Modular CHR with ask and tell

François Fages, Cleyton Mario de Oliveira Rodrigues, Thierry Martinez
Contraintes Project-Team, INRIA Paris-Rocquencourt, France

1. Why CHRat?
2. A Simple Example.
4. Translation of CHRat to flat CHR.
5. Examples of Modular CHRat Solvers.
Programming in CHR.

CHR is a language to define constraint-solvers by multiset rewriting rules which are guarded by built-in constraints.

Example of constraint solver definition.

Let \text{leq}(X,Y) token represent the constraint \(X \leq Y \).

\begin{align*}
(1) \quad \text{leq}(X,X) & \iff \text{true}. \\
(2) \quad \text{leq}(X,Y), \text{leq}(Y,X) & \iff X = Y. \\
(3) \quad \text{leq}(X,Y), \text{leq}(Y,Z) & \Rightarrow \text{leq}(X,Z). \quad \text{← propagation} \\
(4) \quad \text{leq}(X,Y) \setminus \text{leq}(X,Y) & \iff \text{true}. \quad \text{← simpagation}
\end{align*}

Solved forms are irreflexive and transitively closed.
Programming in CHR is non-modular.

Non-reusability of CHR Constraint-Solvers in Guards

Once a new CHR constraint-solver is defined, the resulting solver cannot become the built-in constraint solver of another CHR program.

Satisfaction and Entailment

- CHR constraint-solvers define satisfiability checkers.
- Guards have to be entailed to fire the associated rule.
Towards a Modular CHR Language

Entailment Checking

Three approaches:

1. External implementation

2. Automatic entailment checking

 \[C \rightarrow D \iff C \land D \leftrightarrow C \]

3. Our approach: a discipline for programming entailment checking in CHR with \texttt{ask} and \texttt{tell}.
Let $\min(X,Y,Z)$ represent the constraint that Z is the minimum value among X and Y.

\[
\begin{align*}
\leq(X,Y) \setminus \min(X,Y,Z) & \iff Z=X. \\
\leq(Y,X) \setminus \min(X,Y,Z) & \iff Z=Y. \\
\min(X,Y,Z) & \implies \leq(Z,X), \leq(Z,Y).
\end{align*}
\]

Does not work: $\min(X,X,Z)$ will not be rewritten to $X=Z$ because there is no $\leq(X,X)$ token in the store.
leq Solver Component in CHRat.

File leq_solver.cat

component leq_solver.
export leq/2.
leq(X,X) ⇐⇒ true.
leq(X,Y), leq(Y,X) ⇐⇒ X = Y.
leq(X,Y), leq(Y,Z) ⇒ leq(X,Z).
leq(X,Y) \ leq(X,Y) ⇐⇒ true.

ask(leq(X,X)) ⇐⇒ entailed(leq(X,X)).

leq(X,Y) \ ask(leq(X,Y)) ⇐⇒ entailed(leq(X,Y)).
min Solver Component in CHRat.

File min_solver.cat

component min_solver.

import leq/2 from leq_solver.

export min/3.

min(X,Y,Z) ⇐⇒ leq(X,Y) | Z=X.

min(X,Y,Z) ⇐⇒ leq(Y,X) | Z=Y.

min(X,Y,Z) ⇒ leq(Z,X), leq(Z,Y).

\begin{align*}
\text{ask} & (\min(X,Y,X)) \iff \text{leq}(X,Y) \mid \\
& \quad \text{entailed} (\min(X,Y,X)). \\
\text{ask} & (\min(X,Y,Y)) \iff \text{leq}(Y,X) \mid \\
& \quad \text{entailed} (\min(X,Y,Y)). \\
\text{min} & (X,Y,Z) \setminus \text{ask} (\min(X,Y,Z)) \iff \text{entailed} (\min(X,Y,Z)).
\end{align*}
CHRat Syntax.

component `<component-name>`. one per file.

import `<constraint-declarations> from <component-name>`. separation is atom-prefix based.

export `<constraint-declarations>`.

```
<rule-name> @ <H> \ <H> ←→ <C>,<T> | <B>.
```

where:

- **C**: built-in constraints
- **T**: CHR constraints
- **H** = \(T \cup \text{ask}(T) \)
- **B** = \(C \cup T \cup \text{entailed}(T) \)

Side condition Every variable which appears in a CHR guard must appear in the built-in guard or in the heads of the rule.
Configurations $\langle F, E, D \rangle_\mathcal{V}$

where \mathcal{V} is the set of free variables of the initial query.

Logical meaning $\exists \bar{y}(\overline{F} \land \overline{E} \land D)$, where \bar{y} enumerates $\text{fv}(F, E, D) \setminus \mathcal{V}$.
Solve
\[
\frac{c \in C}{\langle \{c\} \cup F, E, D \rangle \Vdash \langle F, E, c \land D \rangle}
\]

Introduce
\[
\frac{t \in T^\bullet}{\langle \{t\} \cup F, E, D \rangle \Vdash \langle F, \{t\} \cup E, D \rangle}
\]

where \(T^\bullet = T \cup \text{ask}(T) \cup \text{entailed}(T)\).

Trivial Entailment
\[
\frac{t \in T}{\langle F, \{\text{ask}(t), t\} \cup E, D \rangle \Vdash \langle \{\text{entailed}(t)\} \cup F, \{t\} \cup E, D \rangle}
\]
Ask

\[
\frac{(H \setminus H' \iff C_b, C_c \mid B.) \sigma \in P \quad D \vdash_c C_b}{\langle F, H \sqcup H' \sqcup E, D \rangle_V \iff \langle \text{ask}(C_c) \sqcup F, H \sqcup H' \sqcup E, D \rangle_V}
\]

Fire

\[
\frac{(H \setminus H' \iff C_b, C_c \mid B.) \sigma \in P \quad D \vdash_c C_b}{\langle F, H \sqcup H' \sqcup \text{entailed}(C_c) \sqcup E, D \rangle_V \iff \langle B \sqcup F, H \sqcup E, D \rangle_V}
\]
Theorem

Operational semantics is sound and complete with respect to declarative semantics.

If D is the declarative semantics of a program P and $S_1 \rightarrow S_2$ two successive configurations in an execution of P, then:

$$D \vdash_c S_1 \leftrightarrow S_2$$

Adapted from the soundness and completeness theorem of CHR:

Translation to flat CHR.

\[
[H \setminus H' \Leftrightarrow C_b, C_c \mid B.]
\]
\[
\begin{aligned}
&= \begin{cases}
H, H' \Rightarrow C_b \mid \text{ask}(C_c). \\
H \setminus H', \text{entailed}(C_c) \Leftrightarrow C_b \mid B.
\end{cases}
\end{aligned}
\]

Theorem

If:

- \(D \) is the CHRat declarative semantics of a CHRat program \(P \); and
- \(D' \) is the CHR declarative semantics of \(\llbracket P \rrbracket \).

then:

\[\vdash_c D \leftrightarrow D' \]
Example of Translation to flat CHR.

\[\min(X,Y,Z) \backslash \text{ask}_{\min}(X,Y,Z) \Rightarrow \text{entailed}_{\min}(X,Y,Z). \]

\[\min(X,Y,Z) \iff \text{leq}(X,Y) \mid Z=X. \]

\[\min(X,Y,Z) \Rightarrow \text{ask}_{\text{leq}}(X,Y). \]
\[\text{entailed}_{\text{leq}}(X,Y), \min(X,Y,Z) \iff Z=X. \]

\[\min(X,Y,Z) \Rightarrow \text{leq}(Z,X), \text{leq}(Z,Y). \]

\[\text{ask}(\min(X,Y,X)) \iff \text{leq}(X,Y) \mid \text{entailed}(\min(X,Y,X)). \]

\[\text{ask}_{\min}(X,Y,X) \Rightarrow \text{ask}_{\text{leq}}(X,Y). \]
\[\text{entailed}_{\text{leq}}(X,Y), \text{ask}_{\min}(X,Y,X) \iff \text{entailed}_{\min}(X,Y,X). \]
Union-find Component. (1/3)

File union_find Solver.cat

component union_find.

export make/1, ≃/2.

make(A) ⇐⇒ root(A, 0).

union(A, B) ⇐⇒ find(A, X), find(B, Y), link(X, Y).

A ⇝ B, find(A, X) ⇐⇒ find(B, X), A ⇝ X.

root(A, _) \ find(A, X) ⇐⇒ X = A.

link(A, A) ⇐⇒ true.

link(A, B), root(A, N), root(B, M) ⇐⇒ N ≥ M | B ⇝ A, N1 is max(M+1, N), root(A, N1).

link(B, A), root(A, N), root(B, M) ⇐⇒ N ≥ M | B ⇝ A, N1 is max(M+1, N), root(A, N1).
File `union_find_solver.cat`

\[A \simeq B \implies \text{union}(A, B). \]

\[\text{ask}(A \simeq B) \iff \]
\[\text{find}(A, X), \text{find}(B, Y), \]
\[\text{check}(A, B, X, Y). \]

\[\text{root}(X) \setminus \text{check}(A, B, X, X) \iff \]
\[\text{entailed}(A \simeq B). \]
X \sim C \setminus \text{check}(A, B, X, Y) \iff
\text{find}(A, Z), \text{check}(A, B, Z, Y).

Y \sim C \setminus \text{check}(A, B, X, Y) \iff
\text{find}(B, Z), \text{check}(A, B, X, Z).
Rational Tree Solver Component.

File rational_tree_solver.cat

component rational_tree_solver.

import ≃/2 from union_find_solver.

export fun/3, arg/3, ∼/2.

fun(X0, F0, N0) \ fun(X1, F1, N1) ⇔ X0 ∼ X1 | F0 = F1, N0 = N1.

arg(X0, N, Y0) \ arg(X1, N, Y1) ⇔ X0 ∼ X1 | Y0 ∼ Y1.

X ∼ Y ⇔ X ∼ Y.

Check the paper for the ask-solver!
Conclusion.

Objective

- Generalization of guards.
- Modular definition of solvers.

Proposed Solution.

- Programming discipline to define satisfiability and entailment constraint solvers.

Perspectives.

- Relax the restriction on guard variables.
- Link between declarative semantics of ask and logical implication.
- Modular compilation.