
0 I I I S
= [x][~] e[o] o [0][=]

Memory paradigm shift

RAM model

Addresses/ Values

Variables » Imperative paradigm:
x —— Vx| assigns many, reads many
y » Functional paradigm:
S assigns once, reads many

Memory paradigm shift

RAM model

Addresses/ Values
Variables

%]
y
.
¢

Constraint memory model
(Partial information)

There exist x, y, z, t...such that

increasing
knowledge

Memory paradigm shift

RAM model

Addresses/ Values
Variables

%]
y
.
¢

Constraint memory model
(Partial information)

There exist x, y, z, t...such that
xe{l,...,15}

increasing
knowledge

Memory paradigm shift

RAM model

Addresses/ Values
Variables

%]
y
.
¢

Constraint memory model
(Partial information)

There exist x, y, z, t...such that
xe{l,...,15} and
y€{5,...,50}

increasing
knowledge

Memory paradigm shift

RAM model

Addresses/ Values
Variables

%]
y
.
¢

Constraint memory model
(Partial information)

There exist x, y, z, t...such that
xe{l,...,15} and
y €{5,...,50} and
ys<x

increasing
knowledge

Memory paradigm shift

RAM model

Addresses/ Values
Variables

%]
y
.
¢

Constraint memory model
(Partial information)

There exist x, y, z, t...such that
xe{l5,...,15} and
y €{5,...,50} and
ys<x

increasing
knowledge

Memory paradigm shift

RAM model

Addresses/ Values
Variables

%]
y
.
¢

Constraint memory model
(Partial information)

There exist x, y, z, t...such that
xe{l5,...,15} and
ye{b,...,5015} and

ys<x

increasing
knowledge

Memory paradigm shift

RAM model

Addresses/ Values
Variables

%]
y
.
¢

Constraint memory model
(Partial information)

There exist x, y, z, t...such that
xe{l5,...,15} and
ye{b,...,5015} and
y < x and
zeQn[5,9]
and more...

increasing
knowledge

Propagation power

2llo)l =] o] =]l]
(0 I (B G
SHICRICC
= |
o]l [[e]l=] [=[]
[~ JINT [el [=]]
E (I I (Y ST
SO =L el]
=|[x][~] e [[o] [0 [0][=]

Propagation power

2llo)l =] o] =]l]
(0 I (B G
SHICRICC
= |
o]l [[e]l=] [=[]
[~ JINT [el [=]]
E (I I (Y ST
SO =L el]
=|[x][~] e [[o] [0 [0][=]

—

Propagation power

(=]~]88 EIE[-] (-] SE
(=[] 8] B[~ [~]S
EEE == EEE

EEE E-EEE
El!l@!lﬂl

Flow-network algorithm

1
X1 Vi
1
X 1 V !
2 ? \
! : target

:/
1
Vn

Residual network of Ford-Fulkerson: reduced domain

source

— —
[

Xn

Concurrent programming framework

Constraint Model

Variable domains

Dedicated Propagators
acting concurrently

Symbolic Constraints Scheduling Constraints
(Graph theory) (Formal Language theory)

Placement Constraints
(Discrete Geometry theory)

NP-completeness

HEEIN RN
el (7L Jlo] [x][2]13]
I EYEY El (A
2] [J[s]le](s][8][7]
3e][J[8llo](7][2][1][|
sl I [2]a]la][3][6][]
I ENERC N B
o) JL I loli7]lx][[3]l2]

El EN N EIEN G

Propagators are polynomial. Finding a solution is NP-complete.

Propagation and search

propagation
X1y =7
1 3 5
gpropagation

Xa,2) =7

Andorra Principle
Do the deterministic bits first.

Conjunction and disjunction

» In constraint programming, “and” between constraint

» “or" to express choices: in Sudoku,
Xap =1vXan =2v--vXan =9

Logic programming: logic as a programming language

» Abstracting programming traits: concurrency, non
determinism...

» Every computation is the search for a proof

Programs = Logical formulas
Execution = Proof search

What is a proof for a conjunction?

|

AAnB

What is a proof for a disjunction?

The logical implication as synchronization mechanism

Logic operators as programming constructs

» “and”, A: parallel composition

» “or", Vv: non-deterministic choice

» “implies”, =: synchronization between parallel tasks (wait)
» ‘“exists”, 3: introducing local variables

» elementary formulas: constraints, for adding knowledge about
variables

To implement propagators, need to update domains (imperative
features).

The Linear Concurrent Constraint Programming project

» Linear logic (Girard, 87): logic where formulas are resources

» Linear implication A — B is a process which transforms and
consumes A to produce B

» Synchronization mechanism relying on linear implication
updates the knowledge by removing some hypotheses

Linear logic as a concurrent programming language

» Constraints = messages, with partial knowledge

» Logic variables = communication channel

» Existential operator (3) = channel locality

» Universal operator (V) = generic synchronization

(Vx(a(x) —...))

Semantics of programming languages

interpretation

Program Mathematical model

execution proof

Observation Property

Semantics of programming languages

interpretation M .
Logical formula

Program

execution proof

Observation Property

Semantics of programming languages

Logical formula

execution proof

Observation Property

Semantics of programming languages

Logical formula

execution proof

Observable property

Semantics of programming languages

Logical formula

execution

proof search

Observable property

Warehouse bin-packing

Box placements in containers:

» variables = box positions

» constraints = weight distribution, gravity. ..

Industrial partnerships with PSA, Fiat...

Optimizing in underground trains timetable

Reduce energy consumption by slight timetable shifting:

» variables = time shift
» constraints = energy limit

Industrial partnership with General Electrics

Analysis of large graphs of reaction networks in Systems

Model analysis for conservation laws, dead-locks, comparisons
between models.

» variables = molecules / vertices
» constraints = graph structure

Industrial partnership with Dassault Systme

Thesis

The design and the implementation of LCC

Design Selection of the right logical fragment of linear logic
for modular programming, re-use of code, imperative
traits...

Implementation The LCC compiler (and a compiler for a modular
extension of Prolog), with efficient algorithms for
proof search

Output Compiler for a new programming language for
concurrent, imperative and constraint programming.
Mono-paradigm: semantics driven by proof theory.

That's all folks!

Thank you!
Let's go for questions.

	Introduction

