Disjoint-set Data Structure for Equality Theory

Thierry Martinez

Équipe–Projet Contraintes

Contraintes’ Lab talk, 26 May 2008
Outline

1. Introduction
2. Disjoint-sets Abstract Machine
3. Data Structure
4. Concurrent Constraints
5. Conclusion
Constraint System for the Equality Theory.

Let \mathcal{V} be a set of variables.

For every term ϕ:

- $\text{fv}(\phi)$ denotes the set of free variables of ϕ;
- $\text{bv}(\phi)$ denotes the set of bound variables of ϕ.

Constraints

$\mathcal{C} ::= 1 | \mathcal{C} \land \mathcal{C} | \exists x(\mathcal{C}) | x = y$

common to all constraint systems

For $\phi \in \mathcal{C}$, we can always suppose that:

- $\text{fv}(\phi) \cap \text{bv}(\phi) = \emptyset$;
- each variable is bound at most one time.

Axioms

- In addition to logical axioms for 1 and \land and \exists:
 - $\vdash_\mathcal{C} x = x$;
 - $x = y \vdash_\mathcal{C} y = x$;
 - $x = y, y = z \vdash_\mathcal{C} x = z$.

For every variable ϕ, let \overrightarrow{x} enumerate $\text{fv}(\phi)$. We always have $\vdash_\mathcal{C} \exists \overrightarrow{x}(\phi)$.
Equality Theory and Disjoint-sets.

For every constraint c, we denote $x \sim_c y$ when $x = y$ is a sub-term of c.

$$\exists x y z t (a = x \land b = y \land x = y \land c = d \land z = t)$$

Definition

A partition \mathcal{P} of $\text{fv}(c)$ is a model for a constraint c if for every $x, y \in \text{fv}(c)$ such that $x \sim_c \cdots \sim_c y$, we have x and y in the same equivalence class of \mathcal{P}.
Definition

$\mathcal{P}_1 \succeq \mathcal{P}_2$ when for every x and y belonging to the same equivalence class of \mathcal{P}_1, we have x and y in the same equivalence class of \mathcal{P}_2.
Smallest Model.

For every constraint c, we denote $x \approx_c y$ when there exists z such that $x \leadsto_c \cdots \leadsto_c z$ and $y \leadsto_c \cdots \leadsto_c z$.

![Diagram showing the smallest model of c](image)

Proposition

For every constraint c, \approx_c is an equivalence relation and the induced partition is the smallest model of c.

Proposition

For every $x, y \in \text{fv}(c)$, $c \vdash x = y$ if and only if $x \approx_c y$.
Constraint Entailment.

\[\exists xyzt (a = x \land b = y \land x = y \land c = d \land z = t) \]

\[\models_C \]

\[\exists uv (a = u \land b = u \land c = v \land d = v) \]

Proposition

\(c_1 \models c_2 \) if and only if, for every \(x, y \in \text{fv}(c_2) \) such that \(x \approx_{c_2} y \), we have \(x \) and \(y \) in the same equivalence class in every model of \(c_1 \).

It suffices to check in the inclusion between smallest models restricted to free variables.
A Very Simple Logic Language.

Program

\[P ::= \forall \overrightarrow{x} (\underbrace{C \quad \Rightarrow \quad C}_\text{query}) \quad ? \]

\[= \] closed term

hypotheses

query

Execution Scheme

1. Build the smallest model associated to the hypotheses.
2. Read the model to check whether the query is entailed.
Build the Smallest Model Associated to a Constraint.

\[C \triangleq \exists g (g = a \land a = b) \land \exists ij (d = i \land e = j \land \exists hkl (i = h \land j = k \land f = l \land c = h)) \land d = e \]
Build the Smallest Model Associated to a Constraint.

\[C \triangleq \exists g (g = a \land a = b) \land \exists ij (d = i \land e = j \land \exists hkl (i = h \land j = k \land f = l \land c = h)) \land d = e \]
Build the Smallest Model Associated to a Constraint.

\[C \triangleq \exists g \,(g = a \land a = b) \land \exists ij \,(d = i \land e = j \land \exists hkl \,(i = h \land j = k \land f = l \land c = h)) \land d = e \]
Build the Smallest Model Associated to a Constraint.

\[C \models \exists g (g = a \land a = b) \land \exists ij (d = i \land e = j \land \exists hkl (i = h \land j = k \land f = l \land c = h)) \land d = e \]
Build the Smallest Model Associated to a Constraint.

\[C \equiv \exists g(g = a \land a = b) \land \exists ij(d = i \land e = j) \land \exists hkl(i = h \land j = k \land f = l \land c = h) \land d = e \]
Build the Smallest Model Associated to a Constraint.

\[C \models \exists g (g = a \land a = b) \land \exists ij (d = i \land e = j \land \exists hkl (i = h \land j = k \land f = l \land c = h)) \land d = e \]
Build the Smallest Model Associated to a Constraint.

\[C = \exists g (g = a \land a = b) \land \exists ij (d = i \land e = j \land \exists hkl (i = h \land j = k \land f = l \land c = h)) \land d = e \]
Build the Smallest Model Associated to a Constraint.

\[C \equiv \exists g (g = a \land a = b) \land \exists ij (d = i \land e = j \land \exists kl (i = h \land j = k \land f = l \land c = h)) \land d = e \]
Build the Smallest Model Associated to a Constraint.

\[
C \models \exists g (g = a \land a = b) \land \exists i j (d = i \land e = j \land \exists h k l (i = h \land j = k \land f = l \land c = h)) \land d = e
\]
Build the Smallest Model Associated to a Constraint.

\[C \models \exists g (g = a \land a = b) \land \exists ij (d = i \land e = j \land \exists hkl (i = h \land j = k \land f = l \land c = h)) \land d = e \]
Compiling Queries.

\[C_0 ::= 1 \mid C_0 \land C_0 \mid x = y \]

Proposition

For every \(c \in C \), there is a computable \(\llbracket c \rrbracket \in C_0 \) such that \(c \Downarrow \Downarrow \llbracket c \rrbracket \).

Proof.

Computation. \(c \Downarrow \Downarrow a = b \land c = d \land c = e \)

\(c \Downarrow \Downarrow \llbracket c \rrbracket \). \(c \) and \(\llbracket c \rrbracket \) have the same models.
Compiling Queries.

\[C_0 ::= 1 | C_0 \land C_0 | x = y \]

Proposition

For every \(c \in C \), *there is a computable* \(\llbracket c \rrbracket \in C_0 \) *such that* \(c \vdash \llbracket c \rrbracket \).

Proof.

Computation. Let \(\mathcal{P} \) be the smallest model of \(c \).

\[
\llbracket c \rrbracket \overset{\hat{\cdot}}{=} \bigwedge_{P \in \mathcal{P}} \bigwedge_{y \in V} x = y
\]

\[
\#(P \cap \mathit{fv}(c)) \geq 2 \quad \{x\} \cup V \overset{\hat{\cdot}}{=} P \cap \mathit{fv}(c)
\]

\(c \vdash \llbracket c \rrbracket \). \(c \) and \(\llbracket c \rrbracket \) have the same models.
Extension to Rational Terms.

Constraints

\[C ::= 1 \mid C \land C \mid \exists x(C) \mid x = y \mid x = f(\overrightarrow{y}) \]

common to all constraint systems

New Op-codes

Labelled equivalence classes.

- \text{struct}(x, f(\overrightarrow{y})) to label an equivalence class, possible previous label must match and equality constraints on arguments are added.
- \overrightarrow{y} \leftarrow \text{struct?}(x, f) to check that x has the functor f, then extract arguments.
Build the Code Associated to a Rational Tree Query.

\[C \triangleq \exists xyz (a = f(x, y) \land x = f(z, y) \land z = f(x, y)) \]
State Minimization.

\[C \equiv \exists xyz (a = f(x, y) \land x = f(z, y) \land z = f(x, y)) \]

1. \((a_1, y) \leftarrow \text{struct?}(a, f)\)
2. \(a_1 = a\)
Equivalence Classes as Variable Trees.

Op-codes implementation:

\[x \doteq y \quad \text{“link(find}(x)\text{, find}(y))” \]
\[x \overset{?}{=} y \quad \text{check whether “find}(x)\text{ = find}(y)”} \]

where:

- **find**\((x)\) Follows the arcs from \(x\) up to find the root. Root is returned.
- **link**\((x, y)\) Adds an arc from \(x\) to \(y\). Prerequisite: \(x\) former root, \(y\) root.

\[C \doteq \exists g(g = a \land b = g) \land \exists ij(d = i \land e = j \land \exists hkl(i = h \land j = k \land f = l \land c = h)) \land d = e \]

Proposition

For a sequence of \(m\) operations, among which \(n\) are “link” operations, the total complexity is \(\Theta(mn)\).
Equivalence Classes as Variable Trees.

Op-codes implementation:

\[x \doteq y \text{ “link(find}(x), \text{find}(y))” \]

\[x \doteq y \text{ check whether “find}(x) = \text{find}(y)” \]

where:

find \(x\) Follows the arcs from \(x\) up to find the root. Root is returned.

link \((x, y)\) Adds an arc from \(x\) to \(y\). Prerequisite: \(x\) former root, \(y\) root.

\[C \doteq \exists g (g = a \wedge b = g) \wedge \exists ij (d = i \wedge e = j \wedge \exists hkl (i = h \wedge j = k \wedge f = l \wedge c = h)) \wedge d = e \]

Proposition

For a sequence of \(m\) operations, among which \(n\) are “link” operations, the total complexity is \(\Theta(mn)\).
Equivalence Classes as Variable Trees.

Op-codes implementation:

\[x \doteq y \quad \text{“link(find(x), find(y))”} \]

\[x \overset{?}= y \quad \text{check whether “find(x) = find(y)”} \]

where:

- **find(x)** Follows the arcs from \(x \) up to find the root. Root is returned.
- **link(x, y)** Adds an arc from \(x \) to \(y \). Prerequisite: \(x \) former root, \(y \) root.

\[C \overset{?}= \exists g (g = a \land b = g) \land \exists ij (d = i \land e = j \land \exists hkl (i = h \land j = k \land f = l \land c = h)) \land d = e \]

Proposition

For a sequence of \(m \) operations, among which \(n \) are “link” operations, the total complexity is \(\Theta(mn) \).
Equivalence Classes as Variable Trees.

Op-codes implementation:

\[x \div y \quad \text{“link(find(x), find(y))”} \]
\[x \equiv y \quad \text{check whether “find(x) = find(y)”} \]

where:

- \text{find}(x) \quad \text{Follows the arcs from } x \text{ up to find the root. Root is returned.}
- \text{link}(x, y) \quad \text{Adds an arc from } x \text{ to } y. \text{ Prerequisite: } x \text{ former root, } y \text{ root.}

\[C \models \exists g (g = a \land b = g) \land \exists ij (d = i \land e = j \land \exists hkl (i = h \land j = k \land f = l \land c = h)) \land d = e \]

Proposition

For a sequence of \(m \) operations, among which \(n \) are “link” operations, the total complexity is \(\Theta(mn) \).
Equivalence Classes as Variable Trees.

Op-codes implementation:

\[x \doteq y \text{ "link(find}(x), \text{find}(y))" \]
\[x \neq y \text{ check whether "find}(x) = \text{find}(y)" \]

where:

- \text{find}(x) \text{ Follows the arcs from } x \text{ up to find the root. Root is returned.}
- \text{link}(x, y) \text{ Adds an arc from } x \text{ to } y. \text{ Prerequisite: } x \text{ former root, } y \text{ root.}

\[C \doteq \exists g(g = a \land b = g) \land \exists ij(d = i \land e = j \land \exists hkl(i = h \land j = k \land f = l \land c = h)) \land d = e \]

Proposition

For a sequence of \(m \) operations, among which \(n \) are “link” operations, the total complexity is \(\Theta(mn) \).
Equivalence Classes as Variable Trees.

Op-codes implementation:

\[x \doteq y \quad \text{“link(find(x), find(y))”} \]
\[x \neq y \quad \text{check whether “find(x) = find(y)”} \]

where:

- \text{find}(x) \quad \text{Follows the arcs from } x \text{ up to find the root. Root is returned.}
- \text{link}(x, y) \quad \text{Adds an arc from } x \text{ to } y. \text{ Prerequisite: } x \text{ former root, } y \text{ root.}

\[
C \models \exists g(g = a \land b = g) \land \exists ij(d = i \land e = j \land \exists hkl(i = h \land j = k \land f = l \land c = h)) \land d = e
\]

Proposition

For a sequence of \(m \) operations, among which \(n \) are “link” operations, the total complexity is \(\Theta(mn) \).
Equivalence Classes as Variable Trees.

Op-codes implementation:

\[x \doteq y \quad \text{“} \text{link}(\text{find}(x), \text{find}(y)) \text{”} \]

\[x \eq y \quad \text{check whether “} \text{find}(x) = \text{find}(y) \text{”} \]

where:

\[\text{find}(x) \quad \text{Follows the arcs from } x \text{ up to find the root. Root is returned.} \]

\[\text{link}(x, y) \quad \text{Adds an arc from } x \text{ to } y. \text{ Prerequisite: } x \text{ former root, } y \text{ root.} \]

\[
C \widehat{=} \exists g (g = a \land b = g) \land \exists ij (d = i \land e = j) \land \exists hkl (i = h \land j = k \land f = l \land c = h) \land d = e
\]

Proposition

For a sequence of \(m \) operations, among which \(n \) are “link” operations, the total complexity is \(\Theta(mn) \).
Equivalence Classes as Variable Trees.

Op-codes implementation:

\[x \doteq y \quad \text{“} \text{link}(\text{find}(x), \text{find}(y)) \text{”} \]

\[x \equiv y \quad \text{check whether “} \text{find}(x) = \text{find}(y) \text{”} \]

where:

- \text{find}(x) \quad \text{Follows the arcs from } x \text{ up to find the root. Root is returned.}
- \text{link}(x, y) \quad \text{Adds an arc from } x \text{ to } y. \text{ Prerequisite: } x \text{ former root, } y \text{ root.}

\[C \doteq \exists g (g = a \land b = g) \land \exists ij (d = i \land e = j \land \exists hkl (i = h \land j = k \land f = l \land c = h)) \land d = e \]

Proposition

For a sequence of \(m \) operations, among which \(n \) are “link” operations, the total complexity is \(\Theta(mn) \).
Equivalence Classes as Variable Trees.

Op-codes implementation:

\[x \doteq y \text{ “link(find(x), find(y))”} \]

\[x \equiv y \text{ check whether “find(x) = find(y)”} \]

where:

- \(\text{find}(x) \) Follows the arcs from \(x \) up to find the root. Root is returned.
- \(\text{link}(x, y) \) Adds an arc from \(x \) to \(y \). Prerequisite: \(x \) former root, \(y \) root.

\[C \models \exists g (g = a \land b = g) \land \exists ij (d = i \land e = j \land \exists hkl (i = h \land j = k \land f = l \land c = h)) \land d = e \]

Proposition

For a sequence of \(m \) operations, among which \(n \) are “link” operations, the total complexity is \(\Theta(mn) \).
Equivalence Classes as Variable Trees.

Op-codes implementation:

\[x \overset{\Rightarrow}{=} y \quad \text{“link(find}(x), \text{find}(y))” \]

\[x \overset{?}{=} y \quad \text{check whether “find}(x) = \text{find}(y)”} \]

where:

\[\text{find}(x) \quad \text{Follows the arcs from } x \text{ up to find the root. Root is returned.} \]

\[\text{link}(x, y) \quad \text{Adds an arc from } x \text{ to } y. \text{ Prerequisite: } x \text{ former root, } y \text{ root.} \]

\[C \overset{\exists}{=} g(g = a \land b = g) \land \exists ij(d = i \land e = j \land \exists hkl(i = h \land j = k \land f = l \land c = h)) \land d = e \]

Proposition

For a sequence of \(m \) operations, among which \(n \) are “link” operations, the total complexity is \(\Theta(mn) \).
Equivalence Classes as Variable Trees.

Op-codes implementation:

\[x \overset{\cdot}{=} y \quad \text{“link(find}(x), \text{find}(y))” \]
\[x \overset{?}{=} y \quad \text{check whether “find}(x) = \text{find}(y)”} \]

where:

\text{find}(x) \quad \text{follows the arcs from } x \text{ up to find the root. Root is returned.}

\text{link}(x, y) \quad \text{adds an arc from } x \text{ to } y. \text{ Prerequisite: } x \text{ former root, } y \text{ root.}

\[C \overset{\ddagger}{=} \exists g (g = a \land g = b) \land \exists ij (d = i \land e = j \land \exists hkl (i = h \land j = k \land f = l \land h = c)) \land d = e \]

Proposition

For a sequence of \(m \) operations, among which \(n \) are “link” operations, the total complexity is \(\Theta(mn) \).
Heuristic 1: Union by Rank.

Roots keep track (of an upper-bound) of tree heights.

\[C \triangleq a = e \land b = e \land c = f \land d = f \land f = e \]

Proposition

For a sequence of \(m \) operations, among which \(n \) are “link” operations, the total complexity is \(\Theta(m \log n) \).
Heuristic 1: Union by Rank.

Roots keep track (of an upper-bound) of tree heights.

\[C \triangleq a = e \land b = e \land c = f \land d = f \land f = e \]

Proposition

For a sequence of \(m \) operations, among which \(n \) are “link” operations, the total complexity is \(\Theta(m \log n) \).
Heuristic 1: Union by Rank.

Roots keep track (of an upper-bound) of tree heights.

$$C \triangleq a = e \land b = e \land c = f \land d = f \land f = e$$

Proposition

*For a sequence of m operations, among which n are “link” operations, the total complexity is $\Theta(m \log n)$.***
Heuristic 1: Union by Rank.

Roots keep track (of an upper-bound) of tree heights.

\[C \triangleq a = e \land b = e \land c = f \land d = f \land f = e \]

Proposition

For a sequence of \(m \) operations, among which \(n \) are “link” operations, the total complexity is \(\Theta(m \log n) \).
Heuristic 1: Union by Rank.

Roots keep track (of an upper-bound) of tree heights.

\[
C \triangleq a = e \land b = e \land c = f \land d = f \land f = e
\]

Proposition

For a sequence of \(m \) operations, among which \(n \) are “link” operations, the total complexity is \(\Theta(m \log n) \).
Heuristic 1: Union by Rank.

Roots keep track (of an upper-bound) of tree heights.

\[
C \triangleq a = e \land b = e \land c = f \land d = f \land f = e
\]

Proposition

For a sequence of \(m \) *operations, among which* \(n \) *are “link” operations, the total complexity is* \(\Theta(m \log n) \).*
Heuristic 2: Path Compression.

Once “find” obtains the actual root, update the arc to directly point to it.

\[C \triangleq b = a \land c = a \land d = a \land e = a \land f = a \]

Proposition

For a sequence of \(f \) “find” operations and \(n \) “link” operations, the total complexity is \(\mathcal{O}(n + f \cdot (1 + \log_2 f/n)) \).
Heuristic 2: Path Compression.

Once “find” obtains the actual root, update the arc to directly point to it.

\[C \backsim b = a \land c = a \land d = a \land e = a \land f = a \]

Proposition

For a sequence of \(f \) “find” operations and \(n \) “link” operations, the total complexity is \(O(n + f \cdot (1 + \log_2 f/n \cdot n)) \).
Heuristic 2: Path Compression.

Once “find” obtains the actual root, update the arc to directly point to it.

\[C \hat{=} b = a \land c = a \land d = a \land e = a \land f = a \]

Proposition

For a sequence of \(f \) “find” operations and \(n \) “link” operations, the total complexity is \(O(n + f \cdot (1 + \log_2 f/n)) \).
Heuristic 2: Path Compression.

Once “find” obtains the actual root, update the arc to directly point to it.

\[C \hat{=} b = a \land c = a \land d = a \land e = a \land f = a \]

Proposition

For a sequence of \(f \) “find” operations and \(n \) “link” operations, the total complexity is \(O(n + f \cdot (1 + \log_{2}f/n)) \).
Heuristic 2: Path Compression.

Once “find” obtains the actual root, update the arc to directly point to it.

\[C = b = a \land c = a \land d = a \land e = a \land f = a \]

Proposition

For a sequence of \(f \) “find” operations and \(n \) “link” operations, the total complexity is \(O(n + f \cdot (1 + \log_2 f / n)) \).
Heuristic 2: Path Compression.

Once “find” obtains the actual root, update the arc to directly point to it.

\[
C \hat{=} b = a \land c = a \land d = a \land e = a \land f = a
\]

Proposition

For a sequence of \(f \) “find” operations and \(n \) “link” operations, the total complexity is \(\mathcal{O}(n + f \cdot (1 + \log_{2+f/n} n)) \).
A very quickly growing function...

Definition

For integers $m, n \geq 0$:

$$A(m, n) = \begin{cases}
 n + 1 & \text{if } m = 0, \\
 A(m - 1, 1) & \text{if } m > 0 \text{ and } n = 0, \\
 A(m - 1, A(m, n - 1)) & \text{if } m > 0 \text{ and } n > 0.
\end{cases}$$

<table>
<thead>
<tr>
<th>m</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A(m, 1)$</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>13</td>
<td>65533</td>
<td>$2^{2^{65536}} - 3 \gg 10^{80}$</td>
</tr>
</tbody>
</table>
...and its very slowly growing inverse.

Definition

For $n \geq 0$:

$$\alpha(n) = \min \{ k | A(k, 1) \geq 1 \}$$

For all practical purposes

$$\alpha(n) \leq 5$$
Quasi-linear complexity.

Proposition

*For a sequence of m operations, among which n are “link” operations, the total complexity is $O(m\alpha(n))$.***
Program

\[P ::= e \mid p(\overrightarrow{x}) \vdash A \cdot P \]

\[A ::= (A \parallel A) \mid \exists x(A) \mid p(\overrightarrow{x}) \mid \text{tell}(C) \mid \forall \overrightarrow{x}(C \rightarrow A) \]

\[
\left. \right| \left. \exists \overrightarrow{x}(c) \rightarrow \exists \overrightarrow{x}(\text{tell}(c) \parallel a) \right. \]
New Op-codes for Translating cc(=)

call \(p(\vec{x}) / \) return Flow-control operations.
freeze(\(x \neq y\), Code) Ask on atomic constraints.

\[(a = b \land b = c \rightarrow A) \equiv (a = b \rightarrow (b = c \rightarrow A))\]

\[\sim \rightarrow \text{freeze}(a \neq b, \text{freeze}(b \neq c, [A]))\]
Conclusion

Good things

- The entailment checker can be deduced from the smallest model of the constraint.
- Computing the smallest model offline allows to produce optimal code for the virtual machine (when used with minimization for rational terms).

Open questions

- Better representation for the freeze on equalities.
- Extension with linear tokens.

Let f_1, \ldots, f_n be closures in a lcc/RH program (with asks $(\text{do}(f_1) \rightarrow a_1) \parallel \ldots \parallel (\text{do}(f_n) \rightarrow a_n)$). If implemented naively, $\text{tell(\text{do}(x))}$ leads to freezes on $x \overset{?}{=} f_1, \ldots, x \overset{?}{=} f_n$.