On connections between CHR and LCC

Semantics-preserving program transformations from CHR to LCC and back

Thierry Martinez

INRIA Paris–Rocquencourt

CHR’09, 15 July 2009
The Linear Concurrent Constraint (LCC) language

- CC [Saraswat 91]: agents add constraints (tell) and wait for entailment (ask)
- LCC [Saraswat 93]: asks consume linear constraints
- Semantics formalized in [Fages Ruet Soliman 01]: asks are resources consumed by firing, recursion via declarations
- Declaration as agents [Haemmerlé Fages Soliman 07]: persistent asks (semantics via the linear-logic bang !)

•
LCC with declaration as agents

- Simple arrows denote transient asks.
 Linear-logic semantics: $\forall x(c \rightarrow \ldots)$.
- Double arrows denote persistent asks.
 Linear-logic semantics: $!\forall x(c \rightarrow \ldots)$.
CHR as a Concurrent Constraint language

The program is a fixed set of rules.

linear ask (hypothesis consumption)
Linear logic and CHR

In the literature

- Linear semantics [Betz Frühwirth 05]
 - Rules \leftrightarrow (Banged) linear implication
 - Built-in constraints \leftrightarrow Girard’s translation of classical formulas
 - User-defined constraint \leftrightarrow Linear-logic predicates
- Phase semantics [Haemmerlé Betz 08]
 - Safety properties (unreachability of bad stores)

In this paper

- Translations from LCC to CHR and back.
- Operational semantics preservation.
- Linear semantics and phase semantics for free!
- Encoding the λ-calculus.
Translation from CHR to LCC

Queries

Goal translated into a single linear-logic constraint:

\[
\begin{array}{c}
B_1, \ldots, B_p, \\
\text{built-ins}
\end{array}
\vdash
\begin{array}{c}
C_1, \ldots, C_q, \\
\text{user-defined}
\end{array}
\]

\[
!B_1 \otimes \cdots \otimes !B_n \otimes C_1 \otimes \cdots \otimes C_n
\]

Rules

Program translated to a parallel composition of persistent asks:

\[
\begin{array}{c}
H_1, \ldots, H_n \iff G
\end{array}
\vdash
\begin{array}{c}
\begin{array}{c}
B_1, \ldots, B_p, \\
\text{built-ins}
\end{array}
\otimes
\begin{array}{c}
C_1, \ldots, C_q, \\
\text{user-defined}
\end{array}
\end{array}
\]

\[
\forall x (H_1 \otimes \cdots \otimes H_n \otimes !G \Rightarrow \exists y !B_1 \otimes \cdots \otimes !B_p \otimes C_1 \otimes \cdots \otimes C_q)
\]
In CHR: two kinds of constraints

- **Store:**

- **Rules:**

In LCC: linear-logic constraints

Translation from a CHR constraint theory CT:

- ![icons](images/chricons.png) are constraints;
- ![icons](images/chricons.png) are constraints;
- constraints closed by \otimes and \exists.

Constraints have form: $\exists V(\![B \otimes U])$

Axioms:

$$\![B] \vdash \![C]$$

if and only if

$$CT \models B \to C$$

Linear-logic predicates without axioms (linear tokens) for user-defined constraints.
Translation from flat-LCC to CHR

Flat-LCC
LCC restricted to top-level persistent asks (neither nested asks, nor transient asks)

General form of flat-LCC program:

\[C \parallel \forall x_1(C_1 \Rightarrow C'_1) \parallel \cdots \parallel \forall x_n(C_n \Rightarrow C'_n) \]

Translation for asks

\[
C_1 \equiv \exists V_1(B_1 \otimes U_1) \quad \quad \quad C_n \equiv \exists V_n(B_n \otimes U_n)
\]

\[
U_1 \Leftrightarrow B_1 \parallel B'_1, U'_1 \quad \quad \quad U_n \Leftrightarrow B_n \parallel B'_n, U'_n.
\]

Variable hiding in query

In the initial constraint \(C \equiv \exists V(B \otimes U) \), variables \(V \) are hidden. The initial constraint is translated to the rule: \(\text{start}(G) \Leftrightarrow B, U \) and the query: \(\text{start}(G) \), where \(G = \text{fv}(C) \setminus V \).
Ask-lifting: translation from LCC to flat-LCC

To carve asks in stone: identify them with linear tokens.

From nested asks... ...to flat programs

Flat programs only contain persistent asks.

Tokens encode:

- ask persistence (tokens representing persistent asks are re-added to the store, the others are consumed)
- nested variable scopes
Weakening elimination

LCC transition and weakening

Given the store c_0 and the agent $\forall x(d \rightarrow a)$, if c_0 linearly implies $d \otimes c_1$, transition to the store c_1 and the agent a.

Classical constraints weakening: $x \leq 2 \Rightarrow x \leq 3$.

In CHR, no weakening in the semantics

- User-constraints are counted in multi-sets.
- Built-in constraints always grow by conjunctions.

Weakening elimination in LCC

Disallowing weakening do not cut derivations.

Only accept transition to a store c_1 if there is no more general c such that c_0 implies $d \otimes c$ (valid for principal constraint system).

Transition from c_0 to c_1 with guard d only if

$\forall c$, if c_0 implies $d \otimes c$ then c_1 implies c.
Steps collapsing

\[\Rightarrow: \text{one firing per transition} \]
Strong Bisimulations

Strong comparison of processes between transition systems. Here:

- CHR transition system over states.
- LCC transition system over configurations.

Similarity relations \(\sim\). Here:

- LCC configurations and configurations induced by ask-lifting;
- flat-LCC configurations and their translated states;
- CHR states and their translated configurations.

\(\sim\) is a bisimulation if and only if:

\[
\begin{array}{c}
\begin{array}{c}
\kappa \\ \sim \\
\rightarrow \\
\kappa'
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
s \\ \sim \\
\rightarrow \\
\kappa'
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
s' \\ \sim \\
\rightarrow \\
\kappa'
\end{array}
\end{array}
\]
Operational Semantics preservation

Theorem

The three following transformations:

$LCC \xrightarrow{1} \text{flat-LCC} \xrightarrow{2} \text{CHR} \xleftarrow{3}$

transform configurations(LCC)/states(CHR) to bisimilar configurations/states with respect to \Rightarrow.
Let P be a CHR program and $[[P]]$ its translation as LCC agent.

\[
\begin{align*}
\iff & \quad [\text{BF05}] \\
\text{CHR Linear-logic reading of } P & \iff \text{CHR Operational semantics of } P \\
\text{[immediate]} & \equiv \iff [\text{FRS01}] \\
\text{LCC Linear-logic reading of } [[P]] & \iff \text{LCC Operational semantics of } [[P]] \\
& \sim [\text{new}]
\end{align*}
\]
The \(\lambda \)-calculus is a functional language ⇒ each expression computes a value, designated by a distinguished variable \(V \).

- \(\llbracket x \rrbracket = (V = x) \)
- \(\llbracket \lambda x. e \rrbracket = \forall x E(\text{apply}(V, x, E) \Rightarrow \exists V(\llbracket e \rrbracket \parallel E = V)) \)
- \(\llbracket f \ e \rrbracket = \exists F E(\exists V(\llbracket f \rrbracket \parallel F = V) \parallel \exists V(\llbracket e \rrbracket \parallel E = V) \parallel \text{apply}(F, E, V)) \)
Encoding the λ-calculus in CHR

Direct translation in CHR:

$$ (\lambda X.\lambda Y.X) \ A \ B $$

λ-labeling:

$$ (\lambda_1^()X.\lambda_2^X Y.X) \ A \ B $$

start(R, A, B) \iff

$$ p_1(F_1), \ apply(F_1, A, F_2), \ apply(F_2, B, R) $$

$$ p_1(F_1) \ \backslash \ \ apply(F_1, X, F_2) \iff $$

$$ p_2(F_2, X). $$

$$ p_2(F_2, X) \ \backslash \ \ apply(F_2, Y, R) \iff $$

$$ R = X. $$

$$ R = A $$
Conclusion

- Compilation scheme for LCC with committed-choice semantics

\[\text{LCC} \rightarrow \text{CHR} \rightarrow \ldots \]

- Proof for free for CHR linear-logic and phase semantics relying on the existing results for LCC.
- Explanation of the linear-logic reading of a CHR rule.
- Encoding of functional language with closures in CHR.
- Partially compositional (the preprocessing phase of ask-lifting, ask-labeling, is not compositional)
- Independent from the choice of Constraint Theory
Refined semantics for a committed-choice LCC

- From a CHR programmer point-of-view:
 - a CHR-like language with more structure constructs (nested rules & variable hiding)
 - still with a clean semantics in linear logic,
 - benefits from works on modular programming in LCC [Haemmerlé Fages Soliman 07].

- From an LCC programmer point-of-view:
 - a refined semantics,
 - with syntactic variations on asks to distinguish propagations and simplifications,
 - depending of the order agents are written.