About Feature Trees

Thierry Martinez

Internal Seminar - 17 March 2008

(日)

Attribute-Value Logic

イロト イポト イヨト イヨ

About ψ-terms

Eventually cyclic terms, with no constrained arity.

AVM Notation

イロト イポト イヨト イヨト

Formal Definition

Definition

Let $(TYPE, \sqsubseteq)$ be a BCPO and FEAT be a finite set of features. A ψ -term is a tuple $(Q, \overline{q}, \theta, \delta)$ such that :

- Q is a finite set of states rooted by \overline{q} .
- \overline{q} is the root of the term.
- $\theta: Q \rightarrow TYPE$ is the *type* function.
- $\delta: Q \times FEAT \rightarrow Q$ is the *value* function.

 θ is a total function. δ is a partial function.

A A → A → A

Feature Structures are connex

Let $\delta^* : Q \times \mathsf{FEAT}^* \to Q$ the partial function extending δ to paths : $\delta^*(q, \epsilon) = q, \delta^*(q, f\pi) = \delta^*(\delta(f, \pi), \pi).$

Definition (Rooted)

Q is rooted by \overline{q} if

$$\mathsf{Q} = \left\{ \delta^*(\overline{q}, \pi) \; \middle| \; \pi \in \mathsf{FEAT}^* \text{ such that } \delta^*(\overline{q}, \pi) \text{ is defined} \right\}$$

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Subsumption

Definition

 $F = (Q, \overline{q}, \delta, \theta)$ subsumes $F' = (Q', \overline{q}', \delta', \theta')$, $F \sqsubseteq F'$, if there is a morphism $h : Q \to Q'$:

- $h(\overline{q}) = \overline{q}'$.
- $\theta(q) \sqsubseteq \theta'(h(q))$ for every $q \in Q$.
- $h(\delta(f,q)) = \delta'(f,h(q))$ for every $q \in Q$, $f \in FEAT$ such that $\delta(f,q)$ is defined.

We write $F \sim F'$ if $F \sqsubseteq F'$ and $F' \sqsubseteq F$.

イロト イポト イヨト イヨト

Identity

$$F = \begin{bmatrix} 1 & \mathbf{a} \\ ARG : \begin{bmatrix} 1 \end{bmatrix} \end{bmatrix}$$
$$F' = \begin{bmatrix} \mathbf{a} \\ ARG : \begin{bmatrix} 1 & \mathbf{a} \\ ARG : \begin{bmatrix} 1 & \mathbf{a} \\ ARG : \begin{bmatrix} 1 \end{bmatrix} \end{bmatrix}$$

We have $F \sqsubseteq F'$ but not $F \sim F'$!

ヘロト 人間 とくほ とくほとう

ψ-term Unification

Definition

Let be $F_1 \sim (Q_1, \overline{q_1}, \delta_1, \theta_1)$ and $F_2 \sim (Q_2, \overline{q_2}', \delta_2', \theta_2')$ such that $F_1 \cap F_2 = \emptyset$.

$$\mathsf{F}_1 \sqcup \mathsf{F}_2 = ((\mathsf{Q}_1 \cup \mathsf{Q}_2) / \Join, [\overline{q_1}]_{\bowtie}, \theta^{\bowtie}, \delta^{\bowtie})$$

where

- \bowtie is the least equivalence relation such that :
- $\overline{q_1} \bowtie \overline{q_2}$ • $\delta_1(f, q_1) \bowtie \delta(f, q_2)$ if both are defined and $q_1 \bowtie q_2$ • $\theta^{\bowtie}([q]_{\bowtie}) = \sqcup(\{\theta_1(q_1) \mid q \bowtie q_1 \text{ and } \theta_1(q_1) \text{ is defined}\} \cup \{\theta_2(q_2) \mid q \bowtie q_2 \text{ and } \theta_2(q_2) \text{ is defined}\})$ • $\delta^{\bowtie}([q_1]_{\bowtie}) = [\delta_1(f, q_1)]_{\bowtie} \text{ if } \delta_1(f, q_1) \text{ is defined };$ • $\delta^{\bowtie}([q_2]_{\bowtie}) = [\delta_2(f, q_2)]_{\bowtie} \text{ if } \delta_2(f, q_2) \text{ is defined.}$

Description Language

Definition (Descriptions)

The least set DESC such that:

- $\sigma \in \text{Desc}$ if $\sigma \in \text{Type}$
- $\pi: \phi \in \text{Desc} \text{ if } \pi \in \text{Feat}^*, \phi \in \text{Desc}$
- $\pi_1 = \pi_2 \in \mathsf{DESC}$ if $\pi_1, \pi_2 \in \mathsf{Feat}^*$
- $\phi \land \psi \in \text{Desc if } \phi, \psi \in \text{Desc}$

Image: A match the second s

∃ >

Description Language Semantics

Definition (Semantics)

Let *F* be a ψ -term.

- $F \models \sigma$ if $\sigma \in \mathsf{TYPE}$ and $\sigma \sqsubseteq \theta(\overline{q})$
- *F* |= π : ψ if the substructure *F*' of *F* following the path π is such that *F*' |= ψ

•
$$F \models \pi_1 = \pi_2$$
 if $\delta(\pi_1, \overline{(q)}) = \delta(\pi_2, \overline{(q)})$

•
$$F \models \phi \land \psi$$
 if $F \models \phi$ and $F \models \psi$

< □ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Most General Satisfier

Theorem

There is a partial function MGSat : DESC $\rightarrow \psi$ -Terms such that:

$$F \models \psi$$

if and only if $MGSat(\psi) \sqsubset F$

Theorem

 $MGSat(DESC) = \psi$ -Terms

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Conclusion

Pros:

- Types hierarchies to describe the unification process of values
- Correspondance between Subsumption and Unification
- Correspondance between Subsumption and Attribute-Value Logic
- High-Performance Unification Algorithms

Cons:

- Not constraint-based: lazy evaluation of projection
- Features are atomic

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A