Modular CHR with *ask* and *tell*

François Fages, Cleyton Mario de Oliveira Rodrigues, Thierry Martinez
Contraintes Project–Team, INRIA Paris–Rocquencourt, France

1. Why CHRat?
2. A Simple Example.
4. Translation of CHRat to flat CHR.
5. Examples of Modular CHRat Solvers.
Programming in CHR.

CHR is a language to define constraint-solvers by multiset rewriting rules which are guarded by built-in constraints.

Example of constraint solver definition.

Let \(\text{leq}(X,Y) \) token represent the constraint \(X \leq Y \).

\[
\begin{align*}
(1) \quad & \text{leq}(X,X) \iff \text{true.} \\
(2) \quad & \text{leq}(X,Y), \text{leq}(Y,X) \iff X = Y. \\
(3) \quad & \text{leq}(X,Y), \text{leq}(Y,Z) \Rightarrow \text{leq}(X,Z). \quad \leftarrow \text{propagation} \\
(4) \quad & \text{leq}(X,Y) \setminus \text{leq}(X,Y) \iff \text{true.} \quad \leftarrow \text{simpagation}
\end{align*}
\]

Solved forms are irreflexive and transitively closed.
Programming in CHR is non-modular.

Non-reusability of CHR Constraint-Solvers in Guards
 Once a new CHR constraint-solver is defined, the resulting solver cannot become the built-in constraint solver of another CHR program.

Satisfaction and Entailment

- CHR constraint-solvers define satisfiability checkers.
- Guards have to be entailed to fire the associated rule.
Towards a Modular CHR Language

Entailment Checking

Three approaches:

1. **External implementation**

2. **Automatic entailment checking**
 \[C \rightarrow D \models C \land D \leftrightarrow C \]

3. **Our approach: a discipline for programming entailment checking in CHR with `ask` and `tell`.**
Let $\min(X,Y,Z)$ represent the constraint that Z is the minimum value among X and Y.

\[
\text{leq}(X,Y) \setminus \min(X,Y,Z) \iff Z = X.
\]

\[
\text{leq}(Y,X) \setminus \min(X,Y,Z) \iff Z = Y.
\]

\[
\min(X,Y,Z) \implies \text{leq}(Z,X), \text{ leq}(Z,Y).
\]

Does not work: $\min(X,X,Z)$ will not be rewritten to $X = Z$ because there is no $\text{leq}(X,X)$ token in the store.
leq Solver Component in CHRat.

File leq Solver.cat

```plaintext
component leq Solver.
export leq /2.
leq(X,X) ⇔ true.
leq(X,Y), leq(Y,X) ⇔ X = Y.
leq(X,Y), leq(Y,Z) ⇒ leq(X,Z).
leq(X,Y) \ leq(X,Y) ⇔ true.

ask(leq(X,X)) ⇔ entailed(leq(X,X)).
leq(X,Y) \ ask(leq(X,Y)) ⇔ entailed(leq(X,Y)).
```
min Solver Component in CHRat.

File min_solver.cat

```
component min_solver.
import leq/2 from leq_solver.
export min/3.
min(X,Y,Z) ⇐⇒ leq(X,Y) | Z=X.
min(X,Y,Z) ⇐⇒ leq(Y,X) | Z=Y.
min(X,Y,Z) ⇒ leq(Z,X), leq(Z,Y).

ask(min(X,Y,X)) ⇐⇒ leq(X,Y) |
entailed(min(X,Y,X)).
ask(min(X,Y,Y)) ⇐⇒ leq(Y,X) |
entailed(min(X,Y,Y)).

min(X,Y,Z) \ ask(min(X,Y,Z)) ⇐⇒ entailed(min(X,Y,Z)).
```
CHRat Syntax.

component `<component-name>`. one per file.

import `<constraint-declarations> from <component-name>`. separation is atom-prefix based.

export `<constraint-declarations>`.

```
<rule-name> ⊗ <H> \<H> ←→ <C>,<T> | <B>.
```

where:

- **C**: built-in constraints
- **T**: CHR constraints
- **H** = **T** ⊎ **ask**(**T**)
- **B** = **C** ⊎ **T** ⊎ entailed(**T**)

Side condition Every variable which appears in a CHR guard must appear in the built-in guard or in the heads of the rule.
Configurations \(\langle F, E, D \rangle_\mathcal{V} \)

where \(\mathcal{V} \) is the set of free variables of the initial query.

Logical meaning \(\exists \vec{y}(\overline{F} \land \overline{E} \land D) \), where \(\vec{y} \) enumerates \(\text{fv}(F, E, D) \setminus \mathcal{V} \).
Solve
\[
\frac{c \in C}{\langle \{c\} \uplus F, E, D \rangle_V \mapsto \langle F, E, c \land D \rangle_V}
\]

Introduce
\[
\frac{t \in \mathcal{T}^\bullet}{\langle \{t\} \uplus F, E, D \rangle_V \mapsto \langle F, \{t\} \uplus E, D \rangle_V}
\]

where \(\mathcal{T}^\bullet = \mathcal{T} \uplus \text{ask}(\mathcal{T}) \uplus \text{entailed}(\mathcal{T}) \).

Trivial Entailment
\[
\frac{t \in \mathcal{T}}{\langle F, \{\text{ask}(t), t\} \uplus E, D \rangle_V \mapsto \langle \{\text{entailed}(t)\} \uplus F, \{t\} \uplus E, D \rangle_V}
\]
Ask

\[
\begin{align*}
(H \setminus H' & \iff C_b, C_c \mid B.) \sigma \in P \quad D \vdash c C_b \\
\langle F, H \cup H' \cup E, D \rangle_\mathcal{V} & \leftrightarrow \langle \text{ask}(C_c) \cup F, H \cup H' \cup E, D \rangle_\mathcal{V}
\end{align*}
\]

Fire

\[
\begin{align*}
(H \setminus H' & \iff C_b, C_c \mid B.) \sigma \in P \quad D \vdash c C_b \\
\langle F, H \cup H' \cup \text{entailed}(C_c) \cup E, D \rangle_\mathcal{V} & \leftrightarrow \langle B \cup F, H \cup E, D \rangle_\mathcal{V}
\end{align*}
\]
\[(H \setminus H' \Leftrightarrow C_b, C_c | B)_\dagger = \]
\[\forall \vec{y}(C_b \rightarrow \overline{H} \land \overline{H'} \rightarrow \text{ask}(C_c)) \]
\[\land \forall \vec{y}(C_b \rightarrow (\overline{H} \land \overline{H'} \land \text{entailed}(C_c) \leftrightarrow \exists \vec{y}'(\overline{H} \land \overline{B}))) \]

Theorem

Operational semantics is sound and complete with respect to declarative semantics.

If \(D \) is the declarative semantics of a program \(P \) and \(S_1 \leftrightarrow S_2 \) two successive configurations in an execution of \(P \), then:

\[D \vdash_c S_1 \leftrightarrow S_2 \]

Adapted from the soundness and completeness theorem of CHR:

Translation to flat CHR.

\[[H \setminus H^' \Leftrightarrow C_b, C_c \mid B.]\]

\[= \begin{cases}
H, H^' \Rightarrow C_b \mid \text{ask}(C_c). \\
H \setminus H^', \text{entailed}(C_c) \Leftrightarrow C_b \mid B.
\end{cases}\]

Theorem

If:

- \(D\) is the CHRat declarative semantics of a CHRat program \(P\); and
- \(D'\) is the CHR declarative semantics of \([[P]]\).

then:

\[\vdash_c D \leftrightarrow D'\]
Example of Translation to flat CHR.

\[\min(X, Y, Z) \setminus \text{ask}_\min(X, Y, Z) \implies \text{entailed}_\min(X, Y, Z). \]

\[\min(X, Y, Z) \iff \text{leq}(X, Y) \mid Z = X. \]

\[\min(X, Y, Z) \implies \text{ask}_\text{leq}(X, Y). \]
\[\text{entailed}_\text{leq}(X, Y), \min(X, Y, Z) \iff Z = X. \]

\[\min(X, Y, Z) \implies \text{leq}(Z, X), \text{leq}(Z, Y). \]

\[\text{ask}(\min(X, Y, X)) \iff \text{leq}(X, Y) \mid \text{entailed}(\min(X, Y, X)). \]

\[\text{ask}_\min(X, Y, X) \implies \text{ask}_\text{leq}(X, Y). \]
\[\text{entailed}_\text{leq}(X, Y), \text{ask}_\min(X, Y, X) \iff \text{entailed}_\min(X, Y, X). \]
Union-find Component. (1/3)

Satisfiability solver comes from Schrijvers, T., Frühwirth, T.W.: *Analysing the CHR implementation of unionfind*. In: 19th Workshop on (Constraint) Logic Programming. (2005)

File `union_find_solver.cat`

```
component union_find.
export make/1, ≃/2.
make(A) ⇐⇒ root(A, 0).

union(A, B) ⇐⇒ find(A, X), find(B, Y), link(X, Y).

A ≃ B, find(A, X) ⇐⇒ find(B, X), A ≃ X.

root(A, _) \ find(A, X) ⇐⇒ X = A.

link(A, A) ⇐⇒ true.
link(A, B), root(A, N), root(B, M) ⇐⇒ N ≥ M |
B ≃ A, N1 is max(M+1, N), root(A, N1).

link(B, A), root(A, N), root(B, M) ⇐⇒ N ≥ M |
B ≃ A, N1 is max(M+1, N), root(A, N1).
```

Thierry Martinez (INRIA)
Union-find Component. (2/3)

File `union_find_solver.cat`

\[A \simeq B \implies \text{union}(A, B). \]

\[\text{ask}(A \simeq B) \iff \text{find}(A, X), \text{find}(B, Y), \text{check}(A, B, X, Y). \]

\[\text{root}(X) \setminus \text{check}(A, B, X, X) \iff \text{entailed}(A \simeq B). \]
Union-find Component. (3/3)

\[
\begin{align*}
X \rightsquigarrow C \setminus \text{check}(A, B, X, Y) & \iff \text{find}(A, Z), \text{check}(A, B, Z, Y). \\
Y \rightsquigarrow C \setminus \text{check}(A, B, X, Y) & \iff \text{find}(B, Z), \text{check}(A, B, X, Z).
\end{align*}
\]
Rational Tree Solver Component.

File rational_tree Solver.cat

```
component rational_tree Solver.
import ≃ /2 from union_find Solver.
export fun/3, arg/3, ∼ /2.
fun(X0, F0, N0) \fun(X1, F1, N1) ⇐⇒ X0 ∼ X1 | F0 = F1, N0 = N1.
arg(X0, N, Y0) \arg(X1, N, Y1) ⇐⇒ X0 ∼ X1 | Y0 ∼ Y1.
```

X ∼ Y ⇐⇒ X ≃ Y.

Check the paper for the ask-solver!
Conclusion.

Objective.

- Generalization of guards.
- Modular definition of solvers.

Proposed Solution.

- Programming discipline to define satisfiability and entailment constraint solvers.

Perspectives.

- Relax the restriction on guard variables.
- Link between declarative semantics of ask and logical implication.
- Modular compilation.