The Cream Type System

Thierry Martinez

Acknowledgments to Julien Martin

Contraintes Project-Team
INRIA Paris-Rocquencourt Research Centre

Wednesday 18th November 2009

1 Introduction
2 The Cream Type System
3 A Hindley-Milner based type inference algorithm
4 Conclusion
The Cream Modelling Language

- A rule-based language for modelling satisfaction and optimisation problems. [RAC’09]
- The language enjoys directives for the declarative specification of search-heuristics. [CPAIOR’09]
- Very few data structures: fd variables, integer constants, lists and records.
- Aggregators over lists. No recursion.

The Cream Modelling Language

queen(I) = \{ \text{row} = I, \text{column} = _ \}.

board(N) = \text{map}(I, [1 .. N], \text{queen}(I)).

no_attack(Q0, Q1) \rightarrow
 \begin{align*}
 Q0: \text{column} & \neq Q1: \text{column} \\
 \text{and} & \quad Q0: \text{row} - Q0: \text{column} \neq Q0: \text{row} - Q1: \text{column} \\
 \text{and} & \quad Q0: \text{row} + Q0: \text{column} \neq Q0: \text{row} + Q1: \text{column}.
 \end{align*}

no_attack(L) \rightarrow
 \forall (Q0 \in L, \forall (Q1 \in L,
 \begin{align*}
 Q0: \text{row} < Q1: \text{row} \Rightarrow no_attack(Q0, Q1).
 \end{align*}

? let(N = 10,
 Board = board(N),
 domain(Board, 1, N) and no_attack(Board)
 and labelling(Board)).
Cream Type Constructors

- **int** the type of integer constants and finite domain variables
 - \(1, 10, I, N :: \text{int}\)

- **bool** the type of constraints and rules (truth values)
 - \(Q0: \text{column} \# Q1: \text{column} :: \text{bool}\)
 - \(Q0: \text{row} \# Q1: \text{row} \Rightarrow \text{no_attack}(Q0, Q1) :: \text{bool}\)
 - \(1 :: \text{bool}\)

- \([\tau]\) the type of lists with elements of type \(\tau\) (homogeneous lists)
 - \([1 .. N] :: [\text{int}]\)

- \(\{ f_1: \tau_1, \ldots, f_n: \tau_n \}\) the type of records with a field \(f_1\) carrying a value of type \(\tau_1\), ..., a field \(f_n\) carrying a value of type \(\tau_n\)
 - \(\text{queen}(I) = \{ \text{row} = I, \text{column} = _ \}\. \quad \text{queen}(\alpha) :: \{ \text{row}: \alpha, \text{column}: \beta\}\)
 - \(\text{board}(N) = \text{map}(I, [1 .. N], \text{queen}(I))\)
 - \(\text{board}(\text{int}) :: [{\{ \text{row}: \text{int}, \text{column}: \alpha}\}]\)
What Kind Of Guarantees Could Be Expected?

- Type consistency in a call:
 \[\text{board}(\text{int}) :: [{ \text{row: int, column: } \alpha}] \]
 \[\text{board}([1 \ldots 10]) \] should fail to type.

- Projection validity: \(\text{queen}(\alpha) :: \{ \text{row: } \alpha, \text{column: } \beta \} \)
 \[\text{queen}(N) : \text{column} \] should fail to type.

- Object construction validity:
 \[\text{no_attack}({[\text{row: int, column: int }]})) :: \text{bool} \]
 \[\text{no_attack}([\{\text{line = 4, column = 2}\}]) \] should fail.

- **But**: a well-typed Cream program can go wrong (with respect to the rewriting system \(\rightarrow \))
 \[\text{nth}(1, []) \] is well-typed but \(\text{nth}(1, []) \) does not reduce.
What is a type judgement?

The type system associates a type to every (well-typed) expression (e.g. $1 + 1 :: \text{int}$).

Expressions may depend on a context of bound variables (arguments of a definition, let-binding, iterators). In the general case, a type judgment is a relation between:

- a type environment Γ: a mapping between bound variables and their type. (e.g. $I :: \text{int}$, $L :: [\text{int}]$)
- an expression e
- the type t of e under Γ

A type judgement is denoted:

$$ \Gamma \vdash e :: t $$

e.g. $I :: \text{int} \vdash [I] :: [\text{int}]$
Cream Typing Rules

Basis:

- Integer constants
 \[\Gamma \vdash n :: \text{int} \geq 2 \quad n \in \mathbb{N} \quad \Gamma \vdash 0 :: \text{bool} \quad \Gamma \vdash 1 :: \text{bool} \]

- Bound variables, FD variables, empty lists.
 \[\Gamma \vdash X :: \tau, \Gamma \vdash \tau \quad \Gamma \vdash X :: \text{int} \quad \Gamma \vdash X \notin \Gamma \quad \Gamma \vdash [] :: [\tau] \]

Inductive steps: hypotheses are on top of the line, conclusions on bottom

\[\Gamma \vdash X_1 :: \tau \ldots \Gamma \vdash X_n :: \tau \Rightarrow \Gamma \vdash [X_1, \ldots, X_n] :: [\tau] \]
\[\Gamma \vdash X_1 :: \tau_1 \ldots \Gamma \vdash X_n :: \tau_n \Rightarrow \Gamma \vdash \{f_1 = X_1, \ldots, f_n = X_n\} :: \{f_1 : \tau_1, \ldots, f_n : \tau_n, \text{uid} : \text{int}\} \]
\[\Gamma \vdash e_1 :: \text{int} \quad \Gamma \vdash e_2 :: \text{int} \Rightarrow \Gamma \vdash [e_1 \ldots e_2] :: [\text{int}] \]
\[\Gamma \vdash e :: \{f_1 : \tau_1, \ldots, f_n : \tau_n\} \Rightarrow \Gamma \vdash e : f_i :: \tau_i \]
Type Coercions

We make coercions explicit with a new syntactic construction: \(\mu \)

- **Reification:** \(\texttt{bool} \) is a subtype of \(\texttt{int} \)

\[
\Gamma \vdash e :: \texttt{bool} \\
\Gamma \vdash \mu_{\texttt{bool} \rightarrow \texttt{int}}(e) :: \texttt{int}
\]

- **Projection:** \(\{ \texttt{f: } \tau \} \) is a subtype of \(\{ \texttt{f: } \tau, \texttt{g: } \tau' \} \)

\[
\Gamma \vdash e :: \{ \texttt{f}_1 : \tau_1, \ldots, \texttt{f}_n : \tau_n \} \\
\Gamma \vdash \mu_{\pi}(e) :: \{ \texttt{f}_{\pi_1} : \tau_{\pi_1}, \ldots, \texttt{f}_{\pi_k} : \tau_{\pi_k} \}
\]
Typing Definitions and Calls

Typing a call should be equivalent to type the body of the definition given the arguments as environment:

\[
\Gamma \vdash e_1 :: \tau_1 \ldots \Gamma \vdash e_n :: \tau_n \quad (f(X_1, \ldots, X_n) = e) \in P \quad X_1: \tau_1, \ldots, X_n: \tau_n \vdash e :: \tau
\]

\[
\Gamma \vdash f(e_1, \ldots, e_n) :: \tau
\]

Goal: associate to the definition \(f(X_1, \ldots, X_n) = e\) a principal type, that is to say a type valid for this definition that is more general than any other valid type.

With subtyping, the principal type between `bool` and `int` is `int`. But there are definitions which can take either `int`, or `[int]`, or...: \("id(X) = X"\).

Principality comes from the fact that if Cream Typing Rules are such that if a definition can be called with two unrelated type (e.g. `int`, or `[int]`), it can be called with any type \(\tau\).

Let \(\alpha, \beta, \ldots\) be a countable set of type variable.
A type schema is of the form:

\[
\forall \alpha \beta \ldots (f(\tau_1, \ldots, \tau_n) :: \tau)
\]

Since Cream definition are top-level, all type schema are closed.

Identity definition has type: \(\forall \alpha, (id(\alpha) :: \alpha)\)
Rule declarations and object definition

- **Rule declarations** (and queries) define constraints, the type system enforces that they return `bool`.

- **Object definition** define data structure, the type system enforces that they don’t return `bool`.

Consequence: \(f = 1 \) has type \(f :: \text{int} \) (by coercion) whereas \(p \rightarrow 1 \) has type \(p :: \text{bool} \). \(p \) is usable as a predicate, \(f \) isn’t.
Type Unification

Goal: Guess the type of the arguments of a definition.

Use type variable as (yet) unknown type.

\[
\frac{X_1: \alpha_1, \ldots, X_n: \alpha_n \vdash e :: \alpha}{\Gamma \vdash f(X_1, \ldots, X_n) = e :: f(\alpha_1, \ldots, \alpha_n) : \alpha}
\]

Typing rules enforce equality between types.

Row variables: for (yet) unknown fields of a record.

\[
\frac{\Gamma \vdash e :: \{f : \tau, \rho\}}{\Gamma \vdash e : f :: \tau}
\]

Generalization to type schema for definitions.
bool → int Coercion in a Hindley-Milner framework

Type constructors \textit{value}(\textit{bool}) and \textit{value}(\textit{int}).

Generalization of \textit{value}(\textit{bool}) to \textit{value}(\alpha) in type schema.

\[\mu \text{bool}\rightarrow\text{int} \text{ only introduced on predicate arguments and value-let.}\]
\begin{verbatim}
let (X = (1 = 1), X and X = 1) is ill-typed: the first usage of X has type value(bool) whereas the second has type value(int).
\end{verbatim}
Conclusion

- Early detection of errors
- Coding discipline:
 - Homogeneous data structures
 - Enforces separation between rule declarations and object definitions
- Type inference could be less restrictive on coercions with a Cardelli/Mitchell algorithm.