The Cream Type System

Thierry Martinez

Acknowledgments to Julien Martin

Contraintes Project–Team
INRIA Paris–Rocquencourt Research Centre

Wednesday 18th November 2009
The Cream Modelling Language

- A rule-based language for modelling satisfaction and optimisation problems. [RAC’09]
- The language enjoys directives for the declarative specification of search-heuristics. [CPAIOR’09]
- Very few data structures: fd variables, integer constants, lists and records.
- Aggregators over lists. No recursion.

The Cream Modelling Language

Object definitions

queen(I) = { row = I, column = _ }.

board(N) = map(I, [1 .. N], queen(I)).

Rule declarations

no_attack(Q0, Q1) -->
 Q0:column # Q1:column
and Q0:row - Q0:column # Q0:row - Q1:column
and Q0:row + Q0:column # Q0:row + Q1:column.

no_attack(L) -->
 forall(Q0 in L,
 forall(Q1 in L,
 Q0:row < Q1:row => no_attack(Q0, Q1))).

Query

? let(N = 10,
 Board = board(N),
 domain(Board, 1, N) and no_attack(Board)
 and labelling(Board)).
Cream Type Constructors

- **int** the type of integer constants and finite domain variables
 - 1, 10, I, N :: int

- **bool** the type of constraints and rules (truth values)
 - Q0:column # Q1:column :: bool
 - Q0:row # Q1:row => no_attack(Q0, Q1) :: bool
 - 1 :: bool

- [τ] the type of lists with elements of type τ (homogeneous lists)
 - [1 .. N] :: [int]

- { f₁: τ₁, ..., fₙ: τₙ} the type of records with
 - a field f₁ carrying a value of type τ₁, ...,
 - a field fₙ carrying a value of type τₙ
 - queen(I) = { row = I, column = _ }.
 - queen(α) :: { row: α, column: β}
 - board(N) = map(I, [1 .. N], queen(I))
 - board(int) :: [{ row: int, column: α}]
What Kind Of Guarantees Could Be Expected?

- Type consistency in a call:
 \[
 \text{board}(\text{int}) :: \{ \text{row: int, column: } \alpha \}\]
 \[
 \text{board}([1 .. 10]) \text{ should fail to type.}
 \]

- Projection validity: \(\text{queen}(\alpha) :: \{ \text{row: } \alpha, \text{column: } \beta \}\)
 \[
 \text{queen}(\text{N}): \text{column} \text{ should fail to type.}
 \]

- Object construction validity:
 \[
 \text{no_attack}([\{ \text{row: int, column: int } \}]) :: \text{bool}
 \]
 \[
 \text{no_attack}([\{ \text{line = 4, column = 2} \}]) \text{ should fail.}
 \]

- But: a well-typed Cream program can go wrong (with respect to the rewriting system \(\rightarrow\))
 \[
 \text{nth}(1, []) \text{ is well-typed but } \text{nth}(1, []) \not\rightarrow.
 \]
What is a type judgement?

The type system associates a type to every (well-typed) expression (e.g. $1 + 1 :: \text{int}$).

Expressions may depend on a context of bound variables (arguments of a definition, let-binding, iterators). In the general case, a type judgment is a relation between:

- a type environment Γ: a mapping between bound variables and their type. (e.g. $I :: \text{int}$, $L :: [\text{int}]$)
- an expression e
- the type t of e under Γ

A type judgement is denoted:

$$\Gamma \vdash e :: t$$

e.g. $I :: \text{int} \vdash [I] :: [\text{int}]$
Cream Typing Rules

Basis:

- Integer constants
 \[
 \Gamma \vdash n :: \text{int} \geq 2 \quad n \in \mathbb{N}
 \]
 \[
 \Gamma \vdash 0 :: \text{bool}
 \]
 \[
 \Gamma \vdash 1 :: \text{bool}
 \]

- Bound variables, FD variables, empty lists.
 \[
 \Gamma \vdash X :: \tau, \Gamma \vdash X :: \tau
 \]
 \[
 \Gamma \vdash X :: \text{int} \quad X \notin \Gamma
 \]
 \[
 \Gamma \vdash [] :: [\tau] \quad \tau \text{ type}
 \]

Inductive steps: hypotheses are on top of the line, conclusions on bottom

\[
\Gamma \vdash X_1 :: \tau \cdots \Gamma \vdash X_n :: \tau
\]
\[
\Gamma \vdash [X_1, \ldots, X_n] :: [\tau]
\]

\[
\Gamma \vdash \{f_1 = X_1, \ldots, f_n = X_n\} :: \{f_1 : \tau_1, \ldots, f_n : \tau_n, \text{uid} : \text{int}\}
\]

\[
\Gamma \vdash e_1 :: \text{int} \quad \Gamma \vdash e_2 :: \text{int}
\]
\[
\Gamma \vdash [e_1..e_2] :: [\text{int}]
\]

\[
\Gamma \vdash e :: \{f_1 : \tau_1, \ldots, f_n : \tau_n\}
\]
\[
\Gamma \vdash e : f_i :: \tau_i
\]
Type Coercions

We make coercions explicit with a new syntactic construction: μ

- **Reification**: `bool` is a subtype of `int`

 \[
 \Gamma \vdash e :: bool \\
 \Gamma \vdash \mu_{bool \rightarrow int}(e) :: int
 \]

- **Projection**: \(\{f: \tau\}\) is a subtype of \(\{f: \tau, g: \tau'\}\)

 \[
 \Gamma \vdash e :: \{f_1 : \tau_1, \ldots, f_n : \tau_n\} \\
 \Gamma \vdash \mu_{\pi}(e) :: \{f_{\pi_1 : \pi_1}, \ldots, f_{\pi_k : \pi_k}\}
 \]
Typing Definitions and Calls

Typing a call should be equivalent to type the body of the definition given the arguments as environment:

\[
\Gamma \vdash e_1 :: \tau_1 \ldots \Gamma \vdash e_n :: \tau_n \quad (f(X_1, \ldots, X_n) = e) \in P \quad X_1 :: \tau_1, \ldots, X_n :: \tau_n \vdash e :: \tau
\]

\[
\Gamma \vdash f(e_1, \ldots, e_n) :: \tau
\]

Goal: associate to the definition "\(f(X_1, \ldots, X_n) = e\)" a principal type, that is to say a type valid for this definition that is more general than any other valid type.

With subtyping, the principal type between `bool` and `int` is `int`. But there are definitions which can take either `int`, or `[int]`, or...: "id(X) = X".

Principality comes from the fact that if Cream Typing Rules are such that if a definition can be called with two unrelated type (e.g. `int`, or `[int]`), it can be called with any type \(\tau\).

Let \(\alpha, \beta, \ldots\) be a countable set of type variable.

A type schema is of the form:

\[
\forall \alpha \beta \ldots (f(\tau_1, \ldots, \tau_n) :: \tau)
\]

Since Cream definition are top-level, all type schema are closed.

Identity definition has type: \(\forall \alpha, (id(\alpha) :: \alpha)\)
Rule declarations and object definition

- **Rule declarations** (and queries) define constraints, the type system enforces that they return `bool`.

- **Object definition** define data structure, the type system enforces that they don’t return `bool`.

Consequence: \(f = 1 \) has type \(f :: \text{int} \) (by coercion) whereas \(p \rightarrow 1 \) has type \(p :: \text{bool} \). \(p \) is usable as a predicate, \(f \) isn’t.
Type Unification

Goal: Guess the type of the arguments of a definition.

Use type variable as (yet) unknown type.

\[
\frac{X_1 : \alpha_1, \ldots, X_n : \alpha_n \vdash e :: \alpha}{\Gamma \vdash f(X_1, \ldots, X_n) = e :: f(\alpha_1, \ldots, \alpha_n) : \alpha}
\]

Typing rules enforce equality between types.

Row variables: for (yet) unknown fields of a record.

\[
\frac{\Gamma \vdash e :: \{f : \tau, \rho\}}{\Gamma \vdash e : f :: \tau}
\]

Generalization to type schema for definitions.
$\text{bool} \rightarrow \text{int}$ Coercion in a Hindley-Milner framework

Type constructors $\text{value(\text{bool})}$ and $\text{value(\text{int})}$.

Generalization of $\text{value(\text{bool})}$ to value(\alpha) in type schema.

$\mu_{\text{bool} \rightarrow \text{int}}$ only introduced on predicate arguments and value-let.

let $(X = (1 = 1), \ X \ \text{and} \ X = 1)$ is ill-typed: the first usage of X has type $\text{value(\text{bool})}$ whereas the second has type $\text{value(\text{int})}$.
Conclusion

- Early detection of errors
- Coding discipline:
 - Homogeneous data structures
 - Enforces separation between rule declarations and object definitions
- Type inference could be less restrictive on coercions with a Cardelli/Mitchell algorithm.