The Cream Type System

Thierry Martinez
Acknowledgments to Julien Martin

Contraintes Project–Team
INRIA Paris–Rocquencourt Research Centre

Wednesday 18th November 2009

1 Introduction
2 The Cream Type System
3 A Hindley-Milner based type inference algorithm
4 Conclusion
The Cream Modelling Language

- A rule-based language for modelling satisfaction and optimisation problems.
 [RAC’09]
- The language enjoys directives for the declarative specification of search-heuristics.
 [CPAIOR’09]
- Very few data structures: fd variables, integer constants, lists and records.
- Aggregators over lists. No recursion.

The Cream Modelling Language

Object definitions

\[\text{queen}(I) = \{ \text{row} = I, \text{column} = _ \} . \]
\[\text{board}(N) = \text{map}(I, [1 .. N], \text{queen}(I)) . \]

Rule declarations

\[\text{no_attack}(Q_0, Q_1) \rightarrow \]
\[\quad Q_0: \text{column} \not= Q_1: \text{column} \]
\[\quad \text{and} \quad Q_0: \text{row} - Q_0: \text{column} \not= Q_0: \text{row} - Q_1: \text{column} \]
\[\quad \text{and} \quad Q_0: \text{row} + Q_0: \text{column} \not= Q_0: \text{row} + Q_1: \text{column} . \]
\[\text{no_attack}(L) \rightarrow \]
\[\quad \forall (Q_0 \in L, \quad \forall (Q_1 \in L, \quad Q_0: \text{row} < Q_1: \text{row} \rightarrow \text{no_attack}(Q_0, Q_1)). \]

Query

\[? \ \text{let}(N = 10, \]
\[\quad \text{Board} = \text{board}(N), \]
\[\quad \text{domain}(\text{Board}, 1, N) \ \text{and} \ \text{no_attack}(\text{Board}) \]
\[\quad \text{and} \ \text{labelling}(\text{Board}). \]
Cream Type Constructors

- **int** the type of integer constants and finite domain variables
 - 1, 10, I, N :: int

- **bool** the type of constraints and rules (truth values)
 - Q0:column # Q1:column :: bool
 - Q0:row # Q1:row => no_attack(Q0, Q1) :: bool
 - 1 :: bool

- **[τ]** the type of lists with elements of type τ (homogeneous lists)
 - [1 .. N] :: [int]

- **{ f₁: τ₁, ..., fₙ: τₙ}** the type of records with
 - a field f₁ carrying a value of type τ₁,
 - a field fₙ carrying a value of type τₙ

 queen(I) = { row = I, column = _ }.
  ```plaintext```
  queen(α) :: { row: α, column: β}
  ```plaintext```
 board(N) = map(I, [1 .. N], queen(I))
  ```plaintext```
  board(int) :: [{ row: int, column: α}]
What Kind Of Guarantees Could Be Expected?

- Type consistency in a call:
  
  ```
 board(int) :: [{ row: int, column: \(\alpha \)}]
 board([1 .. 10]) should fail to type.
  ```

- Projection validity: `queen(\( \alpha \)) :: { row: \( \alpha \), column: \( \beta \)}`
  
  ```
 queen(N):column should fail to type.
  ```

- Object construction validity:
  
  ```
 no_attack([{{ row: int, column: int }]}]) :: bool
 no_attack([{{line = 4, column = 2}}]) should fail.
  ```

- **But:** a well-typed Cream program can go wrong (with respect to the rewriting system \( \rightarrow \))
  
  ```
 nth(1, []) is well-typed but nth(1, []) \(\not\rightarrow \).
  ```
What is a type judgement?

The type system associates a type to every (well-typed) expression (e.g. \(1 + 1 :: \text{int}\)).

Expressions may depend on a context of bound variables (arguments of a definition, let-binding, iterators). In the general case, a type judgment is a relation between:

- a type environment \(\Gamma\): a mapping between bound variables and their type. (e.g. \(I :: \text{int}, L :: [\text{int}]\))
- an expression \(e\)
- the type \(t\) of \(e\) under \(\Gamma\)

A type judgement is denoted:

\[\Gamma \vdash e :: t\]

e.g. \(I :: \text{int} \vdash [I] :: [\text{int}]\)
Cream Typing Rules

Basis:

- Integer constants

\[ \Gamma \vdash n :: \text{int} \geq 2 \quad n \in \mathbb{N} \quad \Gamma \vdash 0 :: \text{bool} \quad \Gamma \vdash 1 :: \text{bool} \]

- Bound variables, FD variables, empty lists.

\[ \Gamma \vdash X :: \tau, \Gamma \vdash X :: \tau \]
\[ \Gamma \vdash X :: \text{int} \quad X \notin \Gamma \]
\[ \Gamma \vdash [] :: [\tau] \quad \tau \text{ type} \]

Inductive steps: hypotheses are on top of the line, conclusions on bottom

\[ \Gamma \vdash X_1 :: \tau \ldots \Gamma \vdash X_n :: \tau \]
\[ \Gamma \vdash [X_1, \ldots, X_n] :: [\tau] \]

\[ \Gamma \vdash \{f_1 = X_1, \ldots, f_n = X_n\} :: \{f_1 : \tau_1, \ldots, f_n : \tau_n, \text{uid} : \text{int}\} \]

\[ \Gamma \vdash e_1 :: \text{int} \quad \Gamma \vdash e_2 :: \text{int} \]
\[ \Gamma \vdash [e_1 \ldots e_2] :: [\text{int}] \]

\[ \Gamma \vdash e :: \{f_1 : \tau_1, \ldots, f_n : \tau_n\} \]
\[ \Gamma \vdash e : f_i :: \tau_i \]
Type Coercions

We make coercions explicit with a new syntactic construction: $\mu$

- Reification: `bool` is a subtype of `int`

\[
\Gamma \vdash e :: bool \\
\Gamma \vdash \mu_{bool \rightarrow int}(e) :: int
\]

- Projection: $\{f : \tau\}$ is a subtype of $\{f : \tau, g : \tau'\}$

\[
\Gamma \vdash e :: \{f_1 : \tau_1, \ldots, f_n : \tau_n\} \\
\Gamma \vdash \mu_{\pi}(e) :: \{f_{\pi_1} : \tau_{\pi_1}, \ldots, f_{\pi_k} : \tau_{\pi_k}\}
\]
Typing Definitions and Calls

Typing a call should be equivalent to type the body of the definition given the arguments as environment:

\[ \Gamma \vdash e_1 :: \tau_1 \cdots \Gamma \vdash e_n :: \tau_n \quad (f(X_1, \ldots, X_n) = e) \in P \quad X_1::\tau_1, \ldots, X_n::\tau_n \vdash e :: \tau \]

\[ \Gamma \vdash f(e_1, \ldots, e_n) :: \tau \]

Goal: associate to the definition "\(f(X_1, \ldots, X_n) = e\)" a principal type, that is to say a type valid for this definition that is more general than any other valid type. With subtyping, the principal type between \texttt{bool} and \texttt{int} is \texttt{int}. But there are definitions which can take either \texttt{int}, or \texttt{[int]}, or...: "\(id(X) = X\)". Principality comes from the fact that if Cream Typing Rules are such that if a definition can be called with two unrelated type (e.g. \texttt{int}, or \texttt{[int]}), it can be called with any type \(\tau\).

Let \(\alpha, \beta, \ldots\) be a countable set of type variable.
A type schema is of the form:

\[ \forall \alpha \beta \cdots (f(\tau_1, \ldots, \tau_n) :: \tau) \]

Since Cream definition are top-level, all type schema are closed.

Identity definition has type: \(\forall \alpha, (id(\alpha) :: \alpha)\)
Rule declarations and object definition

- **Rule declarations** (and queries) define constraints, the type system enforces that they return **bool**.

- **Object definition** define data structure, the type system enforces that they don’t return **bool**.

Consequence: \( f = 1 \) has type \( f :: \text{int} \) (by coercion) whereas \( p \rightarrow 1 \) has type \( p :: \text{bool} \). \( p \) is usable as a predicate, \( f \) isn’t.
Type Unification

Goal: Guess the type of the arguments of a definition.

Use type variable as (yet) unknown type.

\[ X_1 : \alpha_1, \ldots, X_n : \alpha_n \vdash e :: \alpha \]

\[ \Gamma \vdash f(X_1, \ldots, X_n) = e :: f(\alpha_1, \ldots, \alpha_n) : \alpha \]

Typing rules enforce equality between types.

Row variables: for (yet) unknown fields of a record.

\[ \Gamma \vdash e :: \{ f : \tau, \rho \} \]

\[ \Gamma \vdash e : f :: \tau \]

Generalization to type schema for definitions.
bool → int Coercion in a Hindley-Milner framework

Type constructors value(bool) and value(int).

Generalization of value(bool) to value(α) in type schema.

μbool→int only introduced on predicate arguments and value-let. let (X = (1 = 1), X and X = 1) is ill-typed: the first usage of X has type value(bool) whereas the second has type value(int).
Conclusion

- Early detection of errors
- Coding discipline:
  - Homogeneous data structures
  - Enforces separation between rule declarations and object definitions
- Type inference could be less restrictive on coercions with a Cardelli/Mitchell algorithm.