The Cream Type System

Thierry Martinez

Acknowledgments to Julien Martin

Contraintes Project–Team
INRIA Paris–Rocquencourt Research Centre

Wednesday 18th November 2009

1 Introduction
2 The Cream Type System
3 A Hindley-Milner based type inference algorithm
4 Conclusion
The Cream Modelling Language

- A rule-based language for modelling satisfaction and optimisation problems. [RAC’09]
- The language enjoys directives for the declarative specification of search-heuristics. [CPAIOR’09]
- Very few data structures: fd variables, integer constants, lists and records.
- Aggregators over lists. No recursion.

The Cream Modelling Language

Object definitions

```prolog
queen(I) = \{ row = I, column = _ \}.
board(N) = map(I, [1 .. N], queen(I)).
```

Rule declarations

```prolog
no_attack(Q0, Q1) -->
    Q0:column # Q1:column
and
    Q0:row - Q0:column # Q0:row - Q1:column
and
    Q0:row + Q0:column # Q0:row + Q1:column.
no_attack(L) -->
    forall(Q0 in L,
        forall(Q1 in L,
            Q0:row < Q1:row => no_attack(Q0, Q1))).
```

Query

```prolog
? let(N = 10,
    Board = board(N),
    domain(Board, 1, N) and no_attack(Board)
    and labelling(Board)).
```
Cream Type Constructors

- **int** the type of integer constants and finite domain variables
 - $1, 10, I, N :: \text{int}$

- **bool** the type of constraints and rules (truth values)
 - $Q0: \text{column} \ # \ Q1: \text{column} :: \text{bool}$
 - $Q0: \text{row} \ # \ Q1: \text{row} \Rightarrow \text{no_attack}(Q0, Q1) :: \text{bool}$
 - $1 :: \text{bool}$

- $[\tau]$ the type of lists with elements of type τ (homogeneous lists)
 - $[1 .. N] :: [\text{int}]$

- $\{ f_1: \tau_1, \ldots, f_n: \tau_n \}$ the type of records with
 - a field f_1 carrying a value of type τ_1, ...,
 - a field f_n carrying a value of type τ_n
 - $\text{queen}(I) = \{ \text{row} = I, \text{column} = _ \}$.
 $\text{queen}(\alpha) :: \{ \text{row} : \alpha, \text{column} : \beta \}$
 - $\text{board}(N) = \text{map}(I, [1 .. N], \text{queen}(I))$
 $\text{board}(\text{int}) :: [\{ \text{row} : \text{int}, \text{column} : \alpha \}]$
What Kind Of Guarantees Could Be Expected?

- Type consistency in a call:
 \[
 \text{board}(\text{int}) :: \{\ \text{row}: \text{int}, \text{column}: \alpha\}\]
 board([1 .. 10]) should fail to type.

- Projection validity: \(\text{queen}(\alpha) :: \{\ \text{row}: \alpha, \text{column}: \beta\}\)
 \(\text{queen}(N):\text{column}\) should fail to type.

- Object construction validity:
 \(\text{no_attack}([\{\ \text{row}: \text{int}, \text{column}: \text{int}\}]) :: \text{bool}\)
 no_attack([\{\text{line} = 4, \text{column} = 2\}]) should fail.

- But: a well-typed Cream program can go wrong (with respect to the rewriting system \(\rightarrow\))
 \(\text{nth}(1, [])\) is well-typed but \(\text{nth}(1, []) \not\rightarrow\).
What is a type judgement?

The type system associates a type to every (well-typed) expression (e.g. \(1 + 1 :: \text{int}\)).

Expressions may depend on a context of bound variables (arguments of a definition, let-binding, iterators). In the general case, a type judgment is a relation between:

- a type environment \(\Gamma\): a mapping between bound variables and their type. (e.g. \(I :: \text{int}, L :: [\text{int}]\))
- an expression \(e\)
- the type \(t\) of \(e\) under \(\Gamma\)

A type judgement is denoted:

\[\Gamma \vdash e :: t\]

e.g. \(I :: \text{int} \vdash [I] :: [\text{int}]\)
Cream Typing Rules

Basis:

- Integer constants
 \[\Gamma \vdash n :: \text{int} \geq 2 \quad n \in \mathbb{N} \quad \Gamma \vdash 0 :: \text{bool} \quad \Gamma \vdash 1 :: \text{bool} \]

- Bound variables, FD variables, empty lists.
 \[\Gamma \vdash X :: \tau, \Gamma \vdash X :: \tau \quad X \notin \Gamma \quad \Gamma \vdash \[] :: [au] \tau \text{ type} \]

Inductive steps: hypotheses are on top of the line, conclusions on bottom

\[\Gamma \vdash X_1 :: \tau \cdots \Gamma \vdash X_n :: \tau \]
\[\Gamma \vdash [X_1, \ldots, X_n] :: [\tau] \]

\[\Gamma \vdash \{f_1 = X_1, \ldots, f_n = X_n\} :: \{f_1 : \tau_1, \ldots, f_n : \tau_n, uid : \text{int}\} \]

\[\Gamma \vdash e_1 :: \text{int} \quad \Gamma \vdash e_2 :: \text{int} \]
\[\Gamma \vdash [e_1 \ldots e_2] :: [\text{int}] \]

\[\Gamma \vdash e :: \{f_1 : \tau_1, \ldots, f_n : \tau_n\} \]
\[\Gamma \vdash e : f_i :: \tau_i \]
Type Coercions

We make coercions explicit with a new syntactic construction: μ

- Reification: bool is a subtype of int
 \[
 \frac{\Gamma \vdash e :: \text{bool}}{\Gamma \vdash \mu_{\text{bool} \rightarrow \text{int}}(e) :: \text{int}}
 \]

- Projection: $\{f : \tau\}$ is a subtype of $\{f : \tau, g : \tau'\}$
 \[
 \frac{\Gamma \vdash e :: \{f_1 : \tau_1, \ldots, f_n : \tau_n\}}{\Gamma \vdash \mu_{\pi}(e) :: \{f_{\pi_1} : \tau_{\pi_1}, \ldots, f_{\pi_k} : \tau_{\pi_k}\}}
 \]
Typing Definitions and Calls

Typing a call should be equivalent to type the body of the definition given the arguments as environment:

\[
\Gamma \vdash e_1 :: \tau_1 \cdots \Gamma \vdash e_n :: \tau_n \quad (f(X_1, \ldots, X_n) = e) \in P \quad X_1 : \tau_1, \ldots, X_n : \tau_n \vdash e :: \tau
\]

\[
\Gamma \vdash f(e_1, \ldots, e_n) :: \tau
\]

Goal: associate to the definition \(f(X_1, \ldots, X_n) = e\) a principal type, that is to say a type valid for this definition that is more general than any other valid type. With subtyping, the principal type between \text{bool} and \text{int} is \text{int}. But there are definitions which can take either int, or [int], or...: \(\text{id}(X) = X\). Principality comes from the fact that if Cream Typing Rules are such that if a definition can be called with two unrelated type (e.g. int, or [int]), it can be called with any type \(\tau\).

Let \(\alpha, \beta, \ldots\) be a countable set of type variable.
A type schema is of the form:

\[
\forall \alpha \beta \ldots (f(\tau_1, \ldots, \tau_n) :: \tau)
\]

Since Cream definition are top-level, all type schema are closed.

Identity definition has type: \(\forall \alpha, (id(\alpha) :: \alpha)\)
Rule declarations and object definition

- **Rule declarations** (and queries) define constraints, the type system enforces that they return **bool**.

- **Object definition** define data structure, the type system enforces that they don’t return **bool**.

Consequence: \(f = 1 \) has type \(f :: \text{int} \) (by coercion) whereas \(p \rightarrow 1 \) has type \(p :: \text{bool} \). \(p \) is usable as a predicate, \(f \) isn’t.
Type Unification

Goal: Guess the type of the arguments of a definition.
Use type variable as (yet) unknown type.

\[
\frac{X_1 : \alpha_1, \ldots, X_n : \alpha_n \vdash e :: \alpha}{\Gamma \vdash f(X_1, \ldots, X_n) = e :: f(\alpha_1, \ldots, \alpha_n) : \alpha}
\]

Typing rules enforce equality between types.
Row variables: for (yet) unknown fields of a record.

\[
\frac{\Gamma \vdash e :: \{f : \tau, \rho\}}{\Gamma \vdash e : f :: \tau}
\]

Generalization to type schema for definitions.
Conclusion

- Early detection of errors
- Coding discipline:
 - Homogeneous data structures
 - Enforces separation between rule declarations and object definitions
- Type inference could be less restrictive on coercions with a Cardelli/Mitchell algorithm.