Modular CHR with \textit{ask} and \textit{tell}

François Fages, Cleyton Mario de Oliveira Rodrigues, Thierry Martinez
Contraintes Project–Team, INRIA Paris–Rocquencourt, France

1. Why CHRat?
2. A Simple Example.
4. Translation of CHRat to flat CHR.
5. Examples of Modular CHRat Solvers.
Programming in CHR.

Example of constraint solver definition.

Let $\text{leq}(X,Y)$ token represent the constraint $X \leq Y$.

\begin{align*}
(1) & \quad \text{leq}(X,X) \iff \text{true}. & \quad \leftarrow \text{simplifications} \\
(2) & \quad \text{leq}(X,Y), \text{leq}(Y,X) \iff X = Y. & \quad \leftarrow \text{simplifications} \\
(3) & \quad \text{leq}(X,Y), \text{leq}(Y,Z) \implies \text{leq}(X,Z). & \quad \leftarrow \text{propagation} \\
(4) & \quad \text{leq}(X,Y) \setminus \text{leq}(X,Y) \iff \text{true}. & \quad \leftarrow \text{simplification}
\end{align*}

Solved forms are irreflexive and transitively closed.
Programming in CHR is non-modular.

Non-reusability of CHR Constraint-Solvers in Guards
Once a new CHR constraint-solver is defined, the resulting solver cannot become the built-in constraint solver of another CHR program.

Satisfaction and Entailment
- CHR constraint-solvers define satisfiability checkers.
- Guards have to be entailed to fire the associated rule.
Towards a Modular CHR Language

Entailment Checking

Three approaches:

1. External implementation

2. Automatic entailment checking

 \[C \rightarrow D \iff C \land D \leftrightarrow C \]

3. Our approach: a discipline for programming entailment checking in CHR with ask and tell.
min Solver over leq Solver in CHR?

Let $\min(X,Y,Z)$ represent the constraint that Z is the minimum value among X and Y.

\[
\text{leq}(X,Y) \land \min(X,Y,Z) \iff Z=X. \\
\text{leq}(Y,X) \land \min(X,Y,Z) \iff Z=Y. \\
\min(X,Y,Z) \implies \text{leq}(Z,X), \text{leq}(Z,Y).
\]

Does not work: $\min(X,X,Z)$ will not be rewritten to $X=Z$ because there is no $\text{leq}(X,X)$ token in the store.
leq Solver Component in CHRat.

File leq_solver.cat

\texttt{component leqSolver.}
\texttt{export leq/2.}
\texttt{leq(X,X) \Longleftrightarrow true.}
\texttt{leq(X,Y), leq(Y,X) \Longleftrightarrow X = Y.}
\texttt{leq(X,Y), leq(Y,Z) \Rightarrow leq(X,Z).}
\texttt{leq(X,Y) \setminus leq(X,Y) \Longleftrightarrow true.}

\texttt{ask(leq(X,X)) \Longleftrightarrow entailed(leq(X,X)).}

\texttt{leq(X,Y) \setminus ask(leq(X,Y)) \Longleftrightarrow entailed(leq(X,Y)).}
File min_solver.cat

component min_solver.
import leq/2 from leq_solver.
export min/3.
min(X,Y,Z) ⇐⇒ leq(X,Y) | Z=X.
min(X,Y,Z) ⇐⇒ leq(Y,X) | Z=Y.
min(X,Y,Z) ⇒ leq(Z,X), leq(Z,Y).

ask(min(X, Y, X)) ⇐⇒ leq(X, Y) |
entailed(min(X, Y, X)).
ask(min(X, Y, Y)) ⇐⇒ leq(Y, X) |
entailed(min(X, Y, Y)).

min(X,Y,Z)\ask(min(X,Y,Z)) ⇐⇒ entailed(min(X,Y,Z)).
CHRat Syntax.

component `<component-name>`. one per file.

import `<constraint-declarations> from <component-name>`. separation is atom-prefix based.

export `<constraint-declarations>`.

```plaintext
<rule-name> ⊗ <H> \ <H> ←→ <C>,<T> | <B>.
```

where:

- **C**: built-in constraints
- **T**: CHR constraints
- **H**: \(T \cup \text{ask}(T) \)
- **B**: \(C \cup T \cup \text{entailed}(T) \)

Side condition Every variable which appears in a CHR guard must appear in the built-in guard or in the heads of the rule.
Configurations $\langle F, E, D \rangle_\mathcal{V}$

where \mathcal{V} is the set of free variables of the initial query.

Logical meaning $\exists \vec{y}(\overline{F} \land \overline{E} \land D)$, where \vec{y} enumerates $fv(F, E, D) \setminus \mathcal{V}$.
Solve

\[
\frac{c \in C}{\langle \{c\} \cup F, E, D \rangle_V \mapsto \langle F, E, c \land D \rangle_V}
\]

Introduce

\[
\frac{t \in T^\bullet}{\langle \{t\} \cup F, E, D \rangle_V \mapsto \langle F, \{t\} \cup E, D \rangle_V}
\]

where \(T^\bullet = T \cup \text{ask}(T) \cup \text{entailed}(T) \).

Trivial Entailment

\[
\frac{t \in T}{\langle F, \{\text{ask}(t), t\} \cup E, D \rangle_V \mapsto \langle \{\text{entailed}(t)\} \cup F, \{t\} \cup E, D \rangle_V}
\]
Ask

\[(H \setminus H' \iff C_b, C_c \mid B.) \sigma \in P \quad D \vdash_c C_b\]

\[\langle F, H \cup H' \cup E, D \rangle \mapsto \langle \text{ask}(C_c) \cup F, H \cup H' \cup E, D \rangle\]

Fire

\[(H \setminus H' \iff C_b, C_c \mid B.) \sigma \in P \quad D \vdash_c C_b\]

\[\langle F, H \cup H' \cup \text{entailed}(C_c) \cup E, D \rangle \mapsto \langle B \cup F, H \cup E, D \rangle\]
Theorem

Operational semantics is sound and complete with respect to declarative semantics.

If D is the declarative semantics of a program P and $S_1 \rightarrow S_2$ two successive configurations in an execution of P, then:

$$D \models_{c} S_1 \leftrightarrow S_2$$

Adapted from the soundness and completeness theorem of CHR:

Translation to flat CHR.

\[
[H \setminus H' \iff C_b, C_c | B.]
\]

\[
\equiv \begin{cases}
H, H' \Rightarrow C_b | \text{ask}(C_c). \\
H \setminus H', \text{entailed}(C_c) \iff C_b | B.
\end{cases}
\]

Theorem

If:

- \(D \) is the CHRat declarative semantics of a CHRat program \(P \); and
- \(D' \) is the CHR declarative semantics of \([P]\).

then:

\(\vdash_c D \leftrightarrow D' \)
Example of Translation to flat CHR.

\[\text{min}(X, Y, Z) \setminus \text{ask}_\text{min}(X, Y, Z) \Rightarrow \text{entailed}_\text{min}(X, Y, Z). \]

\[\text{min}(X, Y, Z) \iff \text{leq}(X, Y) \mid Z=X. \]

\[\text{min}(X, Y, Z) \Rightarrow \text{ask}_\text{leq}(X, Y). \]

\[\text{entailed}_\text{leq}(X, Y), \text{min}(X, Y, Z) \iff Z=X. \]

\[\text{min}(X, Y, Z) \Rightarrow \text{leq}(Z, X), \text{leq}(Z, Y). \]

\[\text{min}(X, Y, Z) \Rightarrow \text{leq}(Z, X), \text{leq}(Z, Y). \]

\[\text{ask}(\text{min}(X, Y, X)) \iff \text{leq}(X, Y) \mid \text{entailed}(\text{min}(X, Y, X)). \]

\[\text{ask}_\text{min}(X, Y, X) \Rightarrow \text{ask}_\text{leq}(X, Y). \]

\[\text{entailed}_\text{leq}(X, Y), \text{ask}_\text{min}(X, Y, X) \iff \text{entailed}_\text{min}(X, Y, X). \]
Union-find Component. (1/3)

File union_find_solver.cat

```plaintext
component union_find.
export make/1, ≃/2.
make(A) ⇐⇒ root(A, 0).

union(A, B) ⇐⇒ find(A, X), find(B, Y), link(X, Y).

A ⇓ B, find(A, X) ⇐⇒ find(B, X), A ⇓ X.
root(A, _) \ find(A, X) ⇐⇒ X = A.

link(A, A) ⇐⇒ true.
link(A, B), root(A, N), root(B, M) ⇐⇒ N ≥ M | B ⇓ A, N1 is max(M+1, N), root(A, N1).
link(B, A), root(A, N), root(B, M) ⇐⇒ N ≥ M | B ⇓ A, N1 is max(M+1, N), root(A, N1).
```

Thierry Martinez (INRIA)
File `union_find Solver.cat`

\[A \simeq B \implies \text{union}(A, B). \]

\[\text{ask}(A \simeq B) \iff \text{find}(A, X), \text{find}(B, Y), \text{check}(A, B, X, Y). \]

\[\text{root}(X) \ \backslash \ \text{check}(A, B, X, X) \iff \text{entailed}(A \simeq B). \]
X \sim C \backslash \text{check}(A, B, X, Y) \iff \text{find}(A, Z), \text{check}(A, B, Z, Y).

Y \sim C \backslash \text{check}(A, B, X, Y) \iff \text{find}(B, Z), \text{check}(A, B, X, Z).
Rational Tree Solver Component.

Component rational_tree_solver.

import ≃/2 from union_find_solver.

export fun/3, arg/3, ~/2.

fun(X0, F0, N0) \ fun(X1, F1, N1) ⇐⇒ X0 ≃ X1 | F0 = F1, N0 = N1.

arg(X0, N, Y0) \ arg(X1, N, Y1) ⇐⇒ X0 ≃ X1 | Y0 ≃ Y1.

X ∼ Y ⇐⇒ X ≃ Y.

Check the paper for the ask-solver!
Conclusion.

Objective.

- Generalization of guards.
- Modular definition of solvers.

Proposed Solution.

- Programming discipline to define satisfiability \textit{and} entailment constraint solvers.

Perspectives.

- Relax the restriction on guard variables.
- Link between declarative semantics of ask and logical implication.
- Modular compilation.