INRIA Paris–Rocquencourt
The Linear Concurrent Constraint (LCC) language

- CC [Saraswat 91]: agents add constraints (tell) and wait for entailment (ask)
- LCC [Saraswat 93]: asks consume linear constraints
- Semantics formalized in [Fages Ruet Soliman 01]: asks are resources consumed by firing, recursion via declarations
- Declaration as agents [Haemmerlé Fages Soliman 07]: persistent asks (semantics via the linear-logic bang !)
LCC with declaration as agents

- Simple arrows denote transient asks.
 Linear-logic semantics: $\forall x(c \rightarrow \ldots)$.
- Double arrows denote persistent asks.
 Linear-logic semantics: $!\forall x(c \rightarrow \ldots)$.

\[
\forall x \quad \rightarrow \quad \exists v \\
\forall y \quad \rightarrow \\
\forall z \quad \Rightarrow
\]

linear ask
(hypothesis consumption)
linear tell
CHR as a Concurrent Constraint language

The program is a fixed set of rules.

linear ask
(hypothesis consumption)

linear tell
Linear logic and CHR

In the literature

- Linear semantics [Betz Frühwirth 05]
 - Rules \iff (Banged) linear implication
 - Built-in constraints \iff Girard’s translation of classical formulas
 - User-defined constraint \iff Linear-logic predicates
- Phase semantics [Haemmerlé Betz 08]
 - Safety properties (unreachability of bad stores)

In this paper

- Translations from LCC to CHR and back.
- Operational semantics preservation.
- Linear semantics and phase semantics for free!
- Encoding the λ-calculus.
Translation from CHR to LCC

Queries

Goal translated into a single linear-logic constraint:

\[B_1, \ldots B_p, \quad C_1, \ldots C_q \]
\[\text{built-ins} \quad \text{user-defined} \]
\[\Downarrow \]
\[!B_1 \otimes \cdots \otimes !B_n \otimes C_1 \otimes \cdots \otimes C_n \]

Rules

Program translated to a parallel composition of persistent asks:

\[H_1, \ldots, H_n \overset{\leftrightarrow}{\iff} G \mid \begin{array}{ll}
B_1, \ldots B_p, & C_1, \ldots C_q \\
\text{built-ins} & \text{user-defined}
\end{array} \]
\[\Downarrow \]
\[\forall x (H_1 \otimes \cdots \otimes H_n \otimes !G \Rightarrow \exists y !B_1 \otimes \cdots \otimes !B_p \otimes C_1 \otimes \cdots \otimes C_q) \]
Constraint Theory / Linear Constraint System

In CHR: two kinds of constraints

- Store:

- Rules:

In LCC: linear-logic constraints

Translation from a CHR constraint theory CT:

- are constraints;
- all are constraints;
- constraints closed by \otimes and \exists.

Constraints have form: $\exists V (!B \otimes U)$

Axioms:

$!B \vdash !C$

if and only if

$CT \vdash B \rightarrow C$

Linear-logic predicates without axioms (linear tokens) for user-defined constraints.
Translation from flat-LCC to CHR

Flat-LCC
LCC restricted to top-level persistent asks (neither nested asks, nor transient asks)
General form of flat-LCC program:

\[C \parallel \forall x_1(C_1 \Rightarrow C'_1) \parallel \cdots \parallel \forall x_n(C_n \Rightarrow C'_n) \]

Translation for asks

\[C_1 \equiv \exists V_1(!B_1 \otimes U_1) \quad C_n \equiv \exists V_n(!B_n \otimes U_n) \]

\[U_1 \iff B_1 \parallel B'_1, U'_1. \quad U_n \iff B_n \parallel B'_n, U'_n. \]

Variable hiding in query
In the initial constraint \(C \equiv \exists V(!B \otimes U) \), variables \(V \) are hidden.
The initial constraint is translated to the rule: \(\text{start}(G) \iff B, U \).
and the query: \(\text{start}(G) \), where \(G = \text{fv}(C) \setminus V \).
Ask-lifting: translation from LCC to flat-LCC

To carve asks in stone: identify them with linear tokens.

From nested asks... ...to flat programs

Flat programs only contain persistent asks. Tokens encode:

• ask persistence (tokens representing persistent asks are re-added to the store, the others are consumed)
• nested variable scopes
Weakening elimination

LCC transition and weakening

Given the store c_0 and the agent $\forall x (d \rightarrow a)$, if c_0 linearly implies $d \otimes c_1$, transition to the store c_1 and the agent a.

Classical constraints weakening: $x \leq 2 \Rightarrow x \leq 3$.

In CHR, no weakening in the semantics

- User-constraints are counted in multi-sets.
- Built-in constraints always grow by conjunctions.

Weakening elimination in LCC

Disallowing weakening do not cut derivations.

Only accept transition to a store c_1 if there is no more general c such that c_0 implies $d \otimes c$ (valid for principal constraint system).

Transition from c_0 to c_1 with guard d only if

$\forall c$, if c_0 implies $d \otimes c$ then c_1 implies c.
Steps collapsing

\[\Rightarrow: \text{one firing per transition} \]
Strong Bisimulations

Strong comparison of processes between transition systems. Here:

- CHR transition system over states.
- LCC transition system over configurations.

Similarity relations \sim. Here:

- LCC configurations and configurations induced by ask-lifting;
- flat-LCC configurations and their translated states;
- CHR states and their translated configurations.

\sim is a bisimulation if and only if:

$$
\begin{align*}
 s & \xrightarrow{t} s' \\
 \vdash \sim \qquad \vdash \sim \\
 \kappa & \xrightarrow{t} \kappa'
\end{align*}
$$
Operational Semantics preservation

Theorem

The three following transformations:

\[\text{LCC} \xrightarrow{1} \text{flat-LCC} \xrightarrow{2} \text{CHR} \]

transform configurations(LCC)/states(CHR) to bisimilar configurations/states with respect to \(\Rightarrow \).
Let P be a CHR program and $[P]$ its translation as LCC agent.

\[[\text{immediate}] \equiv [\text{new}] \]

\[\Leftrightarrow [\text{BF05}] \]

\[\Leftrightarrow [\text{FRS01}] \]
The \(\lambda\)-calculus is a functional language \(\Rightarrow\) each expression computes a value, designated by a distinguished variable \(V\).

- \([x] = (V = x)\)
- \([\lambda x. e] = \forall xE(apply(V, x, E) \Rightarrow \exists V([e] \parallel E = V))\)
- \([f e] = \exists FE(\exists V([f] \parallel F = V)\parallel\exists V([e] \parallel E = V)\parallel apply(F, E, V))\)
Encoding the λ-calculus in CHR

Direct translation in CHR:

$$(\lambda X.\lambda Y.X) \ A \ B$$

λ-labeling: $$(\lambda_1^{()} X.\lambda_2^{(X)} Y.X) \ A \ B$$

$\text{start}(R, A, B) \iff$

$p1(F1), \text{apply}(F1, A, F2), \text{apply}(F2, B, R)$

$p1(F1) \ \backslash \ \text{apply}(F1, X, F2) \iff$

$p2(F2, X).$

$p2(F2, X) \ \backslash \ \text{apply}(F2, Y, R) \iff$

$R = X.$

? $\text{start}(R, A, B)$.

$R = A$
Conclusion

- Compilation scheme for LCC with committed-choice semantics

\[\text{LCC} \rightarrow \text{CHR} \rightarrow \ldots \]

- Proof for free for CHR linear-logic and phase semantics relying on the existing results for LCC.
- Explanation of the linear-logic reading of a CHR rule.
- Encoding of functional language with closures in CHR.
- Partially compositional (the preprocessing phase of ask-lifting, ask-labeling, is not compositional)
- Independent from the choice of Constraint Theory
Perspectives

Refined semantics for a committed-choice LCC

- From a CHR programmer point-of-view:
 - a CHR-like language with more structure constructs (nested rules & variable hiding)
 - still with a clean semantics in linear logic,
 - benefits from works on modular programming in LCC [Haemmerlé Fages Soliman 07].

- From an LCC programmer point-of-view:
 - a refined semantics,
 - with syntactic variations on asks to distinguish propagations and simplifications,
 - depending of the order agents are written.