The Cream Type System

Thierry Martinez

Acknowledgments to Julien Martin

Contraintes Project–Team
INRIA Paris–Rocquencourt Research Centre

Wednesday 18th November 2009

1. Introduction
2. The Cream Type System
3. A Hindley-Milner based type inference algorithm
4. Conclusion
The Cream Modelling Language

- A rule-based language for modelling satisfaction and optimisation problems. [RAC’09]
- The language enjoys directives for the declarative specification of search-heuristics. [CPAIOR’09]
- Very few data structures: fd variables, integer constants, lists and records.
- Aggregators over lists. No recursion.

The Cream Modelling Language

Object definitions

queen(I) = { row = I, column = _ }.
board(N) = map(I, [1 .. N], queen(I)).

Rule declarations

no_attack(Q0, Q1) -->
 Q0:column ≠ Q1:column
and Q0:row - Q0:column ≠ Q0:row - Q1:column
and Q0:row + Q0:column ≠ Q0:row + Q1:column.
no_attack(L) -->
 forall(Q0 in L,
 forall(Q1 in L,
 Q0:row < Q1:row => no_attack(Q0, Q1))).

Query

? let(N = 10,
 Board = board(N),
 domain(Board, 1, N) and no_attack(Board)
 and labelling(Board)).
What Kind Of Guarantees Could Be Expected?

- Type consistency in a call:
 \[\text{board(int)} :: \{\text{row: int, column: } \alpha\}\]
 \[\text{board([1 .. 10])} \text{ should fail to type.}\]

- Projection validity: \(\text{queen(\alpha)} :: \{\text{row: } \alpha, \text{column: } \beta\}\)
 \(\text{queen(N)}:\text{column} \text{ should fail to type.}\)

- Object construction validity:
 \(\text{no_attack([\{\text{row: int, column: int }\}])} :: \text{bool}\)
 \(\text{no_attack([\{\text{line = 4, column = 2}\}])} \text{ should fail.}\)

- **But**: a well-typed Cream program can go wrong (with respect to the rewriting system \(\rightarrow\))
 \(\text{nth(1, [])} \text{ is well-typed but nth(1, [])} \not\rightarrow.\)
What is a type judgement?

The type system associates a type to every (well-typed) expression (e.g. \(1 + 1 :: \text{int}\)).

Expressions may depend on a context of bound variables (arguments of a definition, let-binding, iterators). In the general case, a type judgment is a relation between:

- a type environment \(\Gamma\): a mapping between bound variables and their type. (e.g. \(I :: \text{int}, L :: [\text{int}]\))
- an expression \(e\)
- the type \(t\) of \(e\) under \(\Gamma\)

A type judgement is denoted:

\[\Gamma \vdash e :: t\]

e.g. \(I :: \text{int} \vdash [I] :: [\text{int}]\)
Cream Typing Rules

Basis:

- Integer constants

 \[
 \Gamma \vdash n :: \text{int} \geq 2 \quad \Gamma \vdash 0 :: \text{bool} \quad \Gamma \vdash 1 :: \text{bool}
 \]

- Bound variables, FD variables, empty lists.

 \[
 \Gamma \vdash X :: \tau, \quad \Gamma \vdash X :: \tau \quad \Gamma \vdash X :: \text{int} \quad \Gamma \vdash \emptyset :: [\tau] \quad \text{type}
 \]

Inductive steps: hypotheses are on top of the line, conclusions on bottom

\[
\begin{align*}
\Gamma \vdash X_1 :: \tau & \cdots \Gamma \vdash X_n :: \tau \\
\Gamma \vdash [X_1, \ldots, X_n] :: [\tau]
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash X_1 :: \tau_1 & \cdots \Gamma \vdash X_n :: \tau_n \\
\Gamma \vdash \{f_1 = X_1, \ldots, f_n = X_n\} :: \{f_1 :: \tau_1, \ldots, f_n :: \tau_n, \text{uid} :: \text{int}\}
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash e_1 :: \text{int} & \quad \Gamma \vdash e_2 :: \text{int} \\
\Gamma \vdash [e_1 \ldots e_2] :: [\text{int}]
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash e :: \{f_1 :: \tau_1, \ldots, f_n :: \tau_n\} \\
\Gamma \vdash e :: f_i :: \tau_i
\end{align*}
\]
Type Coercions

We make coercions explicit with a new syntactic construction: μ

- **Reification**: `bool` is a subtype of `int`

 $\Gamma \vdash e :: \text{bool}$

 $\Gamma \vdash \mu_{\text{bool}\rightarrow\text{int}}(e) :: \text{int}$

- **Projection**: `{f: τ}` is a subtype of `{f: τ, g: τ'}`

 $\Gamma \vdash e :: \{f: \tau_1, \ldots, f_n: \tau_n\}$

 $\Gamma \vdash \mu_{\pi}(e) :: \{f_{\pi_1}: \tau_{\pi_1}, \ldots, f_{\pi_k}: \tau_{\pi_k}\}$
Typing Definitions and Calls

Typing a call should be equivalent to type the body of the definition given the arguments as environment:

\[\Gamma \vdash e_1 :: \tau_1 \cdots \Gamma \vdash e_n :: \tau_n \quad (f(X_1, \ldots, X_n) = e) \in P \quad X_1 : \tau_1, \ldots, X_n : \tau_n \vdash e :: \tau \]

\[\Gamma \vdash f(e_1, \ldots, e_n) :: \tau \]

Goal: associate to the definition "\(f(X_1, \ldots, X_n) = e \)" a principal type, that is to say a type valid for this definition that is more general than any other valid type.

With subtyping, the principal type between `bool` and `int` is `int`. But there are definitions which can take either `int`, or `[int]`, or...: "\(\text{id}(X) = X \)".

Principality comes from the fact that if Cream Typing Rules are such that if a definition can be called with two unrelated type (e.g. `int`, or `[int]`), it can be called with any type \(\tau \).

Let \(\alpha, \beta, \ldots \) be a countable set of type variable.

A **type schema** is of the form:

\[\forall \alpha \beta \ldots (f(\tau_1, \ldots, \tau_n) :: \tau) \]

Since Cream definition are top-level, all type schema are closed.

Identity definition has type: \(\forall \alpha, (\text{id}(\alpha) :: \alpha) \)
Rule declarations and object definition

- Rule declarations (and queries) define constraints, the type system enforces that they return `bool`.

- Object definition define data structure, the type system enforces that they don’t return `bool`.

Consequence: `f = 1` has type `f :: int` (by coercion) whereas `p --> 1` has type `p :: bool`. `p` is usable as a predicate, `f` isn’t.
Type Unification

Goal: Guess the type of the arguments of a definition.

Use type variable as (yet) unknown type.

\[
\frac{X_1: \alpha_1, \ldots, X_n: \alpha_n \vdash e :: \alpha}{\Gamma \vdash f(X_1, \ldots, X_n) = e :: f(\alpha_1, \ldots, \alpha_n) : \alpha}
\]

Typing rules enforce equality between types.

Row variables: for (yet) unknown fields of a record.

\[
\frac{\Gamma \vdash e :: \{f : \tau, \rho\}}{\Gamma \vdash e : f :: \tau}
\]

Generalization to type schema for definitions.
bool → int Coercion in a Hindley-Milner framework

Type constructors \texttt{value(bool)} and \texttt{value(int)}.

Generalization of \texttt{value(bool)} to \texttt{value(\(\alpha\)}} in type schema.

\(\mu_{\texttt{bool} \rightarrow \texttt{int}}\) only introduced on predicate arguments and value-let.
\texttt{let (X = (1 = 1), X and X = 1)} is ill-typed: the first usage of \(X\) has type \texttt{value(bool)} whereas the second has type \texttt{value(int)}.
Conclusion

- Early detection of errors

Coding discipline:
 - Homogeneous data structures
 - Enforces separation between rule declarations and object definitions

Type inference could be less restrictive on coercions with a Cardelli/Mitchell algorithm.