Module CHR with \textit{ask} and \textit{tell}

François Fages, Cleyton Mario de Oliveira Rodrigues, Thierry Martinez
Contraintes Project–Team, INRIA Paris–Rocquencourt, France

\begin{enumerate}
\item Why CHRat?
\item A Simple Example.
\item Syntax and Semantics.
\item Translation of CHRat to flat CHR.
\item Examples of Modular CHRat Solvers.
\end{enumerate}
Programming in CHR.

CHR is a language to define constraint-solvers by multiset rewriting rules which are guarded by built-in constraints.

Example of constraint solver definition.

Let \(\text{leq}(X,Y)\) token represent the constraint \(X \leq Y\).

\[
\begin{align*}
(1) & \quad \text{leq}(X,X) \iff \text{true}. \\
(2) & \quad \text{leq}(X,Y), \text{leq}(Y,X) \iff X = Y. \quad \leftarrow \text{simplifications} \\
(3) & \quad \text{leq}(X,Y), \text{leq}(Y,Z) \implies \text{leq}(X,Z). \quad \leftarrow \text{propagation} \\
(4) & \quad \text{leq}(X,Y) \setminus \text{leq}(X,Y) \iff \text{true}. \quad \leftarrow \text{simpagation}
\end{align*}
\]

Solved forms are irreflexive and transitively closed.
Programming in **CHR** is non-modular.

Non-reusability of **CHR** Constraint-Solvers in Guards

Once a new **CHR** constraint-solver is defined, the resulting solver **cannot** become the built-in constraint solver of another **CHR** program.

Satisfaction and Entailment

- **CHR** constraint-solvers define *satisfiability* checkers.
- Guards have to be *entailed* to fire the associated rule.
Towards a Modular CHR Language

Entailment Checking

Three approaches:

1. External implementation

2. Automatic entailment checking

 \[C \rightarrow D \iff C \land D \leftrightarrow C \]

3. Our approach: a discipline for programming entailment checking in CHR with ask and tell.
Let \(\text{min}(X,Y,Z) \) represent the constraint that \(Z \) is the minimum value among \(X \) and \(Y \).

\[
\begin{align*}
\text{leq}(X,Y) \setminus \text{min}(X,Y,Z) & \iff Z=X. \\
\text{leq}(Y,X) \setminus \text{min}(X,Y,Z) & \iff Z=Y. \\
\text{min}(X,Y,Z) & \implies \text{leq}(Z,X), \text{leq}(Z,Y).
\end{align*}
\]

Does not work: \(\text{min}(X,X,Z) \) will not be rewritten to \(X=Z \) because there is no \(\text{leq}(X,X) \) token in the store.
Solver Component in CHRat.

File leq_solver.cat

```
component leq_solver.
export leq/2.
leq(X,X) ⇔ true.
leq(X,Y), leq(Y,X) ⇔ X = Y.
leq(X,Y), leq(Y,Z) ⇒ leq(X,Z).
leq(X,Y) \ leq(X,Y) ⇔ true.

ask(leq(X,X)) ⇔ entailed(leq(X,X)).
leq(X,Y) \ ask(leq(X,Y)) ⇔ entailed(leq(X,Y)).
```
Solver Component in CHRat.

File `min_solver.cat`

```plaintext
component min_solver.
import leq/2 from leq_solver.
export min/3.
min(X,Y,Z) ⇐⇒ leq(X,Y) | Z=X.
min(X,Y,Z) ⇐⇒ leq(Y,X) | Z=Y.
min(X,Y,Z) ⇒ leq(Z,X), leq(Z,Y).

ask(min(X, Y, X)) ⇐⇒ leq(X, Y) |
    entailed(min(X, Y, X)).
ask(min(X, Y, Y)) ⇐⇒ leq(Y, X) |
    entailed(min(X, Y, Y)).

min(X,Y,Z) \ ask(min(X,Y,Z)) ⇐⇒ entailed(min(X,Y,Z)).
```
CHRat Syntax.

component `<component-name>`: one per file.

import `<constraint-declarations> from <component-name>`: separation is atom-prefix based.

export `<constraint-declarations>`.

```
<rule-name> @<H> \ <H> ↔ <C>,<T> | <B>.
```

where:

- **C**: built-in constraints
- **T**: CHR constraints
- **H**: = \(T \cup \text{ask}(T) \)
- **B**: = \(C \cup T \cup \text{entailed}(T) \)

Side condition Every variable which appears in a **CHR** guard must appear in the built-in guard or in the heads of the rule.
Configurations \[\langle F, E, D \rangle_{\mathcal{V}} \]

where \(\mathcal{V} \) is the set of free variables of the initial query.

Logical meaning \(\exists \bar{y} (\overline{F} \land \overline{E} \land D) \), where \(\bar{y} \) enumerates \(\text{fv} (F, E, D) \setminus \mathcal{V} \).
Operational Semantics for Rules. (2/3)

Solve

\[
\frac{c \in C}{\langle \{c\} \uplus F, E, D \rangle_V \mapsto \langle F, E, c \land D \rangle_V}
\]

Introduce

\[
\frac{t \in T^\bullet}{\langle \{t\} \uplus F, E, D \rangle_V \mapsto \langle F, \{t\} \uplus E, D \rangle_V}
\]

where \(T^\bullet = T \uplus \text{ask}(T) \uplus \text{entailed}(T) \).

Trivial Entailment

\[
\frac{t \in T}{\langle F, \{\text{ask}(t), t\} \uplus E, D \rangle_V \mapsto \langle \{\text{entailed}(t)\} \uplus F, \{t\} \uplus E, D \rangle_V}
\]
Ask

\[
(H \setminus H' \iff C_b, C_c \mid B.) \sigma \in P \quad D \vdash_C C_b
\]

\[
\langle F, H \cup H' \cup E, D \rangle \nu \mapsto \langle \text{ask}(C_c) \cup F, H \cup H' \cup E, D \rangle \nu
\]

Fire

\[
(H \setminus H' \iff C_b, C_c \mid B.) \sigma \in P \quad D \vdash_C C_b
\]

\[
\langle F, H \cup H' \cup \text{entailed}(C_c) \cup E, D \rangle \nu \mapsto \langle B \cup F, H \cup E, D \rangle \nu
\]
Declarative Semantics for Rules.

\[(H \setminus H') \iff C_b, C_c | B.)^\dagger \doteq \]
\[\forall \vec{y} (C_b \rightarrow \overline{H} \land \overline{H'} \rightarrow \text{ask}(C_c))\]
\[\land \forall \vec{y} (C_b \rightarrow (\overline{H} \land \overline{H'} \land \text{entailed}(C_c) \leftrightarrow \exists \vec{y}' (\overline{H} \land \overline{B})))\]

Theorem

Operational semantics is sound and complete with respect to declarative semantics.

If \(D\) is the declarative semantics of a program \(P\) and \(S_1 \leftrightarrow S_2\) two successive configurations in an execution of \(P\), then:

\[D \vdash_c S_1 \leftrightarrow S_2\]

Translation to flat CHR.

\[[H \setminus H' \iff C_b, C_c \mid B.] \]

\[\equiv \begin{cases} H, H' \Rightarrow C_b \mid \text{ask}(C_c). \\ H \setminus H', \text{entailed}(C_c) \iff C_b \mid B. \end{cases} \]

Theorem

If:

- \(D \) is the CHRat declarative semantics of a CHRat program \(P \); and
- \(D' \) is the CHR declarative semantics of \([P]\).

then:

\(\vdash_c D \leftrightarrow D' \)
Example of Translation to flat CHR.

\[
\text{min}(X, Y, Z) \setminus \text{ask_min}(X, Y, Z) \implies \text{entailed_min}(X, Y, Z).
\]

\[
\text{min}(X, Y, Z) \iff \text{leq}(X, Y) \mid Z = X.
\]

\[
\text{min}(X, Y, Z) \implies \text{ask_leq}(X, Y).
\]

\[
\text{entailed_leq}(X, Y), \quad \text{min}(X, Y, Z) \iff Z = X.
\]

\[
\text{min}(X, Y, Z) \implies \text{leq}(Z, X), \; \text{leq}(Z, Y).
\]

\[
\text{ask}(\text{min}(X, Y, Z)) \iff \text{leq}(X, Y) \mid
\]

\[
\text{entailed}(\text{min}(X, Y, Z)).
\]

\[
\text{ask_min}(X, Y, Z) \implies \text{ask_leq}(X, Y).
\]

\[
\text{entailed_leq}(X, Y), \quad \text{ask_min}(X, Y, Z) \iff
\]

\[
\text{entailed_min}(X, Y, Z).
\]
Union-find Component. (1/3)

File union_find_solver.cat

```component union_find.
export make/1, ≃/2.
make(A) ⇐⇒ root(A, 0).

union(A, B) ⇐⇒ find(A, X), find(B, Y), link(X, Y).

A ↦ B, find(A, X) ⇐⇒ find(B, X), A ↦ X.
root(A, _) \ find(A, X) ⇐⇒ X = A.

link(A, A) ⇐⇒ true.
link(A, B), root(A, N), root(B, M) ⇐⇒ N ≥ M | B ↦ A, N1 is max(M+1, N), root(A, N1).
link(B, A), root(A, N), root(B, M) ⇐⇒ N ≥ M | B ↦ A, N1 is max(M+1, N), root(A, N1).
```
Union-find Component. (2/3)

File union_find_solver.cat

\[A \simeq B \implies \text{union}(A, B). \]

\text{ask}(A \simeq B) \iff \text{find}(A, X), \text{find}(B, Y), \text{check}(A, B, X, Y).

\text{root}(X) \setminus \text{check}(A, B, X, X) \iff \text{entailed}(A \simeq B).
Union-find Component. (3/3)

X \sim C \setminus \text{check}(A, B, X, Y) \iff \text{find}(A, Z), \text{check}(A, B, Z, Y).

Y \sim C \setminus \text{check}(A, B, X, Y) \iff \text{find}(B, Z), \text{check}(A, B, X, Z).
Rational Tree Solver Component.

File rational_tree_solver.cat

component rational_tree_solver.
import ≃/2 from union_find_solver.
export fun/3, arg/3, ∼/2.
fun(X0, F0, N0) \ fun(X1, F1, N1) \iff X0 ≃ X1 | F0 = F1, N0 = N1.
arg(X0, N, Y0) \ arg(X1, N, Y1) \iff X0 ≃ X1 | Y0 ≃ Y1.

X ∼ Y \iff X ≃ Y.

Check the paper for the ask-solver!
Conclusion.

Objective.

- Generalization of guards.
- Modular definition of solvers.

Proposed Solution.

- Programming discipline to define satisfiability and entailment constraint solvers.

Perspectives.

- Relax the restriction on guard variables.
- Link between declarative semantics of ask and logical implication.
- Modular compilation.