Disjoint-set Data Structure for Equality Theory

Thierry Martinez

Équipe–Projet Contraintes

Contraintes’ Lab talk, 26 May 2008
Outline

1. Introduction
2. Disjoint-sets Abstract Machine
3. Data Structure
4. Concurrent Constraints
5. Conclusion
Constraint System for the Equality Theory.

Let \mathcal{V} be a set of variables.

For every term ϕ:

- $\text{fv}(\phi)$ denotes the set of free variables of ϕ;
- $\text{bv}(\phi)$ denotes the set of bound variables of ϕ.

Constraints

$$\mathcal{C} ::= \mathbf{1} | \mathcal{C} \land \mathcal{C} | \exists x(\mathcal{C}) | x = y$$

common to all constraint systems

For $\phi \in \mathcal{C}$, we can always suppose that:

- $\text{fv}(\phi) \cap \text{bv}(\phi) = \emptyset$;
- each variable is bound at most one time.

Axioms

In addition to logical axioms for $\mathbf{1}$ and \land and \exists:

- $\mathcal{C} \; x = x$;
- $x = y \land y = x$;
- $x = y, y = z \land x = z$.

For every variable ϕ, let \vec{x} enumerate $\text{fv}(\phi)$. We always have $\mathcal{C} \exists \vec{x} (\phi)$.
Equality Theory and Disjoint-sets.

For every constraint c, we denote $x \rightsquigarrow_c y$ when $x = y$ is a sub-term of c.

$$\exists x y z t (a = x \land b = y \land x = y \land c = d \land z = t)$$

Definition

A partition \mathcal{P} of $\text{fv}(c)$ is a model for a constraint c if for every $x, y \in \text{fv}(c)$ such that $x \rightsquigarrow_c \cdots \rightsquigarrow_c y$, we have x and y in the same equivalence class of \mathcal{P}.
Definition

$\mathcal{P}_1 \models \mathcal{P}_2$ when for every x and y belonging to the same equivalence class of \mathcal{P}_1, we have x and y in the same equivalence class of \mathcal{P}_2.
Smallest Model.

For every constraint c, we denote $x \approx_c y$ when there exists z such that $x \leadsto_c \cdots \leadsto_c z$ and $y \leadsto_c \cdots \leadsto_c z$.

Proposition

For every constraint c, \approx_c is an equivalence relation and the induced partition is the smallest model of c.

Proposition

For every $x, y \in \text{fv}(c)$, $c \not\models x = y$ if and only if $x \approx_c y$.
Constraint Entailment.

\[\exists x y z t (a = x \land b = y \land x = y \land c = d \land z = t) \]

\[\vdash \mathcal{C} \]

\[\exists u v (a = u \land b = u \land c = v \land d = v) \]

Proposition

\(c_1 \preceq c_2 \) if and only if, for every \(x, y \in \text{fv}(c_2) \) such that \(x \approx_{c_2} y \), we have \(x \) and \(y \) in the same equivalence class in every model of \(c_1 \).

It suffices to check in the inclusion between smallest models restricted to free variables.
A Very Simple Logic Language.

Program

$$P ::= \forall x \ (\text{closed term} \ \Rightarrow \ \text{query})$$

Execution Scheme

1. Build the smallest model associated to the hypotheses.
2. Read the model to check whether the query is entailed.
Build the Smallest Model Associated to a Constraint.

\[C \models \exists g (g = a \land a = b) \land \exists ij (d = i \land e = j \land \exists hkl (i = h \land j = k \land f = l \land c = h)) \land d = e \]
Build the Smallest Model Associated to a Constraint.

\[C \models \exists g (g = a \land a = b) \land \exists ij (d = i \land e = j \land \exists hkl (i = h \land j = k \land f = l \land c = h)) \land d = e \]
Build the Smallest Model Associated to a Constraint.

\[C \models \exists g (g = a \land a = b) \land \exists ij (d = i \land e = j \land \exists hkl (i = h \land j = k \land f = l \land c = h)) \land d = e \]
Build the Smallest Model Associated to a Constraint.

\[C \models \exists g (g = a \land a = b) \land \exists ij (d = i \land e = j \land \exists hkl (i = h \land j = k \land f = l \land c = h)) \land d = e \]
Build the Smallest Model Associated to a Constraint.

\[C \models \exists g (g = a \land a = b) \land \exists ij (d = i \land e = j \land \exists kl (i = h \land j = k \land f = l \land c = h)) \land d = e \]
Build the Smallest Model Associated to a Constraint.

\[C \models \exists g (g = a \land a = b) \land \exists ij (d = i \land e = j \land \exists hkl (i = h \land j = k \land f = l \land c = h)) \land d = e \]
Build the Smallest Model Associated to a Constraint.

\[
C \models \exists g (g = a \land a = b) \land \exists ij (d = i \land e = j \land \exists hkl (i = h \land j = k \land f = l \land c = h)) \land d = e
\]
Build the Smallest Model Associated to a Constraint.

\[C \models \exists g(g = a \land a = b) \land \exists ij(d = i \land e = j \land \exists hkl(i = h \land j = k \land f = l \land c = h)) \land d = e \]
Build the Smallest Model Associated to a Constraint.

\[C \models \exists g (g = a \land a = b) \land \exists ij (d = i \land e = j \land \exists hkl (i = h \land j = k \land f = l \land c = h)) \land d = e \]
Compiling Queries.

\[C_0 ::= 1 \mid C_0 \land C_0 \mid x = y \]

Proposition

For every \(c \in C \), there is a computable \(\llbracket c \rrbracket \in C_0 \) such that \(c \vdash \llbracket c \rrbracket \).

Proof.

Computation. \(c \vdash a = b \land c = d \land c = e \)

\(c \vdash \llbracket c \rrbracket \). \(c \) and \(\llbracket c \rrbracket \) have the same models.
Compiling Queries.

\[C_0 ::= 1 | C_0 \land C_0 | x = y \]

Proposition

For every \(c \in \mathcal{C} \), there is a computable \([c] \in C_0 \) such that \(c \models [c] \).

Proof.

Computation. Let \(\mathfrak{P} \) be the smallest model of \(c \).

\[
[c] \mathrel{\hat{=}} \bigwedge_{P \in \mathfrak{P}} \bigwedge_{y \in V} x = y
\]

\((P \cap \text{fv}(c)) \mathrel{\hat{=} 2} \{ x \} \) \(\mathrel{\hat{=} P \cap \text{fv}(c)} \)

\(c \models [c] \). \(c \) and \([c] \) have the same models.
Extension to Rational Terms.

Constraints \(C ::= 1 | C \land C | \exists x(C) | x = y | x = f(\vec{y}) \)

common to all constraint systems

New Op-codes Labelled equivalence classes.

- \text{struct}(x, f(\vec{y})) \) to label an equivalence class, possible previous label must match and equality constraints on arguments are added.
- \(\vec{y} \leftarrow \text{struct}(x, f) \) to check that \(x \) has the functor \(f \), then extract arguments.
Build the Code Associated to a Rational Tree Query.

\[C \equiv \exists xyz(a = f(x, y) \land x = f(z, y) \land z = f(x, y)) \]

1. \((x, y) \leftarrow \text{struct?}(a, f)\)
2. \((z, y_1) \leftarrow \text{struct?}(x, f)\)
3. \(y_1 = y\)
4. \((x_1, y_2) \leftarrow \text{struct?}(z, f)\)
5. \(x_1 = x\)
6. \(y_2 = y\)
State Minimization.

\[C \equiv \existsxyz(a = f(x, y) \land x = f(z, y) \land z = f(x, y)) \]

1. \((a_1, y) \leftarrow \text{struct?}(a, f)\)
2. \(a_1 = a\)
Equivalence Classes as Variable Trees.

Op-codes implementation:

\[x \equiv y \quad \text{“link(find(x), find(y))”} \]

\[x \neq y \quad \text{check whether “find(x) = find(y)”} \]

where:

\[\text{find}(x) \quad \text{Follows the arcs from } x \text{ up to find the root. Root is returned.} \]

\[\text{link}(x, y) \quad \text{Adds an arc from } x \text{ to } y. \text{ Prerequisite: } x \text{ former root, } y \text{ root.} \]

\[
C \models \exists g (g = a \land b = g) \land \exists ij (d = i \land e = j \land \exists hkl (i = h \land j = k \land f = l \land c = h)) \land d = e
\]

Proposition

For a sequence of \(m \) operations, among which \(n \) are “link” operations, the total complexity is \(\Theta(mn) \).
Equivalence Classes as Variable Trees.

Op-codes implementation:

\[x \equiv y \quad \text{“link(find(x), find(y))”} \]
\[x \not\equiv y \quad \text{check whether “find(x) = find(y)”} \]

where:

- **find(x)** Follows the arcs from \(x \) up to find the root. Root is returned.
- **link(x, y)** Adds an arc from \(x \) to \(y \). Prerequisite: \(x \) former root, \(y \) root.

\[C \models \exists g (g = a \land b = g) \land \exists ij (d = i \land e = j \land \exists hkl (i = h \land j = k \land f = l \land c = h)) \land d = e \]

Proposition

For a sequence of \(m \) operations, among which \(n \) are “link” operations, the total complexity is \(\Theta(mn) \).
Equivalence Classes as Variable Trees.

Op-codes implementation:

\[x ≡ y \text{ “} \text{link(find}(x), \text{find}(y))\text{”}\]

\[x \not≡ y \text{ check whether “} \text{find}(x) = \text{find}(y)\text{”}\]

where:

- **find(x)** Follows the arcs from \(x\) up to find the root. Root is returned.
- **link(x, y)** Adds an arc from \(x\) to \(y\). Prerequisite: \(x\) former root, \(y\) root.

\[C \equiv \exists g (g = a \land b = g) \land \exists ij (d = i \land e = j \land \exists hkl (i = h \land j = k \land f = l \land c = h)) \land d = e\]

Proposition

For a sequence of \(m\) operations, among which \(n\) are “link” operations, the total complexity is \(\Theta(mn)\).
Equivalence Classes as Variable Trees.

Op-codes implementation:

\[x \doteq y \text{ “link(find}(x), \text{find}(y))” \]
\[x \neq y \text{ check whether “find}(x) = \text{find}(y)” \]

where:

- \text{find}(x) Follows the arcs from \(x \) up to find the root. Root is returned.
- \text{link}(x, y) Adds an arc from \(x \) to \(y \). Prerequisite: \(x \) former root, \(y \) root.

\[C \doteq \exists g(g = a \land b = g) \land \exists i j(d = i \land e = j \land \exists h k l(i = h \land j = k \land f = l \land c = h)) \land d = e \]

Proposition

For a sequence of \(m \) operations, among which \(n \) are “link” operations, the total complexity is \(\Theta(mn) \).
Equivalence Classes as Variable Trees.

Op-codes implementation:

\[x \equiv y \text{ \textit{“link(find(x), find(y))”}} \]

\[x \neq y \text{ check whether “find(x) = find(y)”} \]

where:

\textbf{find(x)} Follows the arcs from \(x \) up to find the root. Root is returned.

\textbf{link(x, y)} Adds an arc from \(x \) to \(y \). Prerequisite: \(x \) former root, \(y \) root.

\(C \models \exists g (g = a \land b = g) \land \exists ij (d = i \land e = j \land \exists hkl (i = h \land j = k \land f = l \land c = h)) \land d = e \)

Proposition

For a sequence of \(m \) operations, among which \(n \) are “link” operations, the total complexity is \(\Theta(mn) \).
Equivalence Classes as Variable Trees.

Op-codes implementation:

\[x \iff y \quad \text{“} \text{link(find}(x), \text{find}(y))\text{”} \]
\[x \not\iff y \quad \text{check whether “} \text{find}(x) = \text{find}(y)\text{”} \]

where:

- \text{find}(x) \quad \text{Follows the arcs from} \ x \ \text{up to find the root. Root is returned.}
- \text{link}(x, y) \quad \text{Adds an arc from} \ x \ \text{to} \ y. \ \text{Prerequisite:} \ x \ \text{former root,} \ y \ \text{root.}

\[
C \equiv \exists g (g = a \land b = g) \land \exists ij (d = i \land e = j \land \exists hkl (i = h \land j = k \land f = l \land c = h)) \land d = e
\]

Proposition

For a sequence of \(m \) operations, among which \(n \) are “link” operations, the total complexity is \(\Theta(mn) \).
Equivalence Classes as Variable Trees.

Op-codes implementation:

\[x \doteq y \text{ “link(find(x), find(y))”} \]
\[x \not\doteq y \text{ check whether “find(x) = find(y)”} \]

where:

- \(\text{find}(x) \) Follows the arcs from \(x \) up to find the root. Root is returned.
- \(\text{link}(x, y) \) Adds an arc from \(x \) to \(y \). Prerequisite: \(x \) former root, \(y \) root.

\[C \iff \exists g (g = a \land b = g) \land \exists ij (d = i \land e = j \land \exists hkl (i = h \land j = k \land f = l \land c = h)) \land d = e \]

Proposition

For a sequence of \(m \) operations, among which \(n \) are “link” operations, the total complexity is \(\Theta(mn) \).
Equivalence Classes as Variable Trees.

Op-codes implementation:

\[x \equiv y \quad \text{“link(find(x), find(y))”} \]

\[x \not\equiv y \quad \text{check whether “find(x) = find(y)”} \]

where:

- **find(x)** Follows the arcs from \(x \) up to find the root. Root is returned.
- **link(x, y)** Adds an arc from \(x \) to \(y \). Prerequisite: \(x \) former root, \(y \) root.

\[C \equiv \exists g (g = a \land b = g) \land \exists ij (d = i \land e = j \land \exists hkl (i = h \land j = k \land f = l \land c = h)) \land d = e \]

Proposition

For a sequence of \(m \) operations, among which \(n \) are “link” operations, the total complexity is \(\Theta(mn) \).
Equivalence Classes as Variable Trees.

Op-codes implementation:

\[x \doteq y \text{ “link(find(x), find(y))”} \]

\[x \overset{?}{=} y \text{ check whether “find(x) = find(y)”} \]

where:

- \(\text{find}(x) \) Follows the arcs from \(x \) up to find the root. Root is returned.
- \(\text{link}(x, y) \) Adds an arc from \(x \) to \(y \). Prerequisite: \(x \) former root, \(y \) root.

\[C \models \exists g (g = a \land b = g) \land \exists ij (d = i \land e = j \land \exists hkl (i = h \land j = k \land f = l \land c = h)) \land d = e \]

Proposition

For a sequence of \(m \) operations, among which \(n \) are “link” operations, the total complexity is \(\Theta(mn) \).
Equivalence Classes as Variable Trees.

Op-codes implementation:

\[x \trianglerighteq y \quad \text{“link(find(x), find(y))”} \]
\[x \triangleleft y \quad \text{check whether “find(x) = find(y)”} \]

where:

- **find(x)** Follows the arcs from x up to find the root. Root is returned.
- **link(x, y)** Adds an arc from x to y. Prerequisite: x former root, y root.

\[
C \trianglerighteq \exists g (g = a \land b = g) \land \exists ij (d = i \land e = j \land \exists hkl (i = h \land j = k \land f = l \land c = h)) \land d = e
\]

Proposition

For a sequence of m operations, among which n are “link” operations, the total complexity is \(\Theta(mn) \).
Equivalence Classes as Variable Trees.

Op-codes implementation:

\[x \doteq y \text{ “link(find}(x), \text{find}(y))” \]

\[x \neq y \text{ check whether “find}(x) = \text{find}(y)”} \]

where:

- \text{find}(x) Follows the arcs from } x \text{ up to find the root. Root is returned.}
- \text{link}(x, y) \text{ Adds an arc from } x \text{ to } y. \text{ Prerequisite: } x \text{ former root, } y \text{ root.}

\[
C \doteq \exists g(g = a \land g = b) \land \exists ij(d = i \land e = j \land \exists hkl(i = h \land j = k \land f = l \land h = c)) \land d = e
\]

Proposition

For a sequence of \(m \) operations, among which \(n \) are “link” operations, the total complexity is \(\Theta(mn) \).
Heuristic 1: Union by Rank.

Roots keep track (of an upper-bound) of tree heights.

\[C \triangleq a = e \land b = e \land c = f \land d = f \land f = e \]

Proposition

For a sequence of \(m \) operations, among which \(n \) are “link” operations, the total complexity is \(\Theta(m \log n) \).
Heuristic 1: Union by Rank.

Roots keep track (of an upper-bound) of tree heights.

\[C \models a = e \land b = e \land c = f \land d = f \land f = e \]

Proposition

For a sequence of \(m \) operations, among which \(n \) are "link" operations, the total complexity is \(\Theta(m \log n) \).
Heuristic 1: Union by Rank.

Roots keep track (of an upper-bound) of tree heights.

\[C \triangleq a = e \land b = e \land c = f \land d = f \land f = e \]

Proposition

For a sequence of \(m \) operations, among which \(n \) are “link” operations, the total complexity is \(\Theta(m \log n) \).
Heuristic 1: Union by Rank.

Roots keep track (of an upper-bound) of tree heights.

\[C \triangleq a = e \land b = e \land c = f \land d = f \land f = e \]

Proposition

For a sequence of \(m \) operations, among which \(n \) are “link” operations, the total complexity is \(\Theta(m \log n) \).
Heuristic 1: Union by Rank.

Roots keep track (of an upper-bound) of tree heights.

\[C \models a = e \land b = e \land c = f \land d = f \land f = e \]

Proposition

For a sequence of \(m \) operations, among which \(n \) are “link” operations, the total complexity is \(\Theta(m \log n) \).
Heuristic 1: Union by Rank.

Roots keep track (of an upper-bound) of tree heights.

\[C \models a = e \land b = e \land c = f \land d = f \land f = e \]

Proposition

For a sequence of m operations, among which n are “link” operations, the total complexity is \(\Theta(m \log n) \).
Heuristic 2: Path Compression.

Once “find” obtains the actual root, update the arc to directly point to it.

\[C \hat{=} b = a \land c = a \land d = a \land e = a \land f = a \]

Proposition

For a sequence of \(f \) “find” operations and \(n \) “link” operations, the total complexity is \(\mathcal{O}(n + f \cdot (1 + \log_2 f/n)) \).
Heuristic 2: Path Compression.

Once “find” obtains the actual root, update the arc to directly point to it.

\[C \triangleq b = a \land c = a \land d = a \land e = a \land f = a \]

Proposition

For a sequence of \(f \) “find” operations and \(n \) “link” operations, the total complexity is \(\mathcal{O}(n + f \cdot (1 + \log_{2+f/n} n)) \).
Heuristic 2: Path Compression.

Once “find” obtains the actual root, update the arc to directly point to it.

$$C \hat{=} b = a \land c = a \land d = a \land e = a \land f = a$$

Proposition

For a sequence of f “find” operations and n “link” operations, the total complexity is $\mathcal{O}(n + f \cdot (1 + \log_2 f/n \cdot n))$.
Heuristic 2: Path Compression.

Once “find” obtains the actual root, update the arc to directly point to it.

\[C \hat{=} b = a \land c = a \land d = a \land e = a \land f = a \]

Proposition

For a sequence of \(f \) “find” operations and \(n \) “link” operations, the total complexity is \(O(n + f \cdot (1 + \log_2 f/n)n) \).
Heuristic 2: Path Compression.

Once “find” obtains the actual root, update the arc to directly point to it.

\[C \triangleq b = a \land c = a \land d = a \land e = a \land f = a \]

Proposition

For a sequence of \(f \) “find” operations and \(n \) “link” operations, the total complexity is \(O(n + f \cdot (1 + \log_2(f/n)n)) \).
Heuristic 2: Path Compression.

Once "find" obtains the actual root, update the arc to directly point to it.

\[
C^b = a \land C^d = a \land C^e = a \land C^f = a
\]

Proposition

For a sequence of \(f \) "find" operations and \(n \) "link" operations, the total complexity is

\[
O(n + f \cdot (1 + \log_2 n + f/n))
\]
A very quickly growing function...

Definition

For integers $m, n \geq 0$:

$$A(m, n) = \begin{cases}
n + 1 & \text{if } m = 0, \\
A(m-1, 1) & \text{if } m > 0 \text{ and } n = 0, \\
A(m-1, A(m, n-1)) & \text{if } m > 0 \text{ and } n > 0.
\end{cases}$$

<table>
<thead>
<tr>
<th>m</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A(m, 1)$</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>13</td>
<td>65533</td>
<td>$2^{2^{2^{\ldots^{2}}}} - 3 \approx 10^{80}$</td>
</tr>
</tbody>
</table>

[Table showing values of $A(m, 1)$ for $m = 0$ to 5.]
...and its very slowly growing inverse.

Definition

For $n \geq 0$:

\[
\alpha(n) = \min \{ k | A(k, 1) \geq 1 \}
\]

For all practical purposes

\[
\alpha(n) \approx 5
\]
Proposition

For a sequence of m *operations, among which* n *are “link” operations, the total complexity is* $O(m\alpha(n))$.

Quasi-linear complexity.
Program

\[
\mathcal{P} ::= \epsilon \mid p(\overrightarrow{x}) : \neg A \cdot \mathcal{P} \\
\mathcal{A} ::= (\mathcal{A} \land \mathcal{A}) \mid \exists x(\mathcal{A}) \mid p(\overrightarrow{x}) \mid \text{tell}(C) \mid \forall \overrightarrow{x} (C \rightarrow A) \\
\quad (\exists \overrightarrow{x} (C) \rightarrow \exists \overrightarrow{x} (\text{tell}(c) \land \mathcal{A}))
\]
New Op-codes for Translating cc(=)

call \(p(\overrightarrow{x}) \) / return Flow-control operations.
freeze(\(x \not= y, \text{Code} \)) Ask on atomic constraints.

\[
(a = b \land b = c \rightarrow A) \equiv (a = b \rightarrow (b = c \rightarrow A))
\]

\[
\Rightarrow \text{freeze}(a \not= b, \text{freeze}(b \not= c, [A]))
\]
Conclusion

Good things

- The entailment checker can be deduced from the smallest model of the constraint.
- Computing the smallest model offline allows to produce optimal code for the virtual machine (when used with minimization for rational terms).

Open questions

- Better representation for the freeze on equalities.
- Extension with linear tokens.
 Let f_1, \ldots, f_n be closures in a lcc/RH program (with asks $(\text{do}(f_1) \rightarrow a_1) \& \ldots \& (\text{do}(f_n) \rightarrow a_n))$. If implemented naively, \text{tell}(\text{do}(x)) leads to freezes on $x \equiv f_1, \ldots, x \equiv f_n$.